
Improving Memory System Performance with
Energy-Efficient Value Speculation

Nana B. Sam and Martin Burtscher

Computer Systems Laboratory
Cornell University
Ithaca, NY 14853

{besema, burtscher}@csl.cornell.edu

ABSTRACT
Microprocessor speeds have been improving much
faster than memory speeds, resulting in the CPU spend-
ing a larger and larger amount of time waiting for data.
Processor designers have employed several ways to
improve memory performance, including hierarchical
caching, prefetching, and faster memory chips. Yet,
memory accesses still represent a major performance
bottleneck and much remains to be done to tolerate the
increasing memory latencies. Load-value prediction
has been shown to effectively hide some of this latency.
However, the hardware required to achieve good per-
formance is substantial, making load-value prediction
unappealing in light of increasing power constraints.
In this paper, we present a novel predictor that signifi-
cantly increases CPU performance while at the same
time decreasing the energy consumption of the entire
processor relative to a baseline with a well-performing
hybrid load-value predictor.

1. INTRODUCTION
While processor speeds have been increasing by about a
factor of two every 18 months in keeping with Moore’s
Law, memory speeds have only been improving by 5%
a year. This has led to a speed gap between the mem-
ory and the processor that doubles every 21 months or
so. Thus, processors spend a significant portion of the
time idle because the memory cannot serve data at a
sufficient speed. Finding solutions to bridge this gap
has kept designers engaged for over a decade now.

Techniques to help resolve the imbalance between fast
processors and slow memory include large and deep
caching, non-blocking caches, cache-conscious load
scheduling, hardware and software prefetching, and
data speculation. Conventional cache systems rely
heavily on the temporal and spatial locality of pro-
grams. However, programs also exhibit value locality
[12]. Hence, value prediction has the potential to be a
powerful supplement to the cache system’s effective-
ness. Value locality describes the correlation of previ-
ously seen values with future values in registers and
memory cells. It allows the classical dataflow limit to

be exceeded by executing instructions before their op-
erands have been computed. Several studies on exploit-
ing different types of value locality have shown that
most instructions generate predictable results. How-
ever, load instructions are by far the most critical to
overall performance [7].

To exploit as much load-value locality as possible,
many predictors have been proposed, including hybrids
that combine several component predictors [5], [17],
[26] and incorporate a selection mechanism to deter-
mine the best component for predicting each dynamic
instruction. The selection mechanisms include using
the confidence of a component [17], the type of value
sequence [15], or the characteristic of the load [18].
Poor selectors, however, can nullify the performance
benefit of a hybrid predictor. Moreover, hybrids re-
quire sizeable hardware structures that consume large
amounts of energy. With the power dissipation of
modern processors becoming one of the most critical
issues facing designers [11], it is imperative that predic-
tors provide as much performance for as little power as
possible. In this paper, we show that the selector in a
hybrid can be a significant source of inefficiency and
propose the novel cycling hybrid predictor, which is
designed to improve the selection mechanism and the
energy-efficiency. We find that this novel predictor can
simultaneously increase the CPU performance and re-
duce the energy consumption of the processor.

The remainder of this paper is organized as follows.
Section 2 describes our energy-efficient cycling hybrid
predictor. Section 3 presents the simulation framework.
Section 4 provides performance results and analyses.
Section 5 gives an overview of related work and Sec-
tion 6 summarizes the contributions of our study.

2. HIGH-PERFORMANCE, ENERGY-EFFI-
CIENT VALUE SPECULATION

2.1 High-Performance Value Prediction
Load instructions represent a major performance bottle-
neck but they have been shown to fetch predictable
sequences [12]. In fact, load-value prediction, espe-

cially using hybrid predictors [6], [17], [26], has been
demonstrated to effectively hide some of the memory
latency and thus enhance performance. Hybrid predic-
tors employ a selection mechanism responsible for
choosing the most suitable component for each predic-
tion. The three most often used predictor components
are described next.

The last value predictor (LV) [8], [12], [22] predicts
that a load instruction will load the same value it did the
previous time it executed.

The stride 2-delta predictor (ST2D) [22] stores the last
value for each load and also maintains a stride, i.e., the
difference between the last two loaded values. It can
predict sequences with zero or non-zero differences
between consecutive values. When a load completes,
ST2D updates the last value but updates the stride only
if it encounters the same stride twice in a row. This
update hysterisis has been shown to significantly in-
crease performance [22].

The third-order differential finite context method pre-
dictor (DFCM3) [9] computes a hash value [16], [17],
[22] out of the last three strides to index the predictor’s
second-level table, which is shared by all loads. This
table stores the strides that followed all previously seen
sequences of three strides (modulo the table size). Af-
ter encountering a sequence of load values for the first
time, DFCM3 can predict any load that loads the same
sequence or a different sequence with the same strides.

0

20

40

60

80

am
mp art

bz
ip2

eq
uak

e
gc

c
gz

ip mcf
mes

a
tw

olf

vo
rte

x

ge
o.

mea
n

Pr
ed

ic
tio

n
ac

cu
ra

cy
 (%

)

LV
ST2D
DFCM3

Figure 1. Performance of predictors when all loads

are predicted

Figure 1 shows the accuracy that can be expected from
these predictors for the ten SPECcpu2000 programs we
evaluated. On average fewer than 50% of the load val-
ues can be predicted correctly with these predictors.

Because making no prediction and waiting for the
memory access to complete is faster than making an
incorrect prediction and having to recover from it, most
predictors from the literature include a confidence esti-
mator. Confidence estimators inhibit predictions that
are likely to be incorrect [4] and thus reduce the number
of mispredictions and the associated recovery cost,

which improves the predictor’s overall performance.
The frequently-used bimodal confidence estimator [12],
[16], [17] is based on saturating up/down counters with
four parameters: a maximum, a threshold, a penalty and
an award. The maximum is the upper bound of the
counter (the minimum is always zero). A value predic-
tion is made only if the count is above the threshold.
When an unpredictable value is encountered the counter
is decremented by the penalty, and on a predictable
value the counter is incremented by the award.

Rychlik et al. [17] introduced a hybrid predictor that
combines a stride and a finite context method (FCM)
predictor. The component with the highest confidence
makes the prediction. In case of a tie, the FCM is given
priority since it provides the best accuracy. The authors
showed that the hybrid predictor was more effective
than either of the component predictors. We incorpo-
rate their selection scheme in a hybrid of a last value, a
stride-2-delta and a third-order differential finite con-
text method predictor. In the event of a tie in confi-
dence, the DFCM3 is given priority over the ST2D,
which has priority over the LV.

0%

20%

40%

60%

80%

100%

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

R
el

at
iv

e
to

 to
ta

l l
oa

ds

no prediction
misprediction
correct prediction

Figure 2. Fraction of loads not predicted, mispre-
dicted and correctly predicted by a conventional

hybrid with a confidence estimator

Figure 2 shows that on average, 44.1% of the loads are
predicted by the conventional hybrid with 98% accu-
racy. However, a large percentage (over 55% on aver-
age) of the loads is not predicted. This is especially
true for equake where fewer than 30% of the loads are
predicted.

Figure 3 provides a closer examination of which com-
ponents were selected for making the predictions. For
most of the programs the LV component is used rarely.
This is partly due to the fact that the LV component has
the lowest priority in the event of a confidence tie and
partly because LV is the weakest component as Figure
1 shows. Nevertheless, the majority of the predictions
could be made by any of the three components.

The goal of putting different predictors in a hybrid is to
maximize the loads that are predicted correctly. If a

traditional predictor linecountercomp ptr

component in the hybrid is hardly used, it consumes
energy needlessly. Moreover, DFCM3 is the largest
and most complex component in the hybrid and there-
fore the component that consumes the most energy on
each access. Because power consumption is becoming
a major design constraint, it is imperative that each unit
in the predictor be used efficiently.

0

20

40

60

80

100

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

D
is

tr
ib

ut
io

n
of

 p
re

di
ct

io
ns

 (%
)

DFCM3
ST2D
LV

Figure 3. Percent of loads directed to each compo-

nent in the conventional hybrid predictor

2.2 The Cycling Hybrid Predictor
In order to efficiently use the components in the hybrid
predictor, we designed the cycling hybrid predictor.
This predictor also reduces selection-related losses and
decreases energy consumption.

The counters in confidence estimators are incremented
in small steps when a predictable value is seen and dec-
remented in large steps when the value is unpredictable.
As mentioned earlier, the conventional hybrid uses a
priority scheme to determine which component to use
for a prediction when there is a tie in the confidence.
However, most loads are best predicted by a particular
component. In addition, different loads may be mapped
to the same predictor entry, resulting in interference
that often leads to the selector switching back and forth
between components. To offset these weaknesses, we
devised the cycling selector.

How the cycling selector works: It comprises a satu-
rating up/down counter and a component pointer. Each
predictor line has its own component pointer and
counter (Figure 4). The component pointer indicates
which component to use for the next prediction. When
the value is predictable, the counter is set to the maxi-
mum, otherwise it is decremented by one. We found
these parameters to result in the best performance en-
hancement. Note that this is opposite of how confi-
dence estimators work. For as long as the counter re-
mains above zero, the component pointed to is not al-
tered. Just like in the conventional predictor, a predic-
tion is only made if the confidence of the particular
component is above a pre-defined threshold. When the
counter reaches zero, the component pointer moves to a
new component and the counter is reset to the maxi-

mum. The components are traversed in a round robin
fashion, hence the name “cycling selector”.

Figure 4. Each predictor line is extended with the
cycling selector (component pointer and counter)

By cycling through the hybrid’s components, each load
gets to try a component for some time without polluting
the remaining components. If the current component
turns out to be ineffective, the selector advances to the
next component. This continues until the load settles
on a good component.

Because multiple loads can map to the same line, the
confidence of that line is affected by the predictability
of all loads accessing that line. Thus, unpredictable
loads can pollute the confidence of predictable loads.
Since the conventional selector relies on this confi-
dence, it can easily select the wrong component. Using
the cycling selector, a load is forced to stay with a com-
ponent at least for a while. This way, the effects of
negative aliasing in the confidence estimator are drasti-
cally reduced. Additionally, since only the selected
component is updated, the predictor tables also experi-
ence less pollution.

We use 4-bit counters in the cycling selector and ini-
tially set each one to the maximum, i.e., 15. If a value
is unpredictable, the counter is decremented by one.
Otherwise, it is reset to 15. The pointers are initialized
with different components, i.e., the component pointer
associated with the first predictor entry is initialized
with LV, the second with ST2D, the third with DFCM3,
the fourth with LV, etc. This scheme is termed cy-
cling_hybrid_4.

0%

20%

40%

60%

80%

100%

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

av
era

ge

D
is

tr
ib

ut
io

n
of

 p
re

di
ct

io
ns

DFCM3
ST2D
LV

Figure 5. Percent of dynamic loads directed to each

component in the cycling_hybrid_4 predictor

The effect of the cycling nature of the selector is evi-
dent in Figure 5. Because the components are traversed

in round-robin fashion, their usage is nicely balanced.
This is the effect we had hoped for. The lower-power
components are now used more frequently, the pollu-
tion of the confidence estimator and prediction tables is
reduced, and each load is still predicted by a good com-
ponent. As a result, the cycling hybrid outperforms the
already high-performing conventional hybrid predictor
and reduces the energy consumption of the processor.
To the best of our knowledge, no previous work has
described a hybrid selection mechanism that improves
both performance and energy consumption simultane-
ously.

3. EXPERIMENTAL FRAMEWORK
Our experiments were conducted using a detailed, cy-
cle-accurate simulator derived from the SimpleSca-
lar/Alpha 3.0 tool set [3]. We incorporated value pre-
diction into this simulator and integrated it with the
Wattch power model [2] to obtain the energy data.
Wattch provides switching capacitance modeling for
structures like ALUs, caches, arrays and busses in a
processor.

3.1 Processor Configuration
Our baseline architecture is an 8-way superscalar out-
of-order CPU with 20 pipeline stages, a 128-entry in-
struction window, a 64-entry load/store queue, a 32-
entry 8-way instruction TLB, a 64-entry 8-way data
TLB, both with a 30-cycle miss penalty, a 64kB 2-way
2-cycle L1 instruction cache, a 128kB 2-way 3-cycle
L1 data cache, a unified 4MB 4-way 20-cycle L2 cache,
an 8k-entry hybrid gshare-bimodal branch predictor,
two load/store units, six integer ALU units, four float-
ing-point adders, and two floating-point MULT/DIV
units. The data cache is write-back and non-blocking
with two ports. The caches have a block size of 64
bytes. All functional units except the divide unit are
pipelined to allow a new instruction to initiate execu-
tion each cycle. It takes 300 cycles to access main
memory. ‘No store alias’ dependence prediction is en-
abled to predict aliases between load and store instruc-
tions [17].

Wattch’s linear scaling is used to obtain energy results
for 0.13µm technology, Vdd = 1.3V and a clock speed
of 2.0 GHz. Vth is 0.38V. The cache and predictor
latencies are obtained with Cacti 3.2 [24]. Static power
is estimated as 25% of dynamic power.

This baseline processor is augmented with a hybrid
predictor with an LV, an ST2D and a DFCM3 compo-
nent. Each component has 1024 entries in its tables.
DFCM3 has two such tables. The predictors include a
bimodal confidence estimator (CE) with three-bit satu-
rating counters with a threshold of five, a penalty of
three and an award of one. The same CE configuration

is used for all predictors. Predictions are made after
decode, the predictors are updated as soon as the true
load value is available, there are no speculative updates,
and an out-of-date prediction is made as long as there
are pending updates to the same predictor line.

We use the re-fetch misprediction scheme [8]. It is
identical to that used for recovering from branch mis-
predictions. As an energy-saving optimization, we do
not recover from wrong predictions that are overwritten
with the true load value before they were first used.

3.2 Benchmark Programs
Ten C programs (six integer and four floating-point)
from the SPECcpu2000 benchmark suite [25], together
with the provided reference inputs, are used in our
evaluation. Each program was compiled on a DEC
Alpha 21264 processor using the “–O3 –arch host” op-
timization flags. We employed SimPoint [23] to select
a representative subset (500 million instructions in
length) of each benchmark trace. Table 1 shows the
number of instructions (in billions) that are skipped
before beginning the cycle-accurate simulations, the
number of simulated load instructions (in millions), the
percentage of simulated instructions that are loads and
the IPC on the baseline CPU, for each program.

Table 1. Information about the simulated segments

of the benchmark programs
skipped simulated %
insts (B) loads (M) loads

ammp 27.5 134.1 26.8 1.565
art 6.5 162.5 32.5 1.429
bzip2 19.5 145.9 29.2 1.691
equake 131.5 235.1 47.0 0.369
gcc 4.0 228.2 45.6 1.144
gzip 3.0 121.8 24.4 1.378
mcf 23.0 209.7 41.9 0.501
mesa 67.5 129.5 25.9 1.795
twolf 247.0 142.6 28.5 1.219
vortex 106.5 127.2 25.4 1.858
geo. mean 57.8 148.8 29.8 1.162

program base IPC

4. RESULTS AND ANALYSES
This section presents the performance evaluation of the
cycling hybrid predictor. Unlike most previous work in
value speculation that considered energy, we take the
energy consumption of the entire processor into ac-
count, not just the predictor. This is essential because
adding value prediction increases the energy consump-
tion in several parts of the processor due to the increase
in speculative activity, whether useful or not [14], [19].

Figure 6 shows the IPCs for each program when utiliz-
ing our technique compared to the conventional hybrid
predictor. It is worth mentioning that the conventional

method provides substantial performance improvement,
up to 28% in the ten programs we study, over no pre-
diction at all. Figure 6 demonstrates that our approach
outperforms the conventional hybrid, especially for mcf
and twolf. In fact, for mcf it results in a 30% increase in
performance. twolf’s loads are better predicted by LV
and ST2D than by DFCM3. However, the conventional
hybrid makes only 32% of predictions with these two
components (Figure 3). On the other hand, the cycling
hybrid makes 71% of the predictions for twolf with the
LV and ST2D components (Figure 5). Note that
equake is the only program whose performance suffers
with our method. This is because equake’s loads are
much better predicted by DFCM3 than LV or ST2D
(Figure 1). Therefore, equake benefits when the con-
ventional hybrid makes 89% of prediction with the
DFCM3 component. On the other hand, the load-
balancing feature in the cycling hybrid uses the DFCM3
for only 34% of the predictions.

0.0

0.4

0.8

1.2

1.6

2.0

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

IP
C

conventional hybrid
cycling_hybrid_4

Figure 6. IPCs using the cycling hybrid compared to

using the conventional hybrid

As demonstrated next, the cycling hybrid not only en-
hances performance but also reduces the energy con-
sumption. Figure 7 shows how much energy the proc-
essor consumes when running each program with the
two hybrid predictors. Again, with the exception of
equake, the cycling hybrid consistently provides energy
savings over the conventional hybrid. mcf benefits the
most; the processor with the cycling hybrid consumes
about 42% less energy than that with the conventional
hybrid. Note that this is a processor-wide energy reduc-
tion of 42%, not just in the predictor. It is worth noting
that mcf is a memory-bound program, i.e., it spends a
substantial amount of time waiting for data, during
which time the processor is expending energy need-
lessly. By hiding more of the memory latency with our
hybrid, the processor is able to make progress and save
energy.

In general, the higher performance-to-energy ratio ob-
tained with the cycling hybrid is primarily due to the
fact that predictor pollution is reduced, which results in
more correct predictions and more correct confidence

estimations. This in turn speeds up the processor and
reduces the overall energy requirement.

0

10

20

30

40

50

60

70

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

A
ve

ra
ge

 e
ne

rg
y

(n
J)

conventional hybrid
cycling_hybrid_4

Figure 7. Processor-wide energy consumption of the
cycling hybrid compared to the conventional hybrid

Furthermore, the fewer mispredictions lower the energy
expenditure due to useless speculation activities. Fi-
nally, by having the simpler predictor components
make more predictions than in the conventional hybrid,
less energy is consumed.

Sensitivity to predictor size: Figure 8 presents the
IPCs for each program for different numbers of entries
in the hybrid components. When the size of the cycling
hybrid is halved (cycling_hybrid_4[512]), i.e., reduced
from 1024 to 512 predictor entries, the performance is
still within 99% of that of cycling_hybrid_4[1024].
When we further reduce the number of predictor entries
to 256, the performance reduction is less than 5%, with
a concomitant savings in energy. In fact, mesa and
vortex show a slight improvement in performance when
less state is used. This indicates a potential for reduc-
ing energy consumption even further with little loss in
speedup. Note that cycling_hybrid_4[256] still outper-
forms the conventional hybrid even though it has an
almost four times smaller die-area requirement and can
be accessed faster.

0.0

0.4

0.8

1.2

1.6

2.0

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

IP
C

cycling_hybrid_4[1024]
cycling_hybrid_4[512]
cycling_hybrid_4[256]

Figure 8. IPCs of cycling hybrids with varying num-

ber of predictor entries

Sensitivity to the counter size: So far, a 4-bit counter
per predictor entry has been employed as part of our
selection mechanism (see Section 2.2). To determine
how much hysterisis is required for good performance,
we varied the size of these counters, and consequently
the maximum value of the counter. The number of pre-
dictor entries is fixed at 1024 for this study.

Figure 9 shows the IPCs for each program when the
counter size is varied between 2 and 6 bits. We observe
that the predictor is largely insensitive to the maximum
count. For most of the programs, we find that using a
5-bit counter provides the best performance to energy
ratio. When the count size is too small, e.g., 2 bits,
there is not enough hysteresis and the selector switches
from one component to the next too quickly. When the
counter size is larger than 5 bits the performance bene-
fit begins to diminish.

0.0

0.4

0.8

1.2

1.6

2.0

am
mp art

bz
ip2

eq
ua

ke gc
c

gz
ip mcf

mes
a

tw
olf

vo
rte

x

ge
o.

mea
n

IP
C

cycling_hybrid_2
cycling_hybrid_3
cycling_hybrid_4
cycling_hybrid_5
cycling_hybrid_6

Figure 9. IPCs of cycling hybrids for varying

counter sizes

5. RELATED WORK
Improving memory system performance with load-
value speculation has been studied extensively [8], [9],
[10], [12], [17], [22], [26]. However, in recent years
the energy requirements of the predictors have started
to receive some attention. Techniques proposed to re-
duce energy consumption include sharing common ta-
bles in hybrid predictors [5], predicting only frequently
occurring values [21], partitioning tables into smaller
ones [13], [20], and predicting instructions selectively
[1], [7]. Unlike in these prior studies, we focus not only
on the energy consumption of the predictor but on the
entire processor. This is important because some
power-saving techniques increase the number of mis-
predictions and recovering from mispredictions has a
significant negative impact on the energy consumption
of the processor as a whole [14], [19].

The most commonly used selection mechanism in the
literature was introduced by Rychlik et al. [17]. It
chooses the component with the highest confidence
value and gives priority to the better performing com-
ponent in the case of a tie. We compare our selector to

theirs in this paper. Even though their mechanism pro-
vides good performance, our approach utilizes the hy-
brid components in a more balanced way while increas-
ing the performance and energy-efficiency of the pre-
dictor, and reducing the energy consumption of the en-
tire processor.

Pinuel et al. [15] proposed a hybrid predictor that com-
bines a last value, a stride and a finite context method
predictor. They suggested a finite state machine that
selects which component to use for the next prediction
based on the classification of value sequences. For
each sequence the component with the lowest hardware
cost is used to make the prediction. Our approach pro-
vides a simpler alternative to tracking and classifying
sequences.

In a previous publication, the authors proposed a hybrid
selector that exploited the fact that microprocessors
support different types of loads and that each load type
is best predicted by a particular component. That ap-
proach is dependent on profile information, while the
cycling hybrid predictor is dynamically adaptive.

6. CONCLUSIONS
Current microprocessors execute instructions very fast
provided that long latency memory operations are not
involved. Thus, the increasing memory latencies repre-
sent a major setback in exploiting instruction-level par-
allelism. Fortunately, load-value prediction has been
shown to be an effective latency tolerating technique.
By correctly predicting the value of a load instruction,
dependent instructions can avoid stalling while the
memory is being accessed. However, value prediction
has remained undesirable because high-performing pre-
dictors cause the processor to consume large amounts
of energy.

In this paper, we propose the novel cycling hybrid pre-
dictor that outperforms the already well-performing
conventional hybrid while significantly reducing the
energy consumption of the processor. We describe a
novel selector that uses simple counters to dynamically
‘cycle’ through the hybrid components and assign the
best component to each load instruction. By employing
our selector, the components of a hybrid are put to use
in a much more balanced way than in a conventional
hybrid. Consequently, the less complex components
are used more often and more efficiently, saving on
overall energy. Additionally, by updating only the rele-
vant components identified by the cycling selector, pre-
dictor pollution is greatly reduced and performance is
increased over the conventional hybrid. We also show
that our cycling hybrid can be made much smaller,
while still outperforming a larger conventional hybrid.

Memory-bound applications suffer the most in execu-
tion time and energy consumption from the increasing
memory latencies. In this work, we have demonstrated
that our simple cycling hybrid predictor can effectively
offset this behavior by hiding the latency, thus improv-
ing performance and reducing energy consumption at
the same time.

7. ACKNOWLEDGEMENT
This work has been supported in part by the National
Science Foundation (NSF) under Award #0208567 and
by a grant from Intel Corporation.

8. REFERENCES
 [1] R. Bhargava, L. K. John. Performance and Energy Im-

pact of Instruction-Level Value Predictor Filtering. First
Value-Prediction Workshop, 2003, pp. 71-78.

[2] D. Brooks, V. Tiwari, M. Martonosi. Wattch: A Frame-
work for High-Performance Microprocessors. Seventh
International Symposium on High-Performance Com-
puter Architecture, 2001, pp. 171-182.

[3] D. Burger, T. M. Austin. The SimpleScalar Tool Set,
version 2.0. ACM SIGARCH Computer Architecture
News, 1997. http://www.simplescalar.com

[4] M. Burtscher, B. G. Zorn. Prediction Outcome History-
based Confidence Estimation for Load Value Prediction.
Journal of Instruction-Level Parallelism, 1999.

[5] M. Burtscher, B. G. Zorn. Hybridizing and Coalescing
Load Value Predictors. International Conference on
Computer Design, 2000, pp. 81-92.

[6] M. Burtscher, B. G. Zorn. Hybrid Load-Value Predic-
tors. IEEE Transactions on Computers, 2002, pp. 759-
774.

[7] B. Calder, G. Reinman, D. M. Tullsen. Selective Value
Prediction. 26th Annual International Symposium On
Computer Architecture, 1999, pp. 64-74.

[8] F. Gabbay. Speculative Execution Based on Value Pre-
diction. Technical Report 1080, Department of Electrical
Engineering, Technion-Israel Institue of Technology,
1996.

[9] B. Goeman, H. Vandierendonck, K. De Bosschere. Dif-
ferential FCM: Increasing Value Prediction Accuracy by
Improving Table Usage Efficiency. Seventh Interna-
tional Symposium on High-Performance Computer Ar-
chitecture, 2001, pp. 207-216.

[10] J. Gonzalez, A. Gonzalez. The Potential of Data Value
Speculation to Boost ILP. 12th International Conference
on Supercomputing, 1998, pp. 21-28.

[11] R. Gonzalez, M. Horowitz. Energy Dissipation in Gen-
eral Purpose Microprocessors. IEEE Journal of Solid-
State Circuits, 1996, pp. 1227-1284.

[12] M. H. Lipasti, C. B. Wilkerson, J. P. Shen. Value Local-
ity and Load Value Prediction. Second International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1996, pp. 138-147.

[13] G. H. Loh. Width-Partitioned Load Value Predictors.
Journal of Instruction-Level Parallelism, 2003, pp. 1-23.

[14] R. Moreno, L. Pinuel, S. del Pino, F. Tirado. A Power-
Perspective of Value Speculation for Superscalar Micro-
processors. International Conference on Computer De-
sign, 2000, pp. 147-154.

 [15] L. Pinuel, R. A. Moreno, F. Tirado. Implementation of
Hybrid Context Based Value Predictors Using Value Se-
quence Classification. Euro-Par, 1999, pp. 1291-1295.

[16] G. Reinman, B. Calder. Predictive Techniques for Ag-
gressive Load Speculation. 31st IEEE/ACM Interna-
tional Symposium on Microarchitecture, 1998, pp. 127-
137.

[17] B. Rychlik, J. Faistl, B. Krug, J. P. Shen. Efficacy and
Performance Impact of Value Prediction. International
Conference on Parallel Architectures and Compilation
Techniques, 1998, pp. 148-154.

[18] N. B. Sam, M. Burtscher. Exploiting Type Information
in Load-Value Predictors. Second Value-Prediction and
Value-Based Optimization Workshop, 2004, pp. 32-39.

[19] N. B. Sam, M. Burtscher. On the Energy-Efficiency of
Speculative Hardware. To appear in 2005 ACM Interna-
tional Conference on Computing Frontiers, 2005.

[20] T. Sato, I. Arita. Table Size Reduction for Data Value
Predictors by Exploiting Narrow Width Values. 14th In-
ternational Conference on Supercomputing, 2000, pp.
196-205.

[21] T. Sato, I. Arita. Low-Cost Value Prediction Using Fre-
quent Value Locality. Fourth International Symposium
on High Performance Computing, 2002, pp. 106-119.

[22] Y. Sazeides, J. E. Smith. The Predictability of Data
Values. Thirteenth IEEE/ACM International Symposium
on Microarchitecture, 1997, pp. 248-258.

[23] T. Sherwood, E. Perelman, G. Hamerly, B. Calder.
Automatically Characterizing Large Scale Program Be-
havior. Tenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2002, pp. 45-57.

[24] P. Shivakumar, N. P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power and Area Model. TR 2001/2.
Compaq Western Research Laboratory, 2001.

[25] SPECcpu2000 benchmarks.
http://www.spec.org/osg/cpu2000.

[26] K. Wang, M. Franklin. Highly Accurate Data Value
Prediction using Hybrid Predictors. 30th Annual
ACM/IEEE International Symposium on Microarchitec-
ture, 1997, pp. 358-363.

