
!1

Week 4
Pointers & Dynamic Memory Allocation

!
Gaddis: Chapters 9, 11

!
!

CS 5301
Spring 2014

!
Jill Seaman

!

!2

Pointers and Addresses

! The address operator (&) returns the address of a
variable.
!

!

! Pointer: a variable that stores the address of another
variable, providing indirect access to it.

! An asterisk is used to define a pointer variable 

! “ptr is a pointer to an int”. It can contain addresses of
int variables.

int x; !
cout << &x << endl; // 0xbffffb0c

int *ptr;

ptr = &x;

!3

Dereferencing and initializing

! The unary operator * is the dereferencing operator.
! *ptr is an alias for the variable that ptr points to.
!

!

!

! Initialization:
!

!

! ptr is a pointer to an int, and it is initialized to the
address of x.

int x = 10; !
int *ptr; //declaration, NOT dereferencing!
ptr = &x; //ptr gets the address of x!
*ptr = 7; //the thing ptr pts to gets 7

int x = 10;!
int *ptr = &x; //declaration, NOT dereferencing

!4

Pointers as Function Parameters

! Use pointers to implement pass by reference.�
�
�
�
�
�

!

! How is it different from using reference
parameters?

//prototype: void changeVal(int *);!
!
void changeVal (int *val) {!
 *val = *val * 11;!
}!
!
int main() {!
 int x;!
 cout << "Enter an int " << endl;!
 cin >> x;!
 changeVal(&x);!
 cout << x << endl;!
}

!5

Pointers and Arrays

! You can treat an array variable as if it were a pointer
to its first element.
int numbers[] = {10, 20, 30, 40, 50};!
!
cout << “first: ” << numbers[0] << endl;!
cout << “first: ” << *numbers << endl;!
!
cout << &(numbers[0]) << endl;!
cout << numbers << endl;

first: 10!
first: 10!
0xbffffb00!
0xbffffb00

Output:

!6

Pointer Arithmetic
! When you add a value n to a pointer, you are actually

adding n times the size of the data type being
referenced by the pointer.
!

!

!

!

!

!

!

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};!
!
// sizeof(int) is 4.!
// Let us assume numbers is stored at 0xbffffb00!
// Then numbers+1 is really 0xbffffb00 + 1*4, or 0xbffffb04!
// And numbers+2 is really 0xbffffb00 + 2*4, or 0xbffffb08 !
// And numbers+3 is really 0xbffffb00 + 3*4, or 0xbffffb0c

cout << “second: ” << numbers[1] << endl;!
cout << “second: ” << *(numbers+1) << endl;!
!
cout << "size: " << sizeof(int) << endl;!
cout << numbers << endl;!
cout << numbers+1 << endl;

second: 20!
second: 20!
size: 4!
0xbffffb00!
0xbffffb04

Output:

!7

Pointers and Arrays
! pointer operations can be used with array

variables.�

! subscript operations can be used with pointers.�

int list[10];!
cin >> *(list+3);

int list[] = {1,2,3};!
int *ptr = list;!
cout << ptr[2];

!8

Comparing Pointers
! pointers (addresses) maybe compared using the

relational operators: �
 < <= > >= == !=

! Examples:�
�

!

! What is the difference?
− ptr1 < ptr2!
− *ptr1 < *ptr2

int arr[25];!
!
cout << (&arr[1] > &arr[0]) << endl;!
cout << (arr == &arr[0]) << endl;!
cout << (arr <= &arr[20]) << endl;!
cout << (arr > arr+5) << endl;

!9

Dynamic Memory Allocation

! When a function is called, memory for local
variables is automatically allocated.

! When a function exits, memory for local variables
automatically disappears.

! Must know ahead of time the maximum number of
variables you may need.

! Dynamic Memory allocation allows your program to
create variables on demand, during run-time.

!10

The new operator

! “new” operator requests dynamically allocated
memory for a certain data type:�
�

! new operator returns address of newly created
anonymous variable.

! use dereferencing operator to access it:

int *iptr;!
iptr = new int;

*iptr = 11;!
cin >> *iptr;!
int value = *iptr / 3;

!11

Dynamically allocated arrays

! dynamically allocate arrays with new:
!

!

!

!

!

!

! Program will throw an exception and terminate if
not enough memory available to allocate

int *iptr; //for dynamically allocated array!
int size;!
!
cout << “Enter number of ints: “;!
cin >> size;!
iptr = new int[size];!
!
for (int i=1; i<size; i++) {!
 iptr[i] = i;!
}

!12

delete!
! When you are finished using a variable created

with new, use the delete operator to destroy it:�
�
�

!

!

! Do not “delete” pointers whose values were NOT
dynamically allocated using new!

! Do not forget to delete dynamically allocated
variables (Memory Leaks!!).�

int *ptr;!
double *array;!
!
ptr = new int;!
array = new double[25];!
. . .!
delete ptr;!
delete [] array; // note [] required for dynamic arrays!

!13

Returning Pointers from Functions

! functions may return pointers:�
�
�
�

! The returned pointer must point to
− dynamically allocated memory OR
− an item passed in via an argument

int * findZero (int arr[]) {!
 int *ptr;!
 ptr = arr;!
 while (*ptr != 0)!
 ptr++;!
 return ptr;!
}

NOTE: the return type of this function is
(int *) or pointer to an int.

NOTE: if the function returns dynamically allocated memory,
then it is the responsibility of the calling function to delete it. !14

Returning Pointers from Functions:�
duplicateArray

int a [5] = {11, 22, 33, 44, 55};!
int *b = duplicateArray(a, 5);!
for (int i=0; i<5; i++) !
 if (a[i] == b[i])!
 cout << i << “ ok” << endl;!
delete [] b; //caller deletes mem

0 ok!
1 ok!
2 ok!
3 ok!
4 ok

Output

int *duplicateArray (int *arr, int size) {!
 !
 int *newArray;!
 if (size <= 0) //size must be positive!
 return NULL; //NULL is 0, an invalid address!
!
 newArray = new int [size]; //allocate new array!
!
 for (int index = 0; index < size; index++)!
 newArray[index] = arr[index]; //copy to new array!
!
 return newArray;!
}

!15

Pointers to structures

! We can define pointers to structures
!

!

! To access the members via the pointer:
!

! dot operator has higher precedence, so use ():
!

! or equivalently, use ->:

Student s1 = {12345,“Jane Doe”, 18, “Math”};!
Student *ptr = &s1;

cout << *ptr.name << end; // ERROR: *(ptr.name)

cout << (*ptr).name << end;

cout << ptr->name << end;
!16

Dynamically Allocating Structures

! Structures can be dynamically allocated with new:
!

!

!

!

! Arrays of structures can also be dynamically
allocated:

Student *sptr;!
sptr = new Student;!
!
sptr->name = “Jane Doe”;!
sptr->idNum = 12345;!
...!
delete sptr;

Student *sptr;!
sptr = new Student[100];!
sptr[0].name = “John Deer”;!
...!
delete [] sptr;

No arrows (->) necessary.
It’s just an array of Student

