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ABSTRACT 
Unobtrusive capturing of program execution traces in real-time is 
crucial in debugging cyber-physical systems. However, tracing 
even limited program segments is often cost-prohibitive, requiring 
wide trace ports and large on-chip trace buffers. This paper 
introduces a new cost-effective technique for capturing and 
compressing program execution traces in real time. It uses branch 
predictor-like structures in the trace module to losslessly compress 
the traces. This approach results in high compression ratios 
because it only has to transmit misprediction events to the 
software debugger. Coupled with an effective variable encoding 
scheme, our technique requires merely 0.036 bits/instruction of 
trace port bandwidth (a 28-fold improvement over the commercial 
state-of-the-art) at a cost of roughly 5,200 logic gates. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.5: [Testing and Debugging]: 
Debugging aids, Tracing. E.4 [Coding and Information 
Theory]: Data Compaction and Compression. 

General Terms 
Algorithms, Design, Verification. 

Keywords 
Debugging, Program Tracing, Compression. 

 

1. INTRODUCTION 
Ideally, firmware and software developers of embedded systems 
would like to be able to answer the simple question “What is my 
system doing?” at any point in the development cycle. However, 
achieving complete visibility of all signals in real time in modern 
embedded systems is not feasible due to limited I/O bandwidth, 

high internal complexity, and high operating frequencies. 
Software developers face additional challenges caused by growing 
software complexity and ever tightening time-to-market pressures. 
According to an estimate, software developers spend 50%-75% of 
their development time in program debugging [1], yet the nation 
still loses approximately $20-$60 billion a year due to software 
bugs and glitches. The latest recalls in the automotive industry are 
a stark reminder of the need for improved software testing – a 
recent study found that 77% of all electronic failures in 
automobiles are due to software bugs [2]. To meet these 
challenges and get reliable and high-performance products on the 
market on time, software developers increasingly rely upon on-
chip resources for debugging and tracing. However, even limited 
hardware support for tracing and debugging is associated with 
extra cost in chip area for capturing and buffering traces, for 
integration of these modules into the rest of the system, and for 
sending out the information through dedicated trace ports [3]. 
These costs often make system-on-a-chip designers reluctant to 
invest additional chip area for debugging and tracing. 

Debugging and testing of embedded processors is traditionally 
done through a JTAG port that supports two basic functions: 
stopping the processor at any instruction or data access and 
examining the system state or changing it from outside. The 
problem with this approach is that it is obtrusive – the order of 
events during debugging may deviate from the order of events 
during “native” program execution when no interference from 
debugging operations is present. These deviations can cause the 
original problem to disappear in the debug run. For example, 
debugging operations may interfere with program execution in 
such a way that the data races we are trying to locate disappear. 
Moreover, stepping through the program is time-consuming for 
programmers and is simply not an option for real-time embedded 
systems. For instance, setting a breakpoint may be impossible or 
harmful in real-time systems such as a hard drive or vehicle 
engine controller. A number of even more challenging issues arise 
in multi-core systems. They may have multiple clock and power 
domains, and we must be able to support debugging of each core, 
regardless of what the other cores are doing. Debugging through a 
JTAG port is not well suited to meet these challenges. 

Recognizing these issues, many vendors have developed modules 
with tracing capabilities and integrated them into their embedded 
platforms, e.g., ARM’s Embedded Trace Macrocell [4], MIPS’s 
PDTrace [5], and OCDS from Infineon [6]. The IEEE’s Industry 
Standard and Technology Organization has proposed a standard 
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for a global embedded processor debug interface called Nexus 
5001 [7]. 

The trace and debug infrastructure on a chip typically includes 
logic that captures address, data, and control signals, logic to filter 
and compress the trace information, buffers to store the traces, and 
logic that emits the content of the trace buffer through a trace port 
to an external trace unit or host machine. Hardware traces can be 
classified into three main categories depending on the type of 
information they capture: program (or instruction) traces, data 
traces, and interconnect traces. In this paper we focus on program 
execution traces, i.e., Class 2 operation in Nexus. They consist of 
the addresses of all executed instructions and are crucial for both 
hardware and software debugging, as well as for program 
optimization and tuning. 

The existing commercially available trace modules rely either on 
hefty on-chip buffers to store execution traces of sufficiently large 
program segments or on wide trace ports that can sustain a large 
amount of trace data in real-time. However, large trace buffers 
and/or wide trace ports significantly increase the system’s 
complexity and cost. Moreover, they do not scale well - the 
number of I/O pins dedicated to tracing cannot keep pace with the 
exponential growth in the number of on-chip logic gates – which 
is a substantial problem in the era of multicore systems. 

Compressing program execution traces at runtime in hardware can 
reduce the requirements for on-chip trace buffers and trace port 
communication bandwidth. Whereas commercially available trace 
modules typically implement only rudimentary forms of hardware 
compression with a relatively small compression ratio (~1 bit per 
instruction) [8], several recent research efforts in academia 
propose trace compression techniques that reach much higher 
compression ratios [9, 10]. For example, Kao et al. [9] propose an 
LZ-based program trace compressor that achieves a good 
compression ratio for a selected set of programs. However, the 
proposed module has a relatively high complexity (50,000 gates). 
Uzelac and Milenkovic introduced a double move-to-front method 
that requires 0.12 bits/instruction on the trace port on average at 
the estimated cost of 24,600 logic gates [10]. A compressor using 
a stream descriptor cache and predictor structures requires a 
slightly higher trace port bandwidth of 0.15 bits/instruction, but at 
much lower hardware complexity [11]. 

In this paper we introduce a new technique for hardware 
compression of program traces in real-time (Section 2). The 
proposed technique relies on a trace module that incorporates a 
branch predictor-like structure to track the program execution. An 
identical structure is maintained in software by the debugger. To 
be able to replay the program execution off-line, we only need to 
record misprediction events in the trace module. These events are 
efficiently encoded (Section 3) and read out of the chip through a 
trace port. Our experimental analysis (Section 4) shows that the 
proposed technique requires only 0.036 bits/instruction of trace 
port bandwidth at an estimated cost of about 5,200 gates.  

The main contributions of this work are as follows: 

• We propose using branch predictor like structures in the 
trace module for cost-effectively and unobtrusively 
capturing and compressing program traces at run-time; 

• We introduce an effective and low-complexity encoding 
scheme for the events that are captured at these branch 
predictor like hardware structures; 

• We perform a detailed experimental analysis that shows the 
proposed trace compression scheme to achieve excellent 
compression ratios, outperforming existing hardware-based 
techniques for compression of program execution traces; it 
requires over 28 times less bandwidth on the trace port than 
commercial state-of-the-art solutions and over three times 
less than recently published academic proposals at much 
lower hardware cost. 

 

2. USING BRANCH PREDICTOR EVENTS 
TO CAPTURE PROGRAM EXECUTION 
TRACES 
A program’s execution path can be replayed off-line by recording 
changes in the program flow caused by control-flow instructions 
or exceptions during execution. When a change in the program 
flow occurs, we need to capture (a) the program counter (PC) of 
the currently executing instruction and (b) the branch target 
address (BTA) in case of a control-flow instruction or the 
exception-handler target address (ETA) in case of an exception. 
Thus, the program’s execution path can be recreated by recording 
a sequence of (PC, BTA) and (PC, ETA) pairs. To reduce the 
amount of data, the program counter values can be replaced by the 
number of instructions executed in a sequential run since the last 
change in the control flow (SL). However, even this type of trace 
may contain redundant information that can be inferred by the 
software debugger from the program binary, such as the target 
address of a direct branch (the BTA is known at compile time). 
Similarly, there is no need to report unconditional direct branches 
as control-flow events; their outcomes and targets are known at 
compile time. However, in spite of these optimizations, the 
number of bits that needs to be traced out of the processor core is 
still relatively large. Depending on the frequency and type of 
control-flow instructions, this number ranges from 0.2 to 5 
bits/instruction for typical benchmarks, requiring a deep trace 
buffer and a wide trace port. For example, in the worst-case 
scenario (5 bits/instruction), a trace buffer of 8 KB will capture a 
program trace for a program segment with slightly over 1,600 
instructions. However, such a small number of instructions is 
insufficient in locating software errors in modern programs, where 
distances between bugs and their manifestations may be millions 
of instructions.  

Almost all modern mid- to high-end embedded processors include 
branch predictors in their front-ends. Branch predictors detect 
branches and predict the branch target address and the branch 
outcome early in the pipeline, thus reducing the number of wasted 
clock cycles due to control hazards. The target of a branch is 
predicted using a branch target buffer (BTB), a cache-like 
structure indexed by a portion of the branch address [12], that 
keeps target addresses of taken branches. A separate hardware 
structure named indirect branch target buffer (iBTB) can be used 
to better predict indirect branches that may have multiple targets 
[13]. A dedicated stack-like hardware structure called return 
address stack (RAS) is often used to predict return addresses [14]. 
Branch outcome predictors range from a simple linear branch 
history table (BHT) with 2-bit saturating counters to very 
sophisticated hybrid branch outcome predictor structures found in 
recent commercial microprocessors [15]. Branch predictors are 
typically very effective, predicting branch outcomes and target 
addresses with over 95% accuracy. 



Our key observation is that program 
execution can be replayed off-line using a 
branch predictor trace instead of a branch 
instruction trace. We propose a trace module 
that consists of branch predictor structures 
solely dedicated to real-time hardware trace 
compression. To distinguish it from the 
processor’s branch predictor, we named it 
Trace Module Branch Predictor (TMBP). The 
TMPB includes structures for predicting 
branch targets and branch outcomes. Unlike 
regular branch predictors, the TMBP does not 
need to include a large BTB because direct 
branch targets can be inferred from the 
binary, but it may include an iBTB for 
predicting targets of indirect branches, and a 
RAS for predicting return addresses. 

The TMBP structures are updated like a 
regular branch predictor but later, i.e., only 
when a branch instruction is retired. As long 
as the prediction from the TMBP corresponds 
to the actual program flow, the trace module 
does not need to send any trace records. It 
records only misprediction events. These 
events are encoded and sent via a trace port 
to a software debugger. The software 
debugger maintains an exact software copy of 
the TMBP structures. It reads the branch 
predictor trace records, replays the program 
instruction-by-instruction, and updates the 
software structures in the same way the TMBP is updated during 
program execution. 

Figure 1 shows a system view of the proposed tracing mechanism. 
The trace module (TM) is coupled with the CPU core through an 
interface that carries the relevant information for each control-
flow change: the branch target address (BTA), the exception 
target address (ETA), the program counter (PC), the instruction 
type (iType), and an exception control signal. The trace module 
monitors this information and updates its state accordingly. It 
includes two counters: an instruction counter (iCnt) that counts 
the number of instructions executed since the last trace event has 
been reported, and a branch counter (bCnt) that counts the number 
of relevant control-flow instructions executed since the last trace 
event has been reported (see Figure 2 for the trace module 
operation). The counters are updated upon completion of an 
instruction in its retirement phase; iCnt is incremented after each 
instruction and bCnt is incremented only upon retirement of 
control-flow instructions of certain types, namely after direct 
conditional branches (DirCB) and all indirect branches (IndB)1. 
These branch instructions may be either correctly predicted or 
mispredicted by the TMBP. In case of a correct prediction, the 
trace module does nothing beyond the counter updates. In case of 
a misprediction, the trace module generates a trace record that 
needs to be sent to the software debugger and clears the counters. 
The type and format of the trace record depends on the branch 
type and the misprediction event type (see Table 1). In case of a 
direct branch outcome misprediction, the trace record includes 

                                                                 
1 Note: direct unconditional branches are not reported because 

their target can be inferred by the software debugger. 

 
Figure 1. Trace module system view. 

1. // For each committed instruction 
2. iCnt++;  // increment iCnt 
3. if ((iType==IndBr)||(iType==DirCB)) { 
4.   bCnt++;  // increment bCnt 
5.   if (TMBP mispredicts) { 
6.     Encode TMBP mispredicton event; 
7.     Place record into the Trace Buffer; 
8.     iCnt = 0;  
9.     bCnt = 0; 
10.   } 
11. } 
12. if (Exception event) { 
13.   Encode an exception event; 
14.   Place record into the Trace Buffer; 
15.   iCnt = 0;  
16.   bCnt = 0; 
17. } 

Figure 2. Trace module operation. 

Table 1. Trace module branch prediction events and trace 
records: T – Taken, NT – Not Taken. 

Branch Type TMBP Events Trace Record 
DirCB Outcome mispred. (header, bCnt) 

IndB (NT) Outcome mispred. (header, bCnt, NT) 

IndB (T) 
/Uncond. 

Target mispred. (header, bCnt, T, TA) 

Exception -- (header, iCnt, ETA) 

 



only the bCnt value so that the software debugger can replay the 
program execution until the mispredicted branch is reached. Then, 
it simply follows the not-predicted path. In case of an indirect 
branch misprediction, we can have an outcome misprediction, a 
target address misprediction, or both. For an indirect branch 
incorrectly predicted as taken, the trace record includes the bCnt 
and information specifying that the branch is not taken (NT bit). 
In case of a target address misprediction, the trace record includes 
the bCnt, the outcome taken bit (T), and the actual target address 
(TA). Finally, in case of an exception, the trace module emits a 
trace record that includes the iCnt and the starting address of the 
corresponding exception handler. 

The software debugger replays all instructions updating the 
software copy of the branch predictor and the counters in the same 
way their hardware counterparts are updated (see Figure 3). The 
debugger reads a trace record and then replays the program 
instruction-by-instruction. If it processes a non-exception trace 
record, the counter bCnt is decremented on retirement of direct 
conditional and indirect branch instructions. When the counter 
reaches zero, the software debugger processes the current 
instruction depending on its type. If the instruction is a direct 
conditional branch, the debugger takes the opposite outcome from 
the one provided by the predictor. The predictor is updated and a 
new trace record is read to continue program replay. If the current 
instruction is an indirect branch, the debugger reads the target 
address from the trace record, redirects program execution, and 
updates its predictor accordingly. Similarly, if the debugger 
processes an exception trace record, the iCnt counter is 
decremented on each instruction retirement until the instruction on 
which the exception has occurred is reached. If the software 
debugger can replay the exception handler, tracing can continue 
and the compressor structures are updated as usual. Alternatively, 
the tracing is stopped and resumed upon return from the exception 
handler. A developer needs to configure the trace module for one 
of these two options using configuration messages before the 
tracing starts; in addition, the software debugger also needs to 
know which of these two approaches is used. 
An inevitable question is why we do not simply capture the 
necessary branch events in the regular branch predictor, thus 
eliminating the need to implement separate TMBP structures. 
While such an approach is possible and desirable for reducing 
complexity, it would require tight integration of the trace module 
with the CPU pipeline and would place debilitating restrictions on 
the branch predictor’s design and operation. For example, we 
would need to reset the content of the branch predictor to a known 
state on each context switch to maintain consistency between the 
branch predictor in the CPU pipeline and the branch predictor in 
the software debugger. More importantly, we would need to 
disallow speculative updates of the branch predictor structures. 
These restrictions would result in an unacceptable loss of 
accuracy of the branch predictor and thus are not further 
considered in this paper. 

2.1 Example 
Let us first illustrate program tracing on the example of a code 
segment consisting of 4 basic blocks W, X, Y, and Z as shown in 
Figure 4 (left). Let us consider three iterations of the loop with the 
execution pattern {WXZ}2{WYZ}. The code sequence includes 
only direct branches and only two basic blocks W and Z end with 
conditional branches (jle Y and jge W). Let us assume that the 
branch predictor initially predicts the branch jle Y to be not 

taken (P=NT), and the branch jge W to be taken (P=T). Program 
execution starts with the first instruction in the block W (i1); the 
trace module increments the iCnt and bCnt counters as shown in 
the execution table in Figure 4. In the first two loop iterations, the 
conditional branches are correctly predicted. In the third iteration, 
the branch predictor predicts the branch jle Y as not taken when 
it is actually taken (A=T), so we have an outcome misprediction 
event. The trace module emits a trace record that includes 
information about the misprediction type (outcome misprediction) 
and the number of branches that have been correctly predicted 
since the last trace event, bCnt=5. The counters are cleared and 
program execution continues with block Y. In the last iteration the 
instruction jge W is predicted taken (P=T), but it is actually not 
taken (A=NT). A new trace record for this outcome misprediction 
is emitted with the counter value bCnt=1. 

Assume the software debugger is ready to replay the program 
starting from instruction i1. It receives a trace record indicating 
that the program should be replayed until the fifth conditional 
branch is reached (replay table in Figure 4). The program is 
replayed instruction-by-instruction and the software copy of the 
TMBP and the replay counters are updated accordingly. When the 
counter bCnt reaches zero (at instruction jle Y in the third 
iteration), the debugger knows that the branch outcome of the 
current direct branch is different from the one suggested by the 
software TMBP. The debugger needs to update its predictor 
structures according to their update policies. It then reads the next 
trace record and continues program replay from the first 
instruction in block Y. 

2.2 Related software-based trace compression 
techniques 
A number of trace-specific software-based trace compression 
techniques have recently been introduced [16], [17]. The 
relationship between data compression and branch prediction was 
first noted by Chen et al. [18]. Several recent software-based trace 
compression techniques rely on branch predictors [19] or, more 
generally, on value predictors [20]. Many of these schemes 
include trace-specific compression in the first stage, combined 
with a general-purpose compressor in the second stage. For 
example, Barr and Asanović [19] have proposed a branch-
predictor based trace compression scheme for improving 
architectural simulation. Similar to our scheme, they keep track of 
the number of correct predictions and emit entire trace records 
only in case of mispredictions. Whereas this scheme utilizes the 

1. // For each instruction 
2. Replay the current instruction; 
3. if (exception rec. is being processed) { 
4.   iCnt--; 
5.   if (iCnt == 0) { 
6.     Goto Exception Handler Routine; 
7.     Get the next trace record;  
8.   } 
9. } 
10. if (iType==AnyBranch) { 
11.   Update software copy of the TMBP; 
12.   if ((iType==IndBr)||(iType==DirCB)) { 
13.     bCnt--; 
14.     if (bCnt==0) Get the next trace rec.; 
15.   } 
16. } 

Figure 3. Execution replay in the software debugger. 



same underlying program characteristics as our scheme, there are 
some notable differences, as discussed below.  

First, the algorithm presented in [19] compresses program traces 
in software and is aimed at warming-up architectural simulators. It 
is designed to maximize the compression ratio assuming virtually 
unlimited storage and processing resources. Hence, it relies on 
large predictor structures that require megabytes of memory 
storage. More importantly, it utilizes the gzip compression 
algorithm for efficient encoding of the output trace. Such an 
approach would be cost-prohibitive or infeasible for real-time 
compression in hardware.  

Moreover, the inner workings of the compression algorithm 
proposed in [19] are different from our approach. Whereas we use 
a subset of regular branch predictor structures in the trace module 
and encode regular misprediction events, their predictor structures 
behave differently. They use the incoming branch trace records as 
input into a range of branch predictor like software structures to 
predict the next trace record, rather than the next instruction.  

In conclusion, our goal is to develop a hardware trace compressor 
that uses a minimal subset of branch predictor structures (e.g., we 
do not use a BTB) and employs an efficient encoding scheme that 
ensures unobtrusive tracing in real-time at minimal hardware 
cost.  

 

3. TRACE RECORD ENCODING 
Trace records should be encoded in a way that minimizes both the 
storage requirement in the trace buffer as well as the trace port 
bandwidth. The proposed mechanism uses four types of trace 
records as shown in Figure 5. The trace record length depends on 
the event type and can vary from several bits to several dozen bits. 
Using a fixed number of bits in the trace record for the bCnt and 
iCnt values would not be a good solution because the distance 
between two consecutive branch mispredictions may vary widely 
between programs as well as within a single program as it moves 

through different program phases. The typical values found in 
bCnt and iCnt are also heavily influenced by the misprediction 
rate, which is a function of the type and organization of the branch 
predictor. Thus, there is no general, optimal solution for encoding. 
Instead, we opt for an empirical approach in determining trace 
record formats. Our goal is to devise an effective yet easy-to-
implement encoding scheme with minimal hardware complexity. 

We have developed a variable-length encoding scheme that 
minimizes trace record lengths for the most frequent events and 
adapts to changes in the counter lengths. All trace records start 
with a header field, which is followed by a variable length field 
that carries the bCnt counter value. The header (bh) has variable 
length (bhLen) and always ends with a zero bit, i.e., bh=′111...10′. 
Its length determines the length of the bCnt counter field as 
follows: (bStartS+(bhLen-1)*bStepS). The single-bit header, 
bh=′0′, specifies bStartS bits in the bCnt counter field (encoding 
values from 0 to 2bStartS-1). The two-bit header, bh=′10′, specifies 
bStartS+1*bStepS bits in the bCnt counter field (encoding values 
from 0 to 2bStartS+bStepS-1), the three-bit header, bh=′110′, specifies 
bStartS+2*bStepS bits (0 to 2bStartS+2*bStepS-1), and so on. 

A trace record emitted on a direct branch outcome misprediction 
event consists of a header (bh) and a bCnt counter field (Figure 
5a). A similar format is used for indirect conditional branches. If 
an indirect branch is predicted as taken but is actually not taken, a 
trace record with the format shown in Figure 5b is used. The 
additional one-bit field O=′0′ specifies that the outcome of the 
branch is not correct. The similar format shown in Figure 5c is 
used for indirect conditional branches that are predicted not taken 
but are actually taken. Indirect unconditional mispredictions are 
encoded as shown in Figure 5d. The trace records shown in Figure 
5c and Figure 5d carry information about the bCnt counter as well 
as the branch target address TA. A simple approach would be to 
just append an additional 32-bit field holding the target address to 
the original trace record. An alternative approach is to encode the 
difference between subsequent target addresses. The trace module 
maintains the previous target address (PTA) – that is, the target 
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Figure 4. Tracing and replaying the sample execution. 



address of the last mispredicted indirect branch. When a new 
target misprediction event is detected, the trace module calculates 
the difference diffTA as follows: diffTA = TA - PTA, where the TA 
is the target address of the current branch. The trace module then 
updates the PTA, PTA=TA. By profiling the absolute value of the 
diffTA, |diffTA|, for several benchmarks with a significant number 
of indirect branches, we found that we can indeed shorten the 
trace records by using difference encoding. 

We employ variable encoding for the difference/target address 
field (|diffTA|/TA). Its length is specified by the number of header 
bits (th). We adopt the following scheme: a single header bit (th = 
′0′) specifies taStartS bits in the |diffTA|/TA field. The two-bit 
header (th = ′10′) specifies taStartS+1*taStepS bits, the three-bit 
header (th = ′110′) specifies taStartS+2*taStepS bits, and so on. If 
the |diffTA|/TA field requires fewer than 32 bits, we also need to 
provide information about the sign bit (ts) of the difference; 
otherwise, the whole 32-bit address is included. 

Figure 5e shows the format of the trace records used to report 
exception events. An exception trace record includes information 
about the iCnt counter and the starting address of the exception 
handler (ETA). It is an extension of the base format used for 
direct conditional branch mispredictions. The bh field indicates 
the shortest bCnt field of bSize bits. The bCnt field consists of all 
zeros indicating that this is an exception event trace record. The 
next two fields, the exception header (eh) and the instruction 
counter (iCnt), are used to specify the number of instructions 
executed since the last branch predictor misprediction event. We 
use the same variable encoding as before – the ehLen-bit header 
specifies the eStartS+(ehLen-1)*eStepS bits in the iCnt field. 
Finally, the last portion of the message includes the whole 
exception address (ETA). Note: we could use the same differential 
encoding described for indirect branches (eth and diffETA/ETA 

fields), but because of the low frequency of exception events we 
simply encode the whole 32-bit exception address. 

The optimal setting of the trace record parameters depends on the 
benchmarks and on the characteristics of the branch predictor. A 
detailed analysis aimed at finding good values for these 
parameters is provided in the next section. 

 

4. EXPERIMENTAL EVALUATION 
The goals of this section are as follows. First, we profile our 
benchmarks to determine good values for the trace record 
parameters, including bStartS, bStepS, taStartS, taStepS, eStartS, 
and eStepS (Section 0). After determining the trace record 
parameters, we evaluate the effectiveness of the proposed tracing 
mechanism by measuring the average trace port bandwidth for 
several branch predictor configurations (Section 4.3). We also 
compare the effectiveness of our mechanism with that of other 
academic proposals (Section 4.3). The trace port bandwidth 
requirements are expressed in bits per instruction (bits/ins) and 
averages are calculated using the weighted arithmetic mean; the 
weights are proportional to the number of executed instructions in 
programs. Note that the compression ratio for a program 
execution trace is 32/(Trace Port Bandwidth) for 32-bit 
architectures; e.g., a trace port bandwidth of 0.05 bits/ins is 
equivalent to a compression ratio of 640:1. Our analysis is 
performed using a functional and cycle-accurate SimpleScalar 
ARM simulator [21] with processor parameters modeled after the 
XScale processor. 

As workload we use seventeen benchmarks from MiBench, a 
representative suite of benchmarks for embedded computers [22]. 
We consider three TMBP configurations, bTMBP, sTMBP, and 
tTMBP. The base TMPB configuration (bTMPB) includes a 64-
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Figure 5. Trace record formats for branch misprediction events and exceptions. 



entry 2-way set associative iBTB and an 8-entry RAS for indirect 
branch target prediction, and a 512-entry GSHARE global 
outcome predictor [23]. Each entry in the iBTB includes a tag 
field and the target address. The tag and iBTB index are 
calculated based on the information contained in a path 
information register (PIR). We assume a 13-bit PIR that is 
updated by relevant branch instructions as follows: 
PIR[12:0]=((PIR[12:0]<<2) xor PC[16:4]) | Outcome. The iBTB 
tag and index are calculated as follows: iBTBTag = PIR[7:0] xor 
PC[17:10] and iBTBIndex = PIR[12:8] xor PC[8:4]. The outcome 
predictor index function is GSHAREIndex = BHR[8:0] xor 
PC[12:4], where the BHR register keeps the outcome history of 
the last 9 conditional branches. The sTMBP configuration 
includes a smaller, 32-entry iBTB and the tTMBP does not 
include any iBTB.  

In Section 4.2 we introduce an enhancement aimed at reducing the 
complexity and estimate the cost of the proposed configurations. 
Reducing the hardware complexity of the tracing infrastructure is 
especially important in mid- and low-end embedded processors 
where a complete processor cores require 50 – 100 Kgates. In 
addition, in multicore processors each core would need its own 
trace compression structures. Reducing the complexity of the 
required compressor structures may motivate processor vendors to 
more readily include debugging infrastructure that supports 
unobtrusive program tracing.  

4.1 Encoding Profiles 
To determine good values for the trace record parameters, we 
profiled the behavior of MiBench benchmarks and analyzed the 
probability density function for the minimum bit-length of the 
bCnt counter. We found that our variable encoding scheme indeed 
reduces the size of the output trace and outperforms any fixed-
length encoding scheme. Next, we analyzed several combinations 
of (bStartS, bStepS) pairs (bStartS∈[2..6] and bStepS∈[1..6]) to 
determine an optimal combination that results in the shortest 
program traces across our benchmark suite. The results of this 
analysis indicate that the total trace size is minimal when 
bStartS=3 and bStepS=2 for the bTMBP and sTMBP 
configurations and bStartS=3 and bStepS=1 for the tTMBP 
configuration. 

Similarly, we analyzed the minimum bit-length of the |diffTA| 
field. The results indicate that the upper address bits of the 
subsequently mispredicted indirect branches rarely change, thus 
we can encode the difference diffTA instead of the whole target 
address. We analyze several combinations of the taStartS and 
taStepS parameters. The results indicate that taSize=8 and 
taStepS=6 give the shortest trace for the tTMBP configuration, and 
taSize=12 and taStepS=4 for the sTMBP and bTMBP 
configurations. 

In spite of the relatively low frequency of exception events, we 
analyzed the profile for the iCnt counters to determine the 
parameters eStartS and eStepS. The profiles for software 
exceptions indicate that all iCnt values can be encoded with a 2-
bit field. Thus, we use eStartS=2 and eStepS=4. 

4.2 Hardware Complexity 
To estimate the size of the proposed trace module, we need to 
estimate the size of all structures inside the trace module, 
including the outcome predictor, RAS, iBTB, PIR, BHR, the trace 
encoder, and the trace output buffer. The estimation of the size of 

the predictor structures is straightforward. For the iBTB and RAS, 
we include an enhancement to reduce their complexity. We find 
that the uppermost 12 bits of the indirect branch targets remain 
unchanged relative to the previous target in 99.99% of the cases. 
Consequently, we can use a last value predictor for the upper 12 
bits of the target address and keep only the lower 18 address bits 
in the iBTB address entry (the last two bits are always zero in the 
ARM architecture). A miss in the last value predictor causes the 
whole target address to be included in the trace record. This way 
we reduce the complexity significantly with negligible 
degradation in the TMBP’s iBTB and RAS hit rates. It should be 
noted that the number of bits that can be eliminated from the 
iBTB target address fields with negligible penalty for the 
prediction rates depends on benchmark characteristics. However, 
we believe that a certain number of upper address bits is likely to 
stay constant or change infrequently, even with dynamically 
loaded libraries, object-oriented code, and other modern software 
techniques.  

To determine the size of the trace output buffer, we used a cycle-
accurate processor model to find the maximum number of bits in 
this buffer at any point during benchmark execution. We assume 
the trace buffer is emptied through the trace port at the rate of a 
one bit per processor clock cycle. The worst case happens during 
TMBP warm-up when we experience a number of consecutive 
mispredictions in the benchmark fft. For the bTMBP 
configuration, we find that a buffer of 79 bits ensures that the 
processor is never stalled due to tracing and that no trace records 
are lost. 

The estimates for the hardware complexity measured in logic 
gates for the three configurations are as follows: tTMBP requires 
2,800 gates, sTMBP requires 4,000, and bTMBP requires slightly 
over 5,200 gates. These estimates confirm our expectations about 
the relatively small complexity of the proposed trace module 
compressor structures and support our decision to implement a 
separate TMBP outside of the processor pipeline. 

4.3 Trace Port Bandwidth 
Table 2 and Figure 6 show the results of the trace port bandwidth 
analysis for the three configurations of the proposed trace module 
(tTMBP, sTMBP, and bTMBP) and preexisting techniques 
(NEXS, TSLZ, and DMTF). We compare our technique with a 
Nexus-like trace module (NEXS) [7] and two trace-specific 
adaptations of general-purpose compression algorithms, namely 
the LZ scheme (TSLZ) [9] and the DMTF scheme [10]. To 
illustrate the effectiveness of the proposed technique, we also 
compare it to the software gzip utility when compressing a 
sequence of (SL, TA/-) pairs. Please note that implementing a gzip 
compressor in hardware would be cost-prohibitive in both the on-
chip area and the compression latency. 

The NEXS scheme assumes sending the minimum information 
needed to the trace port to replay the program off-line; it consists 
of a sequence of (SL, TA/-) pairs. The SL field records the 
number of sequentially executed instructions from the last taken 
branch and the TA field records the target address for indirect 
branches or exceptions. The TA field is differentially encoded and 
leading zeros are not emitted, which is similar to the Nexus 
standard. The TA field is XORed with the previous TA and the 
difference is split in groups of 6 bits. E.g., if diffTA[31:6] consists 
of zeros, then only diffTA[5:0] is sent to the trace port, together 
with a 2-bit header indicating that this is a terminating byte for the 



target address. The average trace port bandwidth required for the 
NEXS scheme is 0.907 bits/ins (close to the reporting bandwidths 
of commercial trace modules), ranging from 0.149 bits/ins for 
adpmc_c to 4.01 bits/ins for bf_e. Assuming a CPU core that can 
execute one instruction per clock cycle (IPC=1), and a trace port 
working at the processor clock speed, we would need at least 5 
data pins on the trace port to trace the program execution 
unobtrusively (the worst case bf_e requires over 4 bits/ins). 

The TSLZ compressor encompasses three stages: filtering of 
branch and target addresses, then difference-based encoding, and 
finally hardware-based LZ compression. We implemented this 
compressor and analyzed its performance on our set of 
benchmarks. The TSLZ configured with a sliding window of 256 
12-bit entries requires 0.446 bits/ins on the trace port on average 
(ranging from 0.024 to 1.96 bits/ins). This compressor’s 
complexity is estimated to be 51,678 logic gates [9]. The 
enhanced DMTF compressor encompasses two stages, each 
featuring a history table performing the move-to-front 
transformation. The compressor with a 192-entry first level and a 
4-entry second level history table, eDMTF(192,4), requires on 
average 0.118 bits/ins on the trace port (ranging from 0.001 to 
0.306 bits/ins). These two schemes reduce the trace port 
bandwidth, but they rely on fully-associative search tables that 
increase the cost of a hardware implementation and the 
compression latency. In addition, the worst performing 
benchmarks for TSLZ still require more than a single bit per 
instruction. Increasing the size of the search tables could alleviate 
this problem, but at a further increase in hardware complexity. 

These results show that our technique requires a very small trace 
port bandwidth. The base configuration of our compressor 
(bTMBP) requires only 0.0356 bits/ins, which is a 28-fold 
improvement compared to the typical bandwidth of commercial 
state-of-the-art trace modules (~1 bits/ins [8]). It outperforms the 

best reported hardware compressor eDMTF(192,4) by over a 
factor of three (3.3) with an almost 5-fold reduction in 
complexity. We further observe that the compression ratio 
achieved by the bTMBP configuration is close to that of the 
software gzip utility when compressing a sequence of (SL,TA/-) 
pairs, which further underscores the strength of the proposed 
mechanism. 

Our smallest configuration (tTMBP) requires only 0.0764 bits/ins 
on average (ranging from 0.0014 to 0.51 bits/ins) on the trace 
port, outperforming the enhanced DMTF scheme over 1.6 times 
with an order of magnitude lower complexity (2,800 vs. 24,600 
logic gates). The sTMBP configuration benefits from the indirect 

Table 2. Trace port bandwidth analysis [bits/ins]. 

NEXS TSLZ DMTF bTMBP sTMBP tTMBP GZIP
adpcm_c 0.1486 0.0237 0.0011 0.0013 0.0013 0.0014 0.0014
bf_e 4.0102 0.3538 0.2840 0.0093 0.0094 0.0111 0.0377
cjpeg 0.7523 0.4312 0.0906 0.0420 0.0435 0.0623 0.0497
djpeg 0.3656 0.2298 0.0522 0.0205 0.0239 0.0354 0.0191
fft 1.5545 1.9208 0.2011 0.0909 0.0963 0.1664 0.0648
ghostscript 1.5776 1.3938 0.3060 0.1272 0.2298 0.5125 0.0381
gsm_d 0.5672 0.1518 0.0396 0.0129 0.0132 0.0132 0.0091
lame 0.3910 0.1706 0.1130 0.0288 0.0289 0.0282 0.0405
mad 0.6678 0.2678 0.1475 0.0331 0.0332 0.0349 0.0418
rijndael_e 0.8400 0.0426 0.0960 0.0158 0.0696 0.0779 0.0127
rsynth 0.7467 0.2707 0.1080 0.0208 0.0208 0.0227 0.0182
sha 0.5666 0.4414 0.3872 0.0218 0.0218 0.0297 0.0053
stringsearch 1.9319 1.9617 0.0489 0.1644 0.1829 0.3031 0.1044
tiff2bw 0.6543 0.1460 0.0114 0.0065 0.0106 0.0127 0.0063
tiff2rgba 0.3296 0.1597 0.0060 0.0075 0.0105 0.0153 0.0053
tiffdither 0.6588 0.5733 0.0118 0.0618 0.0621 0.0617 0.0801
tiffmedian 0.3740 0.0810 0.1656 0.0070 0.0078 0.0086 0.0068
Average 0.9066 0.4462 0.1186 0.0356 0.0467 0.0764 0.0307  
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Figure 6. Trace port bandwidth comparison. 



branch target buffer and requires only 0.0467 bits/ins. 

Table 3 shows the hit rates for the predictor structures used in the 
three configurations of the proposed trace compressor. Coupled 
with the frequencies of each branch instruction type 
(direct/indicted, conditional/unconditional), the hit rates indicate 
the number of trace records that require tracing on the trace port. 
We can see that even the fairly small structures we use in this 
study achieve very high prediction rates. Even higher prediction 
rates may be achievable using more sophisticated predictors, thus 
further reducing the required trace port bandwidth. Designers of 
debugging infrastructure may configure their trace module 
predictor structures in such a way to minimize the complexity and 
trace port bandwidth while exploiting unique characteristics of the 
software under test. 

Table 3. Branch predictor hit rates. 

Outcome
Predictor Target Predictor
GShare RAS iBTB iBTB

(512 ent.) (8 ent.) (16x2) (32x2)
adpcm_c 0.999 0.999 0.999 0.999
bf_e 0.984 1.000 1.000 1.000
cjpeg 0.921 0.599 0.931 0.957
djpeg 0.950 0.383 0.755 0.851
fft 0.906 0.807 0.931 0.945
ghostscript 0.948 0.285 0.664 0.835
gsm_d 0.973 0.983 0.986 0.991
lame 0.871 0.983 0.986 0.987
mad 0.908 0.973 0.978 0.978
rijndael_e 0.951 0.722 0.777 0.998
rsynth 0.945 0.996 0.998 0.999
sha 0.951 0.747 0.996 0.996
stringsearch 0.916 0.502 0.724 0.772
tiff2bw 0.996 0.467 0.588 0.781
tiff2rgba 0.993 0.486 0.696 0.797
tiffdither 0.909 0.979 0.983 0.987
tiffmedian 0.980 0.588 0.697 0.800
Average 0.942 0.853 0.904 0.953  

 

5. CONCLUSIONS 
This paper introduces a novel low-cost technique for real-time and 
unobtrusive tracing of program execution in embedded computer 
systems. The proposed trace module tracks the program execution 
by maintaining branch predictor-like structures that are updated 
during program execution akin to regular branch predictors. The 
debugger maintains a software version of these structures and 
employs the same policies as the trace module. The trace module 
needs to record only mispredictions in the predictor structures, 
which is why the proposed technique compresses traces well. We 
also introduce new, highly-effective variable encoding schemes 
for misprediction events. 

The experimental evaluation shows that the proposed technique 
requires a very low trace port bandwidth, providing over an order 
of magnitude improvement over the commercial state-of-the-art 
and over a three-fold improvement over recent academic 
proposals at much lower cost. Our base configuration bTMBP 
requires only 0.0356 bits/ins on the trace port (i.e., a 898:1 
compression ratio) at the cost of 5,200 logic gates and 0.0764 
bits/ins (419:1 compression ratio) at the cost of 2,800 logic gates, 

allowing designers to perform trade-offs between the required 
trace port bandwidth and the trace module complexity. 

 

6. ACKNOWLEDGMENTS 
The authors would like to thank the anonymous reviewers for 
their valuable suggestions. This work was supported in part by a 
National Science Foundation grant CNS-0855237. 

 

7. REFERENCES 
[1] Tassey, G. (May 2002) . The Economic Impacts of 

Inadequate Infrastructure for Software Testing. Available: 
http://www.rti.org/pubs/software_testing.pdf 

[2] McDonald-Maier, K. D. and Hopkins, A. B. T., "An 
Awakening Thought: Don't Let the Bug Bite While You 
Are Embedded," Embedded Systems Engineering (2004), 
32-33.  

[3] Hopkins, A. B. T. and McDonald-Maier, K. D., "Debug 
Support Strategy for Systems-on-Chips with Multiple 
Processor Cores," IEEE Trans. Comput. 55, 2 (Feb.  2006), 
174-184. DOI= http://dx.doi.org/10.1109/TC.2006.22 

[4] ARM. Embedded Trace Macrocell Architecture 
Specification, ARM IHI 0014O (2007). 
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014o/
IHI0014O_etm_v3_4_architecture_spec.pdf 

[5] MIPS. MIPS PDtrace Specification, MD00439 (2009). 
http://www.mips.com/products/product-
materials/processor/mips-architecture/ 

[6] Infineon. TC1775 System Units 32-Bit Single-Chip 
Microcontroller, User’s Manual, V2.0 (2001). 
www.infineon.com 

[7] IEEE-ISTO. The Nexus 5001 Forum Standard for a Global 
Embedded Processor Debug Interface,  (2003). 
http://www.nexus5001.org/standard 

[8] Orme, W. Debug and Trace for Multicore SoCs,  (Sep. 
2008). ARM White Paper. 
http://www.arm.com/pdfs/CoresightWhitepaper.pdf 

[9] Kao, C.-F., Huang, S.-M., and Huang, I.-J., "A Hardware 
Approach to Real-Time Program Trace Compression for 
Embedded Processors," IEEE Transactions on Circuits and 
Systems 54, 3 (Mar.  2007), 530-543.  

[10] Uzelac, V. and Milenkovic, A., "A Real-Time Program 
Trace Compressor Utilizing Double Move-to-Front 
Method," in Proceedings of the 46th Annual Design 
Automation Conference (San Francisco, California 2009). 
DAC '09. ACM, 738-743. DOI= 
http://doi.acm.org/10.1145/1629911.1630102 

[11] Uzelac, V., Milenković, A., Milenković, M., and Burtscher, 
M., "Real-time, Unobtrusive, and Efficient Program 
Execution Tracing with Stream Caches and Last Stream 
Predictors," in International Conference on Computer 
Design (Lake Tahoe, California, USA 2009). ICCD '09. 
IEEE Press, 173-178.  

[12] Perleberg, C. H. and Smith, A. J., "Branch Target Buffer 
Design and Optimization," IEEE Trans. Comput. 42, 4 



(1993), 396-412. DOI= 
http://dx.doi.org/10.1109/12.214687. 

[13] Driesen, K. and Hölze, U., "Accurate indirect branch 
prediction," SIGARCH Comput. Archit. News 26, 3 (1998), 
167-178. DOI= http://doi.acm.org/10.1145/279361.279380. 

[14] Kaeli, D. R. and Emma, P. G., "Branch history table 
prediction of moving target branches due to subroutine 
returns," SIGARCH Comput. Archit. News 19, 3 (1991), 34-
42. DOI= http://doi.acm.org/10.1145/115953.115957. 

[15] Gochman, S., Ronen, R., Anati, I., Berkovits, A., Kurts, T., 
and Naveh, A., "The Intel Pentium M Processor: 
Microarhitecture and Performance," Intel Technology 
Journal 7, 2 (May  2003), 21-36.  

[16] Milenković, A. and Milenković, M., "An Efficient Single-
Pass Trace Compression Technique Utilizing Instruction 
Streams," ACM Trans. Model. Comput. Simul. 17, 1 (2007), 
1-27. DOI= http://doi.acm.org/10.1145/1189756.1189758. 

[17] Burtscher, M., Ganusov, I., Jackson, S. J., Ke, J., 
Ratanaworabhan, P., and Sam, N. B., "The VPC Trace-
Compression Algorithms," IEEE Trans. Comput. 54, 11 
(2005), 1329-1344. DOI= 
http://dx.doi.org/10.1109/TC.2005.186. 

[18] Chen, I.-C. K., Coffey, J. T., and Mudge, T. N., "Analysis 
of branch prediction via data compression," SIGOPS Oper. 
Syst. Rev. 30, 5 (1996), 128-137. DOI= 
http://doi.acm.org/10.1145/248208.237171. 

[19] Barr, K. C. and Asanovic, K., "Branch trace compression 
for snapshot-based simulation," in International Symposium 
on Performance Analysis of Systems and Software (Austin, 
TX, Mar. 2006). ISPASS '06. IEEE Computer Society, 25-
36.  

[20] Burtscher, M. and Jeeradit, M., "Compressing Extended 
Program Traces Using Value Predictors," in Proceedings of 
the 12th International Conference on Parallel Architectures 
and Compilation Techniques (Sep. 2003). PACT '03. IEEE 
Computer Society, 159-168.  

[21] Austin, T., Larson, E., and Ernst, D., "SimpleScalar: An 
Infrastructure for Computer System Modeling," IEEE 
Computer 35, 2 (Feb.  2002), 59-67. DOI= 
http://dx.doi.org/10.1109/2.982917. 

[22] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., 
Mudge, T., and Brown, R. B., "MiBench: A free, 
commercially representative embedded benchmark suite," 
in IEEE 4th Annual Workshop on Workload 
Characterization (Austin, TX, Dec. 2001). IEEE Computer 
Society, 3-14. DOI= 
http://dx.doi.org/10.1109/WWC.2001.15 

[23] McFarling, S., "Combining Branch Predictors," Digital 
Equipment Corporation WRL Technical Note TN-36, 1993.  

 

 


