
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Computing a Movie of Zooming into a Fractal
Martin Burtscher, Department of Computer Science, Texas State University

I. ASSIGNMENT OVERVIEW

This project is to parallelize a provided serial program that
computes multiple images of a fractal, each at a higher zoom
level. The resulting images can be viewed individually or
combined into a movie, e.g., with the free convert tool.

The part of the code that needs to be parallelized is short and
relatively simple. It consists of three nested for loops. The outer
loop iterates over the images and the inner two loops iterate over
the x and y coordinates. The do loop that computes a pixel’s
gray-scale value comprises only six statements but is complex,
which is why I explain it in class before handing out the project.

II. TARGET AUDIENCE AND CONTEXT

I have used this assignment for many semesters in a senior-level
undergraduate course on parallel programming as well as in a
masters-level graduate course on parallel processing. In both
courses, the fractal is part of multiple bi-weekly programming
projects. Each project focuses on a different parallelization
approach (MPI, Pthreads, OpenMP, and CUDA). In addition, I
typically include at least one variation per project.

III. INTERESTING VARIATIONS

In the most basic version, only the outer image-loop is
parallelized. However, the project can be made more
challenging by including some of the following additions. 1) If
the zoom factor is computed iteratively (rather than using a
closed-form function), there is a loop-carried dependency that
the students must eliminate. 2) If the loop does not execute
enough iterations to yield sufficient parallelism (e.g., for GPUs),
multiple loops must be combined and parallelized together. 3) If
the order of the inner two for loops does not match the memory
layout of the image, the loops must be swapped to improve
locality and enable coalescing. 4) Depending on the selected
fractal, there may be substantial load imbalance, which can be
alleviated by modifying the schedule.

IV. PREREQUISITES

At a minimum, the students must have been taught basic loop-
parallelization strategies. If the above-mentioned variations are
used, knowledge about dependency elimination, loop fusion,
loop interchange, and scheduling techniques is also required.

V. COVERED CONCEPTS

The covered concepts include basic loop parallelization and load
imbalance. Optionally, they include which loop to parallelize (to
avoid dependencies or to lower overhead), loop interchange (to
enhance locality), loop fusion (to increase parallelism), depen-
dency elimination, and scheduling (to reduce imbalance).

VI. STRENGTHS

I have had great success with this assignment because of the
following benefits. 1) Most students enjoy creating the fractal
image/movie. 2) The code is quite short but not trivial, and the

part that needs to be parallelized easily fits on a single screen.
Not counting writing out the BMP, there are only about 40
statements, including timing code and code for checking the
command-line parameters. 3) The program requires no input
files, just the size of the image and the number of images to
compute. 4) The output can be viewed image-by-image or
converted into a movie, the latter of which is great for
demonstrating the result to other people. 5) The images are not
only visually pleasing but also useful for debugging, e.g., they
typically expose which thread or process is off. 6) The fractal
can easily be changed from one semester to the next to modify
the runtime and the load imbalance.

Probably the most distinctive feature of this assignment is
that the brightness of each pixel is determined by the amount of
computation performed. Hence, the fractal is a visualization of
the workload and thus enables the students to see the load
imbalance. For example, when generating Figure 1 with two
threads, there will be substantial load imbalance if one thread
computes the less work intensive, brighter top half of the image
and the other thread the more work intensive, darker bottom half.

Fig. 1. A frame of the fractal movie

VII. WEAKNESSES

The main downsides of this project are that the computation is
not particularly useful, that it is hard to understand (though
asking students to parallelize code they do not grasp completely
may still be useful as this situation does occur in practice), that
the provided BMP-writing code is not pretty because of various
quirks of the BMP format (which are hidden in a header file),
and that a third-party viewer or movie maker is required.

VIII. FINAL COMMENT

Most students, including underrepresented students, like the
fractal very much. For example, some of my students have used
it as background for talk slides, web pages, and even person-
alized credit cards. One student liked it so much that she gave
me a jigsaw puzzle of the fractal as a thank-you gift.

