
Intro to Programming & C++

Unit 1

Sections 1.1-3 and 2.1-10, 2.12-13, 2.15-17

CS 1428
Spring 2018

Jill Seaman

1

1.1 Why Program?

Computer – programmable machine designed to
follow instructions

Program – a set of instructions, stored in
computer memory, to make the computer do
something

Programmer – person who writes instructions
(programs) to make computer perform a task

SO, without programmers, no programs; without
programs, a computer cannot do anything

2

Why Learn to Program?

• Programming is a fundamental part of computer
science.

•Having an understanding of programming helps
you to understand the strengths and limitations
of computers.

• It helps you become a more intelligent user of
computers.

• It can be fun!
• It helps you to develop problem solving skills.

3

1.2 Computer Systems: Hardware
and Software

l Hardware:  
the physical components that a computer is
made of.

l Software: 
the programs that run on a computer

4

Hardware Components Illustrated

5

Hardware Components

l Central Processing Unit (CPU)
l Arithmetic Logic Unit (math, comparisons, etc)
l Control Unit (processes instructions)

l Main Memory (RAM): Fast, expensive, volatile
l Secondary Storage: Slow, cheap, long-lasting
l Input Devices: keyboard, mouse, camera
l Output Devices: screen, printer, speakers

6

1.3 Programs and Programming
Languages

l A program is a set of instructions that the
computer follows to perform a task 

l An algorithm:
‣ A set of well-defined steps for performing a task or

solving a problem.
‣ A step by step ordered procedure that solves a

problem in a finite number of precise steps.
l An algorithm can be in any language (English,

C++, machine code, etc).
7

Example (algorithm)

1.Display on screen: “how many hours did you work?”
2.Wait for user to enter number, store it in memory
3.Display on screen: “what is your pay rate (per hour)?”
4.Wait for user to enter rate, store it in memory
5.Multiply hours by rate, store result in memory
6.Display on screen: “you have earned $xx.xx” where

xx.xx is result of step 5.

Note: Computer does not speak English,  
it only understands its own “machine language”

8

Programming Languages
l High Level Languages (like C++):
‣ Words, symbols, numbers, i.e. c = a + b

‣ Easier for humans to read and use
l Low Level Languages:
‣ Load the number from location 2001 into the CPU,  

Load the number from location 2002 into the CPU, 
Add the two numbers, Store the result in location 2003

‣ Instructions are encoded as a sequence of 1's and 0’s
‣ Computer understands this language (often called

Machine Language).
l Programs written in high level language must be

translated to machine language. 9

Translation Process

10

What is Computer Science?

• The study of what can be computed (what can
the computer do?), not the study of computers.

•Computer scientists design, analyze, and
experiment with algorithms.

• They study algorithms in the context of
networking, security, artificial intelligence,
modeling scientific data, databases, software
engineering, etc.

• They study how to encode or translate
algorithms into machine language.

11

2.1 The Parts of a C++ Program

// sample C++ program

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, world!";

return 0;

}

12

Parts of a C++ Program

l Comment: //…
‣ ignored by compiler
‣ notes to human reader

l Preprocessor Directive: #include <iostream>
‣ compiler inserts contents of file iostream here

‣ required because cout is defined in iostream
l using namespace std;
‣ allows us to write cout instead of std::cout

13

Parts of a C++ Program

• int main ()
– start of function (group of statements) named main
– the starting point of the program

• {}
– contains the body of the function

• cout << “Hello, world!”;
– statement to display message on screen

• return 0;
– quit and send value 0 to OS (means success!)

14

2.2 The cout Object

15

l cout: short for “console output”
‣ a stream object: represents the contents of the screen

l <<: the stream insertion operator
‣ use it to send data to cout (to be output to the screen)

l when this instruction is executed, the console
(screen) looks like this:

cout << “This is an example.”;

This is an example.

Note: the “ ” do
not show up in
the output

The endl manipulator

16

l endl: short for “end line”
‣ send it to cout when you want to start a new line of output.

l or you can use the newline character: \n

l Either way the output to the screen is:

cout << “Hello ” << endl << “there!”;

cout << “Hello \nthere!”;

Hello
there!

more examples

17

cout << “Hello ”;
cout << “there!”;

Hello there!

cout << “Hello ” << “there!”;

Hello there!

cout << “The best selling book on Amazon\n is \”The Help\””;

The best selling book on Amazon
 is ”The Help”

2.3 The #include Directive

18

l Inserts the contents of another file into the
program.

l For example, cout is not part of the core C++
language, it is defined in the iostream file.

l Any program that uses the cout object must
contain the extensive setup information found in
iostream.

l The code in iostream is C++ code.

#include <iostream>

2.4 Variables, Literals and
Assignment Statements

19

l Variable: named location in main memory
l A variable declaration has a name and datatype
‣ The data type indicates the kind of data it can contain.

‣ The identifier is a name of your choosing.

‣ Note the book calls it a “variable definition”.

l A variable must be declared before it can be
used!!

l Example variable definitions:
‣ int someNumber;

‣ char firstLetter;

Literals
l A literal represents a constant value used in a

program statement.
l Numbers: 0, 34, 3.14159, -1.8e12, etc.
l Strings (sequence of keyboard symbols):
‣ “Hello”, “This is a string”
‣ “100 years”, “100”, “Y”, etc.

l NOTE: These are different: 5 “5”

20

Assignment Statements

21

l An assignment statement uses the = operator
to store a value in an already declared variable.
‣ someNumber = 12;

l When this statement is executed, the computer
stores the value 12 in memory, in the location
named “someNumber”.

l The variable receiving the value must be on the
left side of the = (the following does NOT work):
‣ 12 = someNumber; //This is an ERROR

Example program using a variable
#include <iostream>
using namespace std;

int main() {
 int number;

 number = 100;
 cout << “The value of the number is “
 << number << endl;
 return 0;
}

22
The value of the number is 100output screen:

2.5 Identifiers

23

l An identifier is a name for some program
element (like a variable).

l Rules:
‣ May not be a keyword (see Table 2.4 in the book)

‣ First character must be a letter or underscore

‣ Following characters must be letters, numbers or
underscores.

l Identifiers are case-sensitive:
‣ myVariable is not the same as MyVariable

Data Types

24

l Variables are classified according to their data
type.

l The data type determines the kind of
information that may be stored in the variable.

l A data type is a set of values.
l Generally two main (types of) data types:
‣ Numeric

‣ Character-based

C++ Data Types
l int, short, long
‣ whole numbers (integers)

l float, double
‣ real numbers (with fractional amounts, decimal points)

l bool
‣ logical values: true and false

l char
‣ a single character (keyboard symbol)

l string
‣ any text, a sequence of characters 25

2.6 Integer Data Types

26

l Whole numbers such as 12, 7, and -99
l Typical ranges (may vary on different systems):

l Example variable declarations:
short dayOfWeek;
long distance;
int xCoordinate;

Data Type: Range of values:

short -32,768 to 32,767

int -2,147,483,648 to 2,147,483,647

long -2,147,483,648 to 2,147,483,647

2.7 The char Data Type

27

l All the keyboard and printable symbols.
l Literal values: ‘A’ ‘5’ ‘?’ ‘b’
‣ characters are indicated using single quotes

l Numeric value of character from the ASCII
character set is stored in memory:

C++ code segment:
char letter;
letter = ‘C';
cout << letter << endl;

MEMORY:
letter

67

Appendix B shows the ASCII code values

OUTPUT:

C

2.8 The C++ string class

• Sequences of characters
• May require the string header file:
• To declare string variables in programs:

• To assign literals to variables:
firstName = "George";

lastName = "Washington";

• To display via cout
cout << firstName << " " << lastName;

28
OUTPUT: George Washington

#include <string>

string firstName, lastName;

2.9 Floating-Point Data Types

29

l Real numbers such as 12.45, and -3.8
l Typical ranges (may vary on different systems):

l Floating-point literals can be represented in
– Fixed point (decimal) notation:
 31.4159 0.0000625
– E (scientific) notation:
 3.14159E1 6.25e-5

Data Type: Range of values:

float +/- 3.4e +/- 38 (~7 digits of precision)

double +/- 1.7e +/- 308 (~15 digits of precision)

2.10 The bool Data Type

30

l The values true and false.
l Literal values: true, false
l (false is equivalent to 0, true is equivalent to 1)

int main() {
 bool boolValue;
 boolValue = true;
 cout << boolValue << endl;
 boolValue = false;
 cout << boolValue << endl;
 return 0;
}

1
0

output screen:

2.12 More about Variable
Assignments and Initialization

31

l To initialize a variable means to assign it a
value when it is declared:
‣ int length = 12;

l You can define and initialize multiple variables
at once (and change them later) :

int length = 12, width = 5, area;
area = 35;
length = 10;
area =40;

2.13 Scope

32

l The scope of a variable is the part of the
program in which the variable can be accessed.

l A variable cannot be used before it is declared.
// This program can't find its variable.
#include <iostream>
using namespace std;

int main() {
 cout << value; // ERROR! value not declared yet!

 int value = 100;
 return 0;
}

2.15 Comments

33

• Notes of explanation used to document parts of
the program

• Intended for humans reading the source code
of the program:
– Indicate the purpose of the program
– Describe the use of variables
– Explain complex sections of code

• Are ignored by the compiler

Single and Multi-Line Comments

34

• Single-Line comments begin with // through to
the end of line:

• Multi-Line comments begin with /*, end with */

int length = 12; // length in inches
int width = 15; // width in inches
int area; // calculated area
// calculate rectangle area
area = length * width;

/* this is a multi-line
 comment
*/

int area; /* calculated area */

2.16 Named Constants

35

• Named constant : variable whose value cannot
be changed during program execution

• Used for representing constant values with
descriptive names:
 const double TAX_RATE = 0.0675;
 const int NUM_STATES = 50;

• Often named in uppercase letters  
(see style guidelines)

Note: initialization required.

2.17 Programming Style

36

• The visual organization of the source code
• Includes the use of spaces, tabs, and blank

lines
• Includes naming of variables, constants.
• Includes where to use comments.
• Purpose: improve the readability of the source

code

Programming Style

37

Common elements to improve readability:
• Braces { } aligned vertically
• Indentation of statements within a set of braces
• Blank lines between declaration and other

statements
• Long statements intentionally broken up over

multiple lines.

See the Style Guidelines on the class website.
You must follow these in your programming assignments.

