Trees

Week 12

Gaddis: 20
Weiss: 21.1-3
CS 5301
Spring 2014
Jill Seaman

Tree:

example

- edges are directed down (source is higher)
- D is the parent of $H . Q$ is a child of J.
- Leaf: a node with no children (like H and P)
- Sibling: nodes with same parent (like K,L,M) ${ }_{3}$

Tree: non-recursive definition

- Tree: set of nodes and directed edges root: one node is distinguished as the root Every node (except root) has exactly exactly one edge coming into it.
Every node can have any number of edges going out of it (zero or more).
- Parent: source node of directed edge
- Child: terminal node of directed edge

Tree:
 recursive definition

- Tree:
- is empty or
consists of a root node and zero or more nonempty subtrees, with an edge from the root to each subtree (a subtree is a Tree).

Tree terms

- Path: sequence of (directed) edges
- Length of path: number of edges on the path
- Depth of a node: length of path from root to that node.
- Height of a node: length of longest path from node to a leaf.

Tree traversal

- Tree traversal: operation that converts the values in a tree into a list
- Often the list is output
- Pre-order traversal
- Print the data from the root node
- Do a pre-order traversal on first subtree
- Do a pre-order traversal on second subtree

Do a preorder traversal on last subtree

This is recursive. What's the base case?

Postorder traversal:

Expression Tree

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

- process left tree, then right, then node

$$
\mathrm{abc}^{*}+\mathrm{de}^{*} \mathrm{f}+\mathrm{g}^{*}+
$$

- postfix notation (for arithmetic expressions) s

Inorder traversal:

Expression Tree

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

- IF each node has 0 to 2 children, you can do inorder traversal - process left tree, print node value, then process right tree

$$
a+b^{*} c+d^{*} e+f^{*} g
$$

- infix notation (for arithmetic expressions)

Binary Trees: implementation

- Structure with a data value, and a pointer to the left subtree and another to the right subtree.

```
struct TreeNode {
    <type> data;
    TreeNode *left; // left subtree
};
```

- Like a linked list, but two "next" pointers.
- This structure can be used to represent any binary tree.

Binary Trees

- Binary Tree: a tree in which no node can have more than two children.

- height: shortest: $\log _{2}(\mathrm{n})$ tallest: n

n is the number of nodes in the tree.

10

Binary Search Trees

- A special kind of binary tree
- A data structure used for efficient searching, insertion, and deletion.
- Binary Search Tree property:

For every node X in the tree:

- All the values in the left subtree are smaller than the value at X.
- All the values in the right subtree are larger than the value at X .
- Not all binary trees are binary search trees ${ }_{12}$

Binary Search Trees

A binary search tree
Not a binary search tree

Binary Search Trees

An inorder traversal of a BST shows the values in sorted order

Inorder traversal: 2346791315171820

BST: find (x)

Recursive Algorithm:

- if we are searching for 15 we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.

BST: find (x)

Example: search for 9 - compare 9 to 15 , go left - compare 9 to 6, go right - compare 9 to 7 go right

- compare 9 to 13 go left
- compare 9 to 9 : found

BST: findMin()

- Smallest element is found by always taking the left branch.
- Pseudocode
- Recursive
- Tree must not be empty

```
<type> findMin (TreeNode t) {
    assert (!isEmpty(t))
    if (isEmpty(left(t)))
        return value(t)
    return findMin (left(t))
```


BST: find (x)

- Pseudocode
- Recursive

```
bool find (<type> x, TreeNode t) {
if (isEmpty(t)) return false \(\square\)
if (x < value(t))
        return find (x, left(t))
    if (x > value(t))
        return find (x, right(t))
    return true // x == value(t)
```


BST: insert(x)

- Algorithm is similar to find(x)
- If x is found, do nothing (no duplicates in tree)
- If x is not found, add a new node with x in place of the last empty subtree that was searched.

Inserting 13:

BST: insert(x)

- Pseudocode
- Recursive

```
bool insert (<type> x, TreeNode t) {
    if (isEmpty(t))
        make t's parent point to new TreeNode(x)
    else if (x < value(t))
        insert (x, left(t))
    else if (x > value(t))
        insert (x, right(t))
    //else x == value(t), do nothing, no duplicates
}

\section*{BST: remove(x)}
- Algorithm is starts with finding( \(x\) )
- If \(x\) is not found, do nothing
- If \(x\) is not found, remove node carefully.

Must remain a binary search tree (smallers on left, biggers on right).

\section*{Linked List example:}
- Append \(x\) to the end of a singly linked list:

Pass the node pointer by reference
Recursive
```

void List::append (double x)
append(x, head);
}
void List::append (double x, Node *\& p) {
if (p == NULL) {
p->next = NULL;
}
else
append (x, p->next);
2 2
}

```

\section*{BST: remove(x)}
- Case 1: Node is a leaf

Can be removed without violating BST property
- Case 2: Node has one child

Make parent pointer bypass the Node and point to child


Figure 4.24 Deletion of a node (4) with one child, before and after

Does not matter if the child is the left or right child of deleted node

\section*{BST: remove(x)}
- Case 3: Node has 2 children

Replace it with the minimum value in the right subtree
Remove minimum in right:
* will be a leaf (case 1), or have only a right subtree (case 2) --cannot have left subtree, or it's not the minimum


\section*{Binary heap data structure}
- A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
has an ordering property (parent value is smaller than child values)
NOT a Binary Search Tree!
- Used in the following applications
- Priority queue implementation: supports enqueue and deleteMin operations in \(\mathrm{O}(\log \mathrm{N})\)
- Heap sort: another \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) sorting algorithm.

\section*{Complete Binary Trees}
- A complete binary tree can be easily stored in an array
place the root in position 1 (for convenience)


\section*{Complete Binary Trees}

\section*{Properties}
- In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:
left child at position \(2 i \quad\) (if \(2 \mathrm{i}<=\) size, else i is leaf)
right child at position \(2 i+1 \quad\) (if \(2 i+1<=\) size, else \(i\) is leaf)
parent is in position floor(i/2) (or use integer division)

\section*{Heap: insert(x)}
- First: add a node to tree.
- must be placed at next available location, size+1, in order to maintain a complete tree.
- Next: maintain the ordering property:
- if \(x\) is greater than its parent: done
- else swap with parent, repeat
- Called "percolate up" or "reheap up"
- preserves ordering property

\section*{Binary Heap: ordering property}
- In a heap, if \(X\) is a parent of \(Y\), value \((X)\) is less than or equal to value(Y).
- the minimum value of the heap is always at the root.



\section*{Heap: deleteMin()}
- Minimum is at the root, removing it leaves a hole.
- The last element in the tree must be relocated.
- First: move last element up to the root
- Next: maintain the ordering property, start with root:
- if both children are greater than the parent: done otherwise, swap the smaller of the two children with the parent, repeat
- Called "percolate down" or "reheap down"
- preserves ordering property
- O(log n)

\section*{Heap: deleteMin()}


Figure 21.10 Creation of the hole at the root


Figure 21.11 The next two steps in the deletemin operation.
```

