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ABSTRACT 
Microprocessor speeds have been improving much 
faster than memory speeds, resulting in the CPU spend-
ing a larger and larger amount of time waiting for data.  
Processor designers have employed several ways to 
improve memory performance, including hierarchical 
caching, prefetching, and faster memory chips.  Yet, 
memory accesses still represent a major performance 
bottleneck and much remains to be done to tolerate the 
increasing memory latencies.  Load-value prediction 
has been shown to effectively hide some of this latency.  
However, the hardware required to achieve good per-
formance is substantial, making load-value prediction 
unappealing in light of increasing power constraints.  
In this paper, we present a novel predictor that signifi-
cantly increases CPU performance while at the same 
time decreasing the energy consumption of the entire 
processor relative to a baseline with a well-performing 
hybrid load-value predictor. 

 
1. INTRODUCTION 
While processor speeds have been increasing by about a 
factor of two every 18 months in keeping with Moore’s 
Law, memory speeds have only been improving by 5% 
a year.  This has led to a speed gap between the mem-
ory and the processor that doubles every 21 months or 
so.  Thus, processors spend a significant portion of the 
time idle because the memory cannot serve data at a 
sufficient speed.  Finding solutions to bridge this gap 
has kept designers engaged for over a decade now. 

Techniques to help resolve the imbalance between fast 
processors and slow memory include large and deep 
caching, non-blocking caches, cache-conscious load 
scheduling, hardware and software prefetching, and 
data speculation.  Conventional cache systems rely 
heavily on the temporal and spatial locality of pro-
grams.  However, programs also exhibit value locality 
[12].  Hence, value prediction has the potential to be a 
powerful supplement to the cache system’s effective-
ness.  Value locality describes the correlation of previ-
ously seen values with future values in registers and 
memory cells.  It allows the classical dataflow limit to 

be exceeded by executing instructions before their op-
erands have been computed.  Several studies on exploit-
ing different types of value locality have shown that 
most instructions generate predictable results.  How-
ever, load instructions are by far the most critical to 
overall performance [7]. 

To exploit as much load-value locality as possible, 
many predictors have been proposed, including hybrids 
that combine several component predictors [5], [17], 
[26] and incorporate a selection mechanism to deter-
mine the best component for predicting each dynamic 
instruction.  The selection mechanisms include using 
the confidence of a component [17], the type of value 
sequence [15], or the characteristic of the load [18].  
Poor selectors, however, can nullify the performance 
benefit of a hybrid predictor.  Moreover, hybrids re-
quire sizeable hardware structures that consume large 
amounts of energy.  With the power dissipation of 
modern processors becoming one of the most critical 
issues facing designers [11], it is imperative that predic-
tors provide as much performance for as little power as 
possible.  In this paper, we show that the selector in a 
hybrid can be a significant source of inefficiency and 
propose the novel cycling hybrid predictor, which is 
designed to improve the selection mechanism and the 
energy-efficiency.  We find that this novel predictor can 
simultaneously increase the CPU performance and re-
duce the energy consumption of the processor. 

The remainder of this paper is organized as follows.  
Section 2 describes our energy-efficient cycling hybrid 
predictor.  Section 3 presents the simulation framework.  
Section 4 provides performance results and analyses.  
Section 5 gives an overview of related work and Sec-
tion 6 summarizes the contributions of our study.  

 

2. HIGH-PERFORMANCE, ENERGY-EFFI-
CIENT VALUE SPECULATION 

2.1 High-Performance Value Prediction 
Load instructions represent a major performance bottle-
neck but they have been shown to fetch predictable 
sequences [12].  In fact, load-value prediction, espe-



cially using hybrid predictors [6], [17], [26], has been 
demonstrated to effectively hide some of the memory 
latency and thus enhance performance.  Hybrid predic-
tors employ a selection mechanism responsible for 
choosing the most suitable component for each predic-
tion.  The three most often used predictor components 
are described next. 

The last value predictor (LV) [8], [12], [22] predicts 
that a load instruction will load the same value it did the 
previous time it executed.   

The stride 2-delta predictor (ST2D) [22] stores the last 
value for each load and also maintains a stride, i.e., the 
difference between the last two loaded values.  It can 
predict sequences with zero or non-zero differences 
between consecutive values.  When a load completes, 
ST2D updates the last value but updates the stride only 
if it encounters the same stride twice in a row.  This 
update hysterisis has been shown to significantly in-
crease performance [22].  

The third-order differential finite context method pre-
dictor (DFCM3) [9] computes a hash value [16], [17], 
[22] out of the last three strides to index the predictor’s 
second-level table, which is shared by all loads.  This 
table stores the strides that followed all previously seen 
sequences of three strides (modulo the table size).  Af-
ter encountering a sequence of load values for the first 
time, DFCM3 can predict any load that loads the same 
sequence or a different sequence with the same strides.   
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Figure 1. Performance of predictors when all loads 

are predicted 
 
Figure 1 shows the accuracy that can be expected from 
these predictors for the ten SPECcpu2000 programs we 
evaluated.  On average fewer than 50% of the load val-
ues can be predicted correctly with these predictors. 

Because making no prediction and waiting for the 
memory access to complete is faster than making an 
incorrect prediction and having to recover from it, most 
predictors from the literature include a confidence esti-
mator.  Confidence estimators inhibit predictions that 
are likely to be incorrect [4] and thus reduce the number 
of mispredictions and the associated recovery cost, 

which improves the predictor’s overall performance.  
The frequently-used bimodal confidence estimator [12], 
[16], [17] is based on saturating up/down counters with 
four parameters: a maximum, a threshold, a penalty and 
an award.  The maximum is the upper bound of the 
counter (the minimum is always zero).  A value predic-
tion is made only if the count is above the threshold.  
When an unpredictable value is encountered the counter 
is decremented by the penalty, and on a predictable 
value the counter is incremented by the award. 

Rychlik et al. [17] introduced a hybrid predictor that 
combines a stride and a finite context method (FCM) 
predictor.  The component with the highest confidence 
makes the prediction.  In case of a tie, the FCM is given 
priority since it provides the best accuracy.  The authors 
showed that the hybrid predictor was more effective 
than either of the component predictors.  We incorpo-
rate their selection scheme in a hybrid of a last value, a 
stride-2-delta and a third-order differential finite con-
text method predictor.  In the event of a tie in confi-
dence, the DFCM3 is given priority over the ST2D, 
which has priority over the LV.   
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Figure 2. Fraction of loads not predicted, mispre-
dicted and correctly predicted by a conventional 

hybrid with a confidence estimator 
 
Figure 2 shows that on average, 44.1% of the loads are 
predicted by the conventional hybrid with 98% accu-
racy.  However, a large percentage (over 55% on aver-
age) of the loads is not predicted.  This is especially 
true for equake where fewer than 30% of the loads are 
predicted.   

Figure 3 provides a closer examination of which com-
ponents were selected for making the predictions.  For 
most of the programs the LV component is used rarely.  
This is partly due to the fact that the LV component has 
the lowest priority in the event of a confidence tie and 
partly because LV is the weakest component as Figure 
1 shows.  Nevertheless, the majority of the predictions 
could be made by any of the three components.   

The goal of putting different predictors in a hybrid is to 
maximize the loads that are predicted correctly.  If a 



traditional predictor linecountercomp ptr

component in the hybrid is hardly used, it consumes 
energy needlessly.  Moreover, DFCM3 is the largest 
and most complex component in the hybrid and there-
fore the component that consumes the most energy on 
each access.  Because power consumption is becoming 
a major design constraint, it is imperative that each unit 
in the predictor be used efficiently.   
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Figure 3. Percent of loads directed to each compo-

nent in the conventional hybrid predictor 
 
2.2 The Cycling Hybrid Predictor 
In order to efficiently use the components in the hybrid 
predictor, we designed the cycling hybrid predictor.  
This predictor also reduces selection-related losses and 
decreases energy consumption. 

The counters in confidence estimators are incremented 
in small steps when a predictable value is seen and dec-
remented in large steps when the value is unpredictable.  
As mentioned earlier, the conventional hybrid uses a 
priority scheme to determine which component to use 
for a prediction when there is a tie in the confidence.  
However, most loads are best predicted by a particular 
component.  In addition, different loads may be mapped 
to the same predictor entry, resulting in interference 
that often leads to the selector switching back and forth 
between components.  To offset these weaknesses, we 
devised the cycling selector. 

How the cycling selector works:  It comprises a satu-
rating up/down counter and a component pointer.  Each 
predictor line has its own component pointer and 
counter (Figure 4).  The component pointer indicates 
which component to use for the next prediction.  When 
the value is predictable, the counter is set to the maxi-
mum, otherwise it is decremented by one.  We found 
these parameters to result in the best performance en-
hancement.  Note that this is opposite of how confi-
dence estimators work.  For as long as the counter re-
mains above zero, the component pointed to is not al-
tered.  Just like in the conventional predictor, a predic-
tion is only made if the confidence of the particular 
component is above a pre-defined threshold.  When the 
counter reaches zero, the component pointer moves to a 
new component and the counter is reset to the maxi-

mum.  The components are traversed in a round robin 
fashion, hence the name “cycling selector”.   

 

 
Figure 4.  Each predictor line is extended with the 
cycling selector (component pointer and counter) 

 

By cycling through the hybrid’s components, each load 
gets to try a component for some time without polluting 
the remaining components.  If the current component 
turns out to be ineffective, the selector advances to the 
next component.  This continues until the load settles 
on a good component. 

Because multiple loads can map to the same line, the 
confidence of that line is affected by the predictability 
of all loads accessing that line.  Thus, unpredictable 
loads can pollute the confidence of predictable loads.  
Since the conventional selector relies on this confi-
dence, it can easily select the wrong component.  Using 
the cycling selector, a load is forced to stay with a com-
ponent at least for a while.  This way, the effects of 
negative aliasing in the confidence estimator are drasti-
cally reduced.  Additionally, since only the selected 
component is updated, the predictor tables also experi-
ence less pollution. 

We use 4-bit counters in the cycling selector and ini-
tially set each one to the maximum, i.e., 15.  If a value 
is unpredictable, the counter is decremented by one.  
Otherwise, it is reset to 15.  The pointers are initialized 
with different components, i.e., the component pointer 
associated with the first predictor entry is initialized 
with LV, the second with ST2D, the third with DFCM3, 
the fourth with LV, etc.  This scheme is termed cy-
cling_hybrid_4. 
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Figure 5. Percent of dynamic loads directed to each 

component in the cycling_hybrid_4 predictor 
 
The effect of the cycling nature of the selector is evi-
dent in Figure 5.  Because the components are traversed 



in round-robin fashion, their usage is nicely balanced.  
This is the effect we had hoped for.  The lower-power 
components are now used more frequently, the pollu-
tion of the confidence estimator and prediction tables is 
reduced, and each load is still predicted by a good com-
ponent.  As a result, the cycling hybrid outperforms the 
already high-performing conventional hybrid predictor 
and reduces the energy consumption of the processor.  
To the best of our knowledge, no previous work has 
described a hybrid selection mechanism that improves 
both performance and energy consumption simultane-
ously. 

3. EXPERIMENTAL FRAMEWORK 
Our experiments were conducted using a detailed, cy-
cle-accurate simulator derived from the SimpleSca-
lar/Alpha 3.0 tool set [3].  We incorporated value pre-
diction into this simulator and integrated it with the 
Wattch power model [2] to obtain the energy data.  
Wattch provides switching capacitance modeling for 
structures like ALUs, caches, arrays and busses in a 
processor.   

3.1 Processor Configuration 
Our baseline architecture is an 8-way superscalar out-
of-order CPU with 20 pipeline stages, a 128-entry in-
struction window, a 64-entry load/store queue, a 32-
entry 8-way instruction TLB, a 64-entry 8-way data 
TLB, both with a 30-cycle miss penalty, a 64kB 2-way 
2-cycle L1 instruction cache, a 128kB 2-way 3-cycle 
L1 data cache, a unified 4MB 4-way 20-cycle L2 cache, 
an 8k-entry hybrid gshare-bimodal branch predictor, 
two load/store units, six integer ALU units, four float-
ing-point adders, and two floating-point MULT/DIV 
units.  The data cache is write-back and non-blocking 
with two ports.  The caches have a block size of 64 
bytes.  All functional units except the divide unit are 
pipelined to allow a new instruction to initiate execu-
tion each cycle.  It takes 300 cycles to access main 
memory.  ‘No store alias’ dependence prediction is en-
abled to predict aliases between load and store instruc-
tions [17]. 

Wattch’s linear scaling is used to obtain energy results 
for 0.13µm technology, Vdd = 1.3V and a clock speed 
of 2.0 GHz.  Vth is 0.38V.  The cache and predictor 
latencies are obtained with Cacti 3.2 [24].  Static power 
is estimated as 25% of dynamic power. 

This baseline processor is augmented with a hybrid 
predictor with an LV, an ST2D and a DFCM3 compo-
nent.  Each component has 1024 entries in its tables.  
DFCM3 has two such tables.  The predictors include a 
bimodal confidence estimator (CE) with three-bit satu-
rating counters with a threshold of five, a penalty of 
three and an award of one.  The same CE configuration 

is used for all predictors.  Predictions are made after 
decode, the predictors are updated as soon as the true 
load value is available, there are no speculative updates, 
and an out-of-date prediction is made as long as there 
are pending updates to the same predictor line.   

We use the re-fetch misprediction scheme [8].  It is 
identical to that used for recovering from branch mis-
predictions.  As an energy-saving optimization, we do 
not recover from wrong predictions that are overwritten 
with the true load value before they were first used.   

3.2 Benchmark Programs 
Ten C programs (six integer and four floating-point) 
from the SPECcpu2000 benchmark suite [25], together 
with the provided reference inputs, are used in our 
evaluation.  Each program was compiled on a DEC 
Alpha 21264 processor using the “–O3 –arch host” op-
timization flags.  We employed SimPoint [23] to select 
a representative subset (500 million instructions in 
length) of each benchmark trace.  Table 1 shows the 
number of instructions (in billions) that are skipped 
before beginning the cycle-accurate simulations, the 
number of simulated load instructions (in millions), the 
percentage of simulated instructions that are loads and 
the IPC on the baseline CPU, for each program. 
 
Table 1. Information about the simulated segments 

of the benchmark programs 
skipped simulated %
insts (B) loads (M) loads

ammp 27.5 134.1 26.8 1.565
art 6.5 162.5 32.5 1.429
bzip2 19.5 145.9 29.2 1.691
equake 131.5 235.1 47.0 0.369
gcc 4.0 228.2 45.6 1.144
gzip 3.0 121.8 24.4 1.378
mcf 23.0 209.7 41.9 0.501
mesa 67.5 129.5 25.9 1.795
twolf 247.0 142.6 28.5 1.219
vortex 106.5 127.2 25.4 1.858
geo. mean 57.8 148.8 29.8 1.162

program base IPC

 
 
 
4. RESULTS AND ANALYSES 
This section presents the performance evaluation of the 
cycling hybrid predictor.  Unlike most previous work in 
value speculation that considered energy, we take the 
energy consumption of the entire processor into ac-
count, not just the predictor.  This is essential because 
adding value prediction increases the energy consump-
tion in several parts of the processor due to the increase 
in speculative activity, whether useful or not [14], [19]. 

Figure 6 shows the IPCs for each program when utiliz-
ing our technique compared to the conventional hybrid 
predictor.  It is worth mentioning that the conventional 



method provides substantial performance improvement, 
up to 28% in the ten programs we study, over no pre-
diction at all.  Figure 6 demonstrates that our approach 
outperforms the conventional hybrid, especially for mcf 
and twolf.  In fact, for mcf it results in a 30% increase in 
performance.  twolf’s loads are better predicted by LV 
and ST2D than by DFCM3.  However, the conventional 
hybrid makes only 32% of predictions with these two 
components (Figure 3).  On the other hand, the cycling 
hybrid makes 71% of the predictions for twolf with the 
LV and ST2D components (Figure 5).  Note that 
equake is the only program whose performance suffers 
with our method.  This is because equake’s loads are 
much better predicted by DFCM3 than LV or ST2D 
(Figure 1).  Therefore, equake benefits when the con-
ventional hybrid makes 89% of prediction with the 
DFCM3 component.  On the other hand, the load-
balancing feature in the cycling hybrid uses the DFCM3 
for only 34% of the predictions.   
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Figure 6. IPCs using the cycling hybrid compared to 

using the conventional hybrid 
 

As demonstrated next, the cycling hybrid not only en-
hances performance but also reduces the energy con-
sumption.  Figure 7 shows how much energy the proc-
essor consumes when running each program with the 
two hybrid predictors.  Again, with the exception of 
equake, the cycling hybrid consistently provides energy 
savings over the conventional hybrid.  mcf benefits the 
most; the processor with the cycling hybrid consumes 
about 42% less energy than that with the conventional 
hybrid.  Note that this is a processor-wide energy reduc-
tion of 42%, not just in the predictor.  It is worth noting 
that mcf is a memory-bound program, i.e., it spends a 
substantial amount of time waiting for data, during 
which time the processor is expending energy need-
lessly.  By hiding more of the memory latency with our 
hybrid, the processor is able to make progress and save 
energy. 

In general, the higher performance-to-energy ratio ob-
tained with the cycling hybrid is primarily due to the 
fact that predictor pollution is reduced, which results in 
more correct predictions and more correct confidence 

estimations.   This in turn speeds up the processor and 
reduces the overall energy requirement.   
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Figure 7. Processor-wide energy consumption of the 
cycling hybrid compared to the conventional hybrid 
 
 

Furthermore, the fewer mispredictions lower the energy 
expenditure due to useless speculation activities.  Fi-
nally, by having the simpler predictor components 
make more predictions than in the conventional hybrid, 
less energy is consumed. 

Sensitivity to predictor size: Figure 8 presents the 
IPCs for each program for different numbers of entries 
in the hybrid components.  When the size of the cycling 
hybrid is halved (cycling_hybrid_4[512]), i.e., reduced 
from 1024 to 512 predictor entries, the performance is 
still within 99% of that of cycling_hybrid_4[1024].  
When we further reduce the number of predictor entries 
to 256, the performance reduction is less than 5%, with 
a concomitant savings in energy.  In fact, mesa and 
vortex show a slight improvement in performance when 
less state is used.  This indicates a potential for reduc-
ing energy consumption even further with little loss in 
speedup.  Note that cycling_hybrid_4[256] still outper-
forms the conventional hybrid even though it has an 
almost four times smaller die-area requirement and can 
be accessed faster. 
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Figure 8. IPCs of cycling hybrids with varying num-

ber of predictor entries 
 



Sensitivity to the counter size: So far, a 4-bit counter 
per predictor entry has been employed as part of our 
selection mechanism (see Section 2.2).  To determine 
how much hysterisis is required for good performance, 
we varied the size of these counters, and consequently 
the maximum value of the counter.  The number of pre-
dictor entries is fixed at 1024 for this study.   

Figure 9 shows the IPCs for each program when the 
counter size is varied between 2 and 6 bits.  We observe 
that the predictor is largely insensitive to the maximum 
count.  For most of the programs, we find that using a 
5-bit counter provides the best performance to energy 
ratio.  When the count size is too small, e.g., 2 bits, 
there is not enough hysteresis and the selector switches 
from one component to the next too quickly.  When the 
counter size is larger than 5 bits the performance bene-
fit begins to diminish.   
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Figure 9. IPCs of cycling hybrids for varying 

counter sizes 

 
5. RELATED WORK 
Improving memory system performance with load-
value speculation has been studied extensively [8], [9], 
[10], [12], [17], [22], [26].  However, in recent years 
the energy requirements of the predictors have started 
to receive some attention.  Techniques proposed to re-
duce energy consumption include sharing common ta-
bles in hybrid predictors [5], predicting only frequently 
occurring values [21], partitioning tables into smaller 
ones [13], [20], and predicting instructions selectively 
[1], [7].  Unlike in these prior studies, we focus not only 
on the energy consumption of the predictor but on the 
entire processor.  This is important because some 
power-saving techniques increase the number of mis-
predictions and recovering from mispredictions has a 
significant negative impact on the energy consumption 
of the processor as a whole [14], [19]. 

The most commonly used selection mechanism in the 
literature was introduced by Rychlik et al. [17].  It 
chooses the component with the highest confidence 
value and gives priority to the better performing com-
ponent in the case of a tie.  We compare our selector to 

theirs in this paper.  Even though their mechanism pro-
vides good performance, our approach utilizes the hy-
brid components in a more balanced way while increas-
ing the performance and energy-efficiency of the pre-
dictor, and reducing the energy consumption of the en-
tire processor. 

Pinuel et al. [15] proposed a hybrid predictor that com-
bines a last value, a stride and a finite context method 
predictor.  They suggested a finite state machine that 
selects which component to use for the next prediction 
based on the classification of value sequences.  For 
each sequence the component with the lowest hardware 
cost is used to make the prediction.  Our approach pro-
vides a simpler alternative to tracking and classifying 
sequences.   

In a previous publication, the authors proposed a hybrid 
selector that exploited the fact that microprocessors 
support different types of loads and that each load type 
is best predicted by a particular component.  That ap-
proach is dependent on profile information, while the 
cycling hybrid predictor is dynamically adaptive.   

 
6. CONCLUSIONS 
Current microprocessors execute instructions very fast 
provided that long latency memory operations are not 
involved.  Thus, the increasing memory latencies repre-
sent a major setback in exploiting instruction-level par-
allelism.  Fortunately, load-value prediction has been 
shown to be an effective latency tolerating technique.  
By correctly predicting the value of a load instruction, 
dependent instructions can avoid stalling while the 
memory is being accessed.  However, value prediction 
has remained undesirable because high-performing pre-
dictors cause the processor to consume large amounts 
of energy. 

In this paper, we propose the novel cycling hybrid pre-
dictor that outperforms the already well-performing 
conventional hybrid while significantly reducing the 
energy consumption of the processor.  We describe a 
novel selector that uses simple counters to dynamically 
‘cycle’ through the hybrid components and assign the 
best component to each load instruction.  By employing 
our selector, the components of a hybrid are put to use 
in a much more balanced way than in a conventional 
hybrid.  Consequently, the less complex components 
are used more often and more efficiently, saving on 
overall energy.  Additionally, by updating only the rele-
vant components identified by the cycling selector, pre-
dictor pollution is greatly reduced and performance is 
increased over the conventional hybrid.  We also show 
that our cycling hybrid can be made much smaller, 
while still outperforming a larger conventional hybrid.   



Memory-bound applications suffer the most in execu-
tion time and energy consumption from the increasing 
memory latencies.  In this work, we have demonstrated 
that our simple cycling hybrid predictor can effectively 
offset this behavior by hiding the latency, thus improv-
ing performance and reducing energy consumption at 
the same time. 
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