
!1

Week 2
Control Constructs & Functions

!

Gaddis: Chapters 4, 5, 6
!
!

CS 5301
Spring 2014

!
Jill Seaman

!

!2

Relational and Logical Operators
! relational operators (result is bool):
!

!

!

! logical operators (values and results are bool):
!

!

! operator precedence:

== Equal to!
!= Not equal to!
> Greater than!
< Less than!
>= Greater than or equal to!
<= Less than or equal to

7 < 25!
89 == x!
x % 2 != 0!
8 + 5 * 10 <=100 * n

! not!
&& and!
|| or

x < 10 && x > 0!
y == 10 || y == 20!
!(a == b)

!!
(arithmetic operators here)!
< > <= >=!
== !=!
&&!
||

!3

Control structures: if else
! if and else

!

! if expression is true, statement 1 is executed
! if expression is false, statement2 is executed

!

! the else is optional:
! nested if else

if (expression)!
 statement1!
else!
 statement2

if (expression)!
 statement

if (expression1)!
 statement1!
else if (expression2)!
 statement2!
else if (expression3)!
 statement3!
else!
 statement4

statement may be a
compound statement
(a block: {statements})

!4

Control structures: switch
! switch stmt:

!

!

- execution starts at the case labeled with the value of
the expression.
- if no match, start at default
- use break to exit switch (usually at end of statements)

! example: switch (ch) {!
 case ‘a’:!
 case ‘A’: cout << “Option A”;!
 break;!
 case ‘b’:!
 case ‘B’: cout << “Option B”;!
 break;!
 default: cout << “Invalid choice”;!
}

switch (expression) {!
 case constant: statements!
 ...!
 case constant: statements!
 default: statements!
}

!5

More assignment statements
! Compound assignment
!

!

!

! increment, decrement

operator usage
!

equivalent syntax:
+= x += e; x = x + e;
-= x -= e; x = x - e;
*= x *= e; x = x * e;
/= x /= e; x = x / e;

operator usage
!

equivalent syntax:

++ x++; ++x; x = x + 1;
-- x--; --x; x = x - 1;

!6

Control structures: loops
! while

!

★ if expression is true, statement is executed, repeat
! for:
!

★ equivalent to:
!

! do while:

while (expression)!
 statement

for (expr1; expr2; expr3)!
 statement

do!
 statement!
while (expression);

statement may be a
compound statement
(a block: {statements})

expr1;!
while (expr2) {!
 statement!
 expr3;!
}

statement is executed.
if expression is true, then repeat

!7

Nested loops
! When one loop appears in the body of another
! For every iteration of the outer loop, we do all

the iterations of the inner loop
 for (row=1; row<=3; row++) //outer!
 for (col=1; col<=3; col++) //inner!
 cout << row * col << endl;

1!
2!
3!
2!
4!
6!
3!
6!
9

Output:

!8

continue and break Statements
! Use break to terminate execution of a loop
! When used in a nested loop, terminates the

inner loop only.
!

! Use continue to go to end of current loop and
prepare for next repetition

! while, do-while loops: go to test, repeat loop if
test passes

! for loop: perform update step, then test, then
repeat loop if test passes

!9

Function Definitions
! Function definition pattern:
!

!

!

★ datatype: the type of data returned by the function.
★ identifier: the name by which it is possible to call the

function.
★ parameters: Like a regular variable declaration, act

within the function as a regular local variable. Allow
passing arguments to the function when it is called.

★ statements: the function's body, executed when called.

datatype identifier (parameter1, parameter2, ...) {!
 statements . . . !
}

datatype identifier
Where a parameter is:

!10

Function Call, Return Statement
! Function call expression
!

★ Causes control flow to enter body of function named
identifier.

★ parameter1 is initialized to the value of expression1,
and so on for each parameter

★ expression1 is called an argument.
! Return statement:

★ inside a function, causes function to stop, return
control to caller.

! The value of the return expression becomes the
value of the function call

identifier (expression1, . . .)

char!
short!
int!
long

return expression;

!11

Example: Function
!

!

!

!

!

!

!

! What are the parameters? arguments?
! What is the value of: addition (5,3)?
! What is the output?

// function example!
#include <iostream>!
using namespace std;!
int addition (int a, int b) {!
 int result;!
 result=a+b;!
 return result;!
}!
int main () {!
 int z;!
 z = addition (5,3);!
 cout << "The result is " << z <<endl;!
}

!12

Void function
! A function that returns no value:
!

!

!

✴ use void as the return type.
! the function call is now a statement (it does not

have a value)

void printAddition (int a, int b) {!
 int result;!
 result=a+b;!
 cout << “the answer is: “ << result << endl;!
}

int main () {!
 printAddition (5,3);!
}

!13

Prototypes
! In a program, function definitions must occur

before any calls to that function
! To override this requirement, place a prototype of

the function before the call.
! The pattern for a prototype:
!

!

✴ the function header without the body (parameter
names are optional).

datatype identifier (type1, type2, ...);

!14

Arguments passed by value

! Pass by value: when an argument is passed to a
function, its value is copied into the parameter.

! It is implemented using variable initialization
(behind the scenes): 

! Changes to the parameter in the function body
do not affect the value of the argument in the
call

! The parameter and the argument are stored in
separate variables; separate locations in
memory.

int param = argument;

!15

Example: Pass by Value

!  
#include <iostream>!
using namespace std;!
!
void changeMe(int);!
!
int main() {!
 int number = 12;!
 cout << "number is " << number << endl;!
 changeMe(number);!
 cout << "Back in main, number is " << number << endl;!
 return 0;!
}!
!
void changeMe(int myValue) { !
 myValue = 200;!
 cout << "myValue is " << myValue << endl;!
}

Output:
number is 12
myValue is 200
Back in main, number is 12

int myValue = number;

changeMe failed to change the argument!
!16

Scope of variables

! For a given variable definition, in which part of
the program can it be accessed?
★ Global variable (defined outside of all functions): 

can be accessed anywhere, after its definition.
★ Local variable (defined inside of a function): 

can be accessed inside the block in which it is
defined, after its definition.

★ Parameter: can be accessed anywhere inside of its
function body.

! Variables are destroyed at the end of their
scope.

!17

More scope rules
! Variables in the same exact scope cannot have the

same name
- Parameters and local function variables cannot

have the same name
- Variable defined in inner block can hide a

variable with the same name in an outer block.
!

!

!

! Variables defined in one function cannot be seen
from another.

int x = 10;!
if (x < 100) {!
 int x = 30;!
 cout << x << endl;!
}!
cout << x << endl;

30!
10

Output:

