ParLoT: Efficient Whole-Program Call Tracing
for HPC Applications

Saeed Taheri', Sindhu Devale?, Ganesh Gopalakrishnan®, and Martin
Burtscher?

1 School of Computing, University of Utah, Salt Lake City, Utah, USA
{staheri,ganesh}@cs.utah.edu
2 Department of Computer Science, Texas State University, San Marcos, Texas, USA
sindhu.devale@gmail.com
burtscher@cs.txstate.edu

Abstract. The complexity of HPC software and hardware is quickly
increasing. As a consequence, the need for efficient execution tracing to
gain insight into HPC application behavior is steadily growing. Unfor-
tunately, available tools either do not produce traces with enough detail
or incur large overheads. An efficient tracing method that overcomes
the tradeoff between maximum information and minimum overhead is
therefore urgently needed. This paper presents such a method and tool,
called ParLoT, with the following key features. (1) It describes a tech-
nique that makes low-overhead on-the-fly compression of whole-program
call traces feasible. (2) It presents a new, efficient, incremental trace-
compression approach that reduces the trace volume dynamically, which
lowers not only the needed bandwidth but also the tracing overhead.
(3) It collects all caller/callee relations, call frequencies, call stacks, as
well as the full trace of all calls and returns executed by each thread,
including in library code. (4) It works on top of existing dynamic binary
instrumentation tools, thus requiring neither source-code modifications
nor recompilation. (5) It supports program analysis and debugging at
the thread, thread-group, and program level. This paper establishes that
comparable capabilities are currently unavailable. Our experiments with
the NAS parallel benchmarks running on the Comet supercomputer with
up to 1,024 cores show that ParLoT can collect whole-program function-
call traces at an average tracing bandwidth of just 56 kB/s per core.

Keywords: Tracing, HPC, data compression, incremental compression

1 Introduction

Understanding and debugging HPC programs is time-consuming for the user and
computationally inefficient. This is especially true when one has to track control
flow in terms of function calls and returns that may span library and system
codes. Traditional software engineering quality assurance methods are often in-
applicable to HPC where concurrency combined with large problem scales and
sophisticated domain-specific math can make programming very challenging. For

2 S. Taheri et al.

example, it took months for scientists to debug an MPI laser-plasma interaction
code [13].

HPC bugs may be a combination of both flawed program logic and unspeci-
fied or illegal interactions between various concurrency models (e.g., PThreads,
MPI, OpenMP, etc.) that coexist in most large applications [13]. Moreover, HPC
software tends to consume vast amounts of CPU time and hardware resources.
Reproducing bugs by rerunning the application is therefore expensive and unde-
sirable. A natural and field-proven approach for debugging is to capture detailed
execution traces and compare the traces against corresponding traces from pre-
vious (stable) runs [3,27]. A key requirement is to do this collection as efficiently
as possible and in as general and comprehensive a manner as possible.

Existing tools in this space do not meet our criteria for efficiency and gen-
erality. The highly acclaimed STAT [3] tool has helped isolate bugs based on
building equivalence classes of MPI processes and spotting outliers. We would
like to go beyond the capabilities offered by STAT and support the collection of
whole-program traces that can then be employed by a gamut of back-end tools.
Also, STAT is usually brought into the picture when a failure (e.g., a dead-
lock or hang) is encountered. We would like to move toward an “always on”
collection regime, as we cannot anticipate when a failure will occur — or, more
importantly, whether the failure will be reproducible. There are no reported de-
bugging studies on using STAT in continuous collection (“always on”) mode. In
CSTG [27], the collection is orchestrated by the user around chosen collection
points and employs heavy-weight unix backtrace calls. These again are different
from PARLOT, where collection points would not be a priori chosen.

The thrust of the work in this paper is to avoid many of the drawbacks of
existing tracing-based tools. We are interested in avoiding source-code modifi-
cations and recompilation — thus making binary instrumentation-based tools
the only practical and widely deployable option. We also believe in the value of
creating tools that are portable across a wide variety of platforms.

Our goal is to use compression for trace aggregation and to offer a generic and
low-overhead tracing method that (1) collects dynamic call information during
execution (all function calls and returns) for debugging, performance evaluation,
phase detection [28], etc., (2) has low overhead, (3) and requires little tracing
bandwidth. Providing all these features in a single tool that operates based on
binary instrumentation is an unsolved problem. In this paper, we describe a new
tracing approach that fulfills these requirements, which we implemented in our
proof-of-concept PARLOT tool.

With PARLOT, users can easily build a host of post-processors to examine ex-
ecutions from many vantage points. For instance, they can write post-processors
to detect unexpected (or “outlier”) executions. If needed, they can drill down
and detect abnormal behaviors even in the runtime and support library stack
such as MPI-level activities. In HPC, it is well-known (especially on newer ma-
chines) that bugs are often due to broken libraries (MPI, OpenMP), a broken
runtime, or OS-level activities. Having a single low-overhead tool that can “X-

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 3

ray” an application to this depth is a goal met by PARLOT— a unique feature
in today’s tool eco-system.

To further motivate the need for whole-program function call traces, consider
the expression £)+g(). In C, there is no sequence point associated with the +
operator [25]. If these function calls have inadvertent side-effects causing failure,
it is important to know in which order £() and g() were invoked—something
that is easy to discern using PARLOT’s traces. One may be concerned that
such a tool introduces excessive execution slowdown. PARLOT goes to great
lengths to minimize these overheads to a level that we believe most users will
find acceptable. The mindset is to “pay a little upfront to dramatically reduce
the number of overall debug iterations”.

As proof of concept, we gathered preliminary results from using the PARLOT
tracing mechanism to compare different runs. We injected various bugs into the
MPI-related functions of ILCS [5], a parallelization framework for iterative local
searches. We ran PARLOT on top of executions of buggy and bug-free versions
of ILCS and collected traces. Since PARLOT’s traces maintain the order of the
function calls, we were able to split the traces at multiple points of interest and
to feed different chunks of traces to a Concept Lattice data structure [11] [12].
Having the totally ordered sequence of function calls of the whole program for
each active process/thread enabled us to quickly narrow down the search space
to locate the cause of the abnormal behavior in the buggy version of ILCS.

This paper does not pursue debugging per se but rather a thorough bench-
marking of PARLOT. It makes the following main contributions:

— It introduces a new tracing approach that makes it possible to capture the
whole-program call-return, call-stack, call-graph, and call-frequency infor-
mation, including all library calls, for every thread and process of HPC
applications at low overhead in both space and time.

— It describes a new incremental data compression algorithm to drastically
reduce the required tracing bandwidth, thus enabling the collection of whole-
program traces, which would be infeasible without on-the-fly compression.

— It presents PARLOT, a proof-of-concept tool that implements our compression-
based low-overhead tracing approach. PARLOT is capable of instrumenting
x86 applications at the binary level (regardless of the source language used)
to collect whole-program call traces.

The remainder of this paper is organized as follows. Section 2 introduces the
basic ideas and infrastructure behind PARLOT and other tracing tools. Section 3
describes the design of PARLOT in detail. Sections 4 and 5 present our evaluation
of different aspects of PARLOT and compare it with a similar tool. Section 6
concludes the paper with a summary and future work.

2 Background and Related Work

Recording a log of events during the execution of an application is essential for
better understanding the program behavior and, in case of a failure, to locate

4 S. Taheri et al.

the problem. Recording this type of information requires instrumentation of the
program either at the source-code or the binary-code level. Instrumenting the
source code by adding extra libraries and statements to collect the desired infor-
mation is easy for developers. However, doing so modifies the code and requires
recompilation, often involving multiple different tools and complex hierarchies
of makefiles and libraries, which can make this approach cumbersome and frus-
trating for users. Instrumenting an executable at the binary level using a tool
is typically easier, faster, and less error prone for most users. Moreover, binary
instrumentation is language independent, portable to any system that has the
appropriate instrumentation tool installed, and provides machine-level insight
into the behavior of the application.

2.1 Binary Instrumentation

Executables can be instrumented statically, where the additional code is in-
serted into the binary before execution, which results in a persistent modified
executable, or dynamically, where the modification of the executable is not per-
manent. In dynamic binary instrumentation, code behavior can be monitored at
runtime, making it possible to handle dynamically-generated and self-modifying
code. Furthermore, it may be feasible to attach the instrumentation to a running
process, which is particularly useful for long-running applications and infinite
loops.

Many different tools for investigating application behavior have been de-
signed on top of such Dynamic Binary Instrumentation (DBI) frameworks. For
instance, Dyninst [20] provides a dynamic instrumentation API that gives de-
velopers the ability to measure various performance aspects. It is used in tools
like Open-SpeedShop [30] and TAU [31] as well as correctness debuggers like
STAT [3]. Moreover, VampirTrace [17] uses it to provide a library for collecting
program execution logs.

Valgrind [24] is a shadow-value DBI framework that keeps a copy of every
register and memory location. It provides developers with the ability to instru-
ment system calls and instructions. Error detectors such as Memcheck [23] and
call-graph generators like CALLGRIND [34] are built upon Valgrind.?

We implemented PARLOT on top of PIN [19], a DBI framework for the TA-
32, x86-64, and MIC instruction-set architectures for creating dynamic program
analysis tools. There is also version of PIN available for the ARM architecture
[14]. PARLOT mutates PIN to trace the entry (call) and exit (return) of every
executed function. Note that our tracing and compression approaches can equally
be implemented on top of other instrumentation tools. For example, PMaC [33]
is a DBI tool for the PowerPC/AIX architecture upon which PARLOT could
also be based.

3 Given the absence of tools similar to PARLOT, we employ CALLGRIND as a “close-
enough” tool in our comparisons elaborated in §4.3. In this capacity, CALLGRIND is
similar to PARLOT (M), a variant of PARLOT that only collects traces from the main
image. We perform such comparison to have an idea of how we fare with respect to
one other tool. In §5, we also present a self-assessment of PARLOT separately.

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 5

2.2 Efficient Tracing

When dealing with large-scale parallel programs, any attempt to capture reason-
ably frequent events will result in a vast amount of data. Moreover, transferring
and storing the data will incur significant overhead. For example, collecting just
one byte of information per executed instruction yields on the order of a gigabyte
of data per second on a single high-end core. Storing the resulting multi-gigabyte
traces from many cores can be a challenge, even on today’s large hard disks.

Hence, to be able to capture whole-program call traces, we need a way to
decrease the space and runtime overhead. Compression can encode the generated
data using a smaller number of bits, help reduce the amount of data movement
across the memory hierarchy, and lower storage and network demands. Although
the encoded data will later have to be decoded for analysis, compressing them
during tracing enables the collection of whole-program traces.

The use of compression by itself is not new. Various performance evaluation
tools [31, 18, 1] already employ compression during the collection of performance
analysis data. Tools such as ScalaTrace [26] also exploit the repetitive nature of
time-step simulations [9]. Aguilar et al. [2] proposed a lossy compression mecha-
nism using the Nami library [10] for online MPT tracing. Mohror and Karavanic
[21] investigated similarity-based trace reduction techniques to store and analyze
traces at scale.

Many performance and debugging tools for HPC applications [3,22] rely on
mechanisms such as MRNet [29] to accelerate the collection and aggregation of
traces based on an overlay network to overcome the challenge of massive data
movement and analysis. However, our experiments show that, due to the high
compression ratio of PARLOT traces, such mechanisms for data movement and
aggregation may be unnecessary.

The novelty offered by PARLOT lies in the combination of compression speed,
efficacy, and low timing jitter made possible by its incremental lossless compres-
sion algorithm, which is described in §3. It immediately compresses all traced
information while the application is running, that is, PARLOT does not record
the uncompressed trace in memory. As a result, just a few kilobytes of data need
to be written out per thread and per second, thus requiring only a small frac-
tion of the disk or network bandwidth. The traces are decompressed later when
they are read for offline analysis. From the decompressed full function-call trace,
the complete call-graph, call-frequency, and caller-callee information can be ex-
tracted. This can be done at the granularity of a thread, a group of threads, or
the whole application. We now elaborate on the design of PARLOT that makes
these innovations possible.

3 Design of ParLoT

Our experimental results in §5 highlight why compression is essential to make
our approach work. We used PARLOT to record a unique 16-bit identifier for
every function call and return. Tracing just this small amount of information

6 S. Taheri et al.

Binary
File

ParLOT l

Pin
Initialization
ParLOT
Instrumentation

Instrumented

Binary

Application R
el S CT)

Traces

Compression

4—*'4—

Compressed
Trace
Files

Fig. 1. Overview of PARLOT

without compression when running the Mantevo miniapps [15] on Stampede 1
resulted in about 2 MB/s of data per core on average. Extrapolating this value to
all 102,400 cores of Stampede 1 (not counting the accelerators) yields 205 GB/s
of trace data, which exceeds the Lustre filesystem’s parallel write performance
of 150 GB/s. Enabling PARLOT’s compression algorithm reduced the emitted
trace data by a factor of 100 on average, a ratio that is quite stable w.r.t scaling,
making it possible to trace full-scale programs while leaving over 98% of the I/0O
bandwidth to the application. Therefore, PARLOT should also work for codes
with higher bandwidth requirements than the ones we tested.

Figure 1 provides a general overview of PARLOT’s workflow. Basic blocks
within program executables are dynamically instrumented before being executed.
The collected data are compressed on-the-fly at runtime.

3.1 Tracing Operation

PARLOT uses the PIN API as its instrumentation mechanism to gather traces. In
particular, it instructs PIN to instrument every thread launch and termination
in the application as well as every function entry and exit. The thread-launch
instrumentation code initializes the per-thread tracing variables and opens a
file into which the trace data from that thread will be written. The thread-
termination code finalizes any ongoing compression, flushes out any remaining
entries, and closes the trace file. PARLOT assigns every static function in each
image (main program and all libraries) a unique unsigned 16-bit ID, which it

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 7

records in a separate file together with the image and function name. This file
allows the trace reader to map IDs back to function-name/image pairs.

For every function entry, PARLOT executes extra code that has access to
the thread ID, function ID, and current stack-pointer (SP) value. Based on the
SP value, it performs call-stack correction if necessary (see §3.4), adds the new
function to a data structure it maintains that holds the call stack (which is
separate from the application’s runtime stack), and emits the function ID into
the trace file via an incremental compression algorithm (see §3.2). All of this is
done independently for each thread. Similarly, for every function exit, PARLOT
also executes extra code that has access to the thread ID, function ID, and
current SP value. Based on the SP value, it performs call-stack correction if
necessary, removes the function from its call-stack data structure, and emits the
reserved function ID of zero into the trace file to indicate an exit. As before,
this is done via an incremental compression algorithm. We use zero for all exits
rather than emitting the function ID and a bit to specify whether it is an entry
or exit because using zeros results in more compressible output. This way, half
of the values in the trace will be zero.

3.2 Incremental Compression

PARLOT immediately compresses the traced information even before it is writ-
ten to memory. It does, however, keep a sliding window (circular buffer) of the
most recent uncompressed trace events, which is needed by the compressor. It
compresses each function ID before the next function ID is known. The conven-
tional approach would be to first record uncompressed function IDs in a buffer
and later compress the whole buffer once it fills up. However, this makes the pro-
cessing time very non-uniform. Whereas almost all function IDs can be recorded
very quickly since they just have to be written to the buffer, processing a function
ID that happens to fill the buffer takes a long time as it triggers the compression
of the entire buffer. This results in sporadic blocking of threads during which
time they make no progress towards executing the application code. Initial ex-
periments revealed that such behavior can be detrimental when one thread is
polling data from another thread that is currently blocked due to compression.
For example, we observed a several order of magnitude increase in entry/exit
events of an internal MPI library function when using block-based compression.

To remedy this situation, the compressor must operate incrementally, i.e.,
each piece of trace data must be compressed when it is generated, without buffer-
ing it first, to ensure that there is never a long-latency compression delay. Few
existing compression algorithms have been implemented in such a manner be-
cause it is more difficult to code up and probably a little slower. Nevertheless,
we were able to implement our algorithm (discussed next) in this way so that
each trace event is compressed with similar latency.

8 S. Taheri et al.

3.3 Compression Algorithm

We used the CRUSHER framework [35][8][6][7] to automatically synthesize an
effective and fast lossless compression algorithm for our traces. CRUSHER is
based on a library of data transformations extracted from various compression
algorithms. It combines these transformations in all possible ways to generate
algorithm candidates, which it then evaluates on a set of training data. We
gathered uncompressed traces from some of the Mantevo miniapps [15] for this
purpose. This evaluation revealed that a particular word-level Lempel-Ziv (LZ)
transformation followed by a byte-level Zero-Elimination (ZE) transformation
works well. In other words, PARLOT’s trace entries, which are two-byte words,
are first transformed using LZ. The output is interpreted as a sequence of bytes,
which is transformed using ZE for further compression. The output of ZE is
written to secondary storage.

LZ implements a variant of the LZ77 algorithm [36]. It uses a 4096-entry
hash table to identify the most recent prior occurrence of the current value
in the trace. Then it checks whether the three values immediately before that
location match the three trace entries just before the current location. If they
do not, the current trace entry is emitted and LZ advances to the next entry. If
the three values match, LZ counts how many values following the current value
match the values following that location. The length of the matching substring
is emitted and LZ advances by that many values. Note that all of this is done
incrementally. The history of previous trace entries available to LZ for finding
matches is maintained in a 64k-entry circular buffer.

ZE emits a bitmap in which each bit represents one input byte. The bits
indicate whether the corresponding bytes are zero or not. Following each eight-
bit bitmap, ZE emits the non-zero bytes.

As mentioned above, we had to implement the two transformations incre-
mentally to minimize the maximum latency. This required breaking them up
into multiple pieces. Depending on the state the compressor is in when the next
trace entry needs to be processed, the appropriate piece of code is executed and
the state updated. If the LZ code produces an output, which it only does some
of the time, then the appropriate piece of the ZE code is executed in a similar
manner.

3.4 PIN and Call-Stack Correction

To be able to decode the trace, i.e., to correctly associate each exit with the
function entry it belongs to, our trace reader maintains an identical call-stack
data structure. Unfortunately, and as pointed out in the PIN documentation [16],
it is not always possible to identify all function exits. For example, in optimized
code, a function’s instructions may be inlined and interleaved with the caller’s
instructions, making it sometimes infeasible for PIN to identify the exit. As a
consequence, we have to ensure that PARLOT works correctly even when PIN
misses an exit. This is why the SP values are needed.

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 9

During tracing, PARLOT not only records the function IDs in its call stack
but also the associated SP values. This enables it to detect missing exits and
to correct the call stack accordingly. Whenever a function is entered, it checks
if there is at least one entry in the call stack and, if so, whether its SP value is
higher than that of the current SP. If it is lower, we must have missed at least
one exit since the runtime stack grows downwards (the SP value decreases with
every function entry and increases with every exit). If a missing exit is detected
in this manner, PARLOT pops the top element from its call stack and emits a
zero to indicate a function exit. It repeats this procedure until the stack is empty
or its top entry has a sufficiently high SP value. The same call-stack correction
technique is applied for every function exit whose SP value is inconsistent. Note
that the SP values are only used for this purpose and are not included in the
compressed trace.

The result is an internally consistent trace of function entry and exit events,
meaning that parsing the trace will yield a correct call stack. This is essential
so that the trace can be decoded properly. Moreover, it means that the trace
includes exits that truly happened in the application but that were missed by
PIN. Note, however, that our call-stack correction is a best-effort approach and
may, in rare cases, temporarily not reflect what the application actually did. For
example, this can happen for functions that do not create a frame on the runtime
stack. When implementing PARLOT on top of another DBI framework, call-stack
correction may not be needed, resulting in even lower PARLOT overhead.

4 Evaluation Methodology

4.1 Benchmarks and System

We performed our evaluations on the MPI-based NAS Parallel Benchmarks
(NPB) [4]. NPB includes four inputs sizes. To keep the runtimes reasonable,
we show results for the class B (small-medium) and class C' (medium-large)
inputs.

We compiled the NPB codes with the mpicc and mpif77 wrappers of MVA-
PICH 2.2.1, which are based on icc/ifort 14.0.2 using the prescribed -g and -O1
optimization flags. Quick tests showed that higher optimization levels do not
significantly improve the performance.

We ran all experiments on Comet at the San Diego Supercomputer Cen-
ter [32], whose filesystem is NFS and Lustre. Comet has 1944 compute nodes,
each of which has dual-socket Intel Xeon E5-2680 v3 processors with a total of
28 cores (14 per socket) and 128 GB of main memory. Note that we only used
16 cores per node as many of the NPB programs require a core count that is a
power of two. To study the scaling behavior, we ran experiments on 1, 4, 16 and
64 compute nodes, i.e., on up to 1024 cores.

10 S. Taheri et al.

4.2 Metrics

We use the following metrics to quantify and compare the performance of the
tracing tools. Unless otherwise noted, all results are based on the median of three
identical experiments.

— The tracing overhead is the runtime of the target application when it is
being traced divided by the runtime of the same application without trac-
ing. This lower-is-better ratio measures by how much the tracing (and the
compression when enabled) slows down the target application.

— The tracing bandwidth is the size of the trace information divided by the
application runtime. To make the results easier to compare, we generally list
the tracing bandwidth per core, i.e., the tracing bandwidth divided by the
number of cores used. This lower-is-better metric is expressed in kilobytes
per second (kB/s) per core. It specifies the average needed bandwidth to
record the trace data.

— The compression ratio is the size of the uncompressed trace divided by the
size of the generated (compressed) trace. This higher-is-better ratio measures
the factor by which the compression reduces the trace size. In other words,
without compression, the tracing bandwidth would be higher by this factor.

4.3 Tracing Tools

We compare our PARLOT tool, implemented on top of PIN 3.5, with CALL-
GRIND 3.13. PARLOT was compiled with gcc 4.9.2 using PIN’s make system
and CALLGRIND with Valgrind’s make system. We created the following ver-
sions of PARLOT to evaluate different aspects of its design.

— ParLoT(m) is the normal PARLOT tool configured to only collect function-
call traces from the main image of the application.

— ParLoT(a) is the normal PARLOT tool configured to collect function-call
traces from all images of the application, including library function calls.

— Pin-Init is a crippled version of PARLOT from which the tracing code has
been removed. The purpose of PIN-INIT is to see how much of the overhead
is due to PIN.

— ParLoT-NC is the normal PARLOT tool but with compression disabled.
It writes out the captured data in uncompressed form. The purpose of
PARLOT-NC is to show the performance impact of the compression.

It proved surprisingly difficult to find a tool that is similar to PARLOT be-
cause there appear to be no other tools that generate whole program call traces.
In the end, we settled on CALLGRIND as the most similar tool we could find and
used it for our comparisons. CALLGRIND is based on the Valgrind DBI tool. It
collects function-call graphs combined with performance data to show the user
what portion of the execution time has been spent in each function.

Each CALLGRIND trace file contains a sequence of function names (or their
code) plus numerical data for each function on its caller-callee relationship with

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 11

other functions. Moreover, it contains cost information for each function in terms
of how many machine instructions it read. This information is collected using
hardware performance counters. The format of the file is plain ASCII text. Inter-
estingly, all numerical values are expressed relative to previous values, i.e., they
are delta (or difference) encoded. This simple form of compression is enabled by
default in CALLGRIND.

We believe the information traced by CALLGRIND is reasonably similar to
the information traced by PARLOT(M). Whereas CALLGRIND’s traces include
performance data that PARLOT does not capture, PARLOT records the whole-
program call trace, which CALLGRIND does not capture. The full function-call
trace is a strict superset of the call-graph information that CALLGRIND records
because the call graph can be extracted from the function-call trace but not vice
versa. In particular, CALLGRIND cannot recreate the order of the function calls
a thread made whereas PARLOT can.

Table 1. Overhead added by each tool

Input Tool # Nodes| bt c¢g ep ft is lu mg sp |GM
1 1.6 1.8 26 2.1 25 1.3 25 1.3| 1.9
4 1.8 19 19 1.7 1.8 1.8 1.5 1.7/ 1.8
PARLOT (M) 16 22 26 2.0 19 1.8 2.7 24 22| 2.2
64 21 22 24 20 43 44 20 21| 25
AVG 1.9 21 22 19 26 2.6 21 1.8 2.1
1 1.8 2.7 42 28 42 1.7 48 1.7 2.8
4 26 3.1 34 28 3.0 28 2.8 2.7/ 29
B |PARLOT(A) 16 3.5 42 34 29 28 43 45 3.7 3.6

CALLGRIND 16 4.3 33 22 22 1.7 46 1.8 4.3| 28

PARLOT (M) 16 1.8 24 25 1.5 1.8 22 24 18| 2.0

C |PARLOT(A) 16 2.7 35 41 21 28 32 4.0 25| 3.0

AVG |24 29 35 21 34 26 35 21| 2.7

CALLGRIND 16 6.9 39 31 28 18 64 21 6.1] 3.7
64 4.4 35 21 25 42 52 2.1 3.8/ 3.3
AVG | 7.1 4.1 58 6.2 28 6.5 3.2 5.3 4.6

12 S. Taheri et al.

e

Fig. 2. Average tracing overhead on the NPB applications - Input B

e

Fig. 3. Average tracing overhead on the NPB applications - Input C

B ParLOT(m)
W ParLOT(a)
W Caligrind

N}

sp GeoMean

H ParLOT(m)
ParLOT(a)
M Callgrind

1.5
GeoMean

5 Results

5.1 Tracing Overhead

Table 1 shows the tracing overhead of PARLOT (M), PARLOT(A), and CALL-
GRIND on each application of the NPB benchmark suite for different node counts.
The last column of the table lists the geometric mean over all eight programs.
The AVG rows show the average over the four node counts.

On average, both PARLOT (M) and PARLOT(A) outperform CALLGRIND.
The bolded numbers in Table 1 for input C show that the average overhead is
1.94 for PARLOT (M), 2.73 for PARLOT(A), and 4.63 for CALLGRIND. Figures 2
and 3 show these results in visual form.

The key takeaway point is that the overhead of PARLOT is roughly a factor
of two to three, which we believe users may be willing to accept, for example,
if it helps them debug their applications. This is promising especially when
considering how detailed the collected trace information is and that most of the

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 13

Table 2. Required bandwidth per core (kB/s)

Input Tool # Nodes| bt cg ep ft is lu mg sp | GM
1 4.7 219 38 15 08 24 56 54| 3.7
4 14.3 411 19 35 22 215 6.5 159 8.1
PARLOT (M) 16 14.3 46.6 1.5 49 34 31.8 6.5 18.6| 94
64 18.6 43.6 1.3 46 45 271 5.6 29.6] 9.9
AVG [13.0 383 21 36 27 207 6.1 174] 7.8
1 48.7 89.4 47.2 456 60.0 53.6 60.8 54.3] 56.2
4 61.8101.2 45.2 55.1 53.2 71.1 54.9 73.6| 62.7
B |PARLOT(A) 16 74.0116.9 47.4 489 47.8100.9 55.8 84.6| 68.0
64 81.8110.2 44.2 48.0 37.8100.3 52.7 99.9| 66.5
AVG 66.6 104.4 46.0 49.4 49.7 81.5 56.0 78.1| 63.3
1 1.6 77 74 46 395 26 344 27 6.7
4 6.5 16.0 22.1 15.7 45.5 8.6 455 7.8 16.3
CALLGRIND 16 17.2 24.6 374 238 299 16.2 51.5 15.8] 24.9
64 26.8 27.7 459 25.1 11.0 17.8 45.3 20.2| 25.0
AVG 13.0 19.0 28.2 17.3 31.5 11.3 44.2 11.6| 18.2

1 1.8 170 52 12 0.7 08 36 14| 22
4 75 449 3.0 25 21 201 7.1 137 7.6
PARLOT (M) 16 16.3 55.0 1.8 6.1 3.4 341 7.2 20.7 10.7

64 175 614 13 59 44 383 56 26.1| 10.9
AVG 10.8 44.6 2.8 3.9 2.7 233 59 155/ 7.8
1 17.8 53.4 26.3 20.9 48.3 25.3 52.6 19.5| 30.0
4 51.8 95.8 36.8 43.8 51.4 58.4 54.2 65.8] 55.2
C |PARLOT(a) 16 75.4121.0 44.3 61.4 46.9 101.1 56.5101.3| 71.4
64 80.6 135.2 43.5 46.3 37.1117.9 54.1 99.0] 69.0
AVG 56.4 101.4 37.7 43.1 45.9 75.7 54.3 71.4| 56.4

1 04 31 20 11 146 0.7 7.0 0.8 19
4 1.8 89 7.7 45 31.7 28 21.0 28 6.4
CALLGRIND 16 6.0 158 229 10.8 26.5 7.5 39.1 7.0/ 13.7

64 14.3 19.6 35.8 12.2 11.1 11.9 40.7 12.8| 174
AVG 56 11.8 17.1 7.1 21.0 5.7 269 5.8 9.8

overhead is due to PIN (see §5.4). Note that PARLOT’s overhead is typically
lower than that of CALLGRIND, which collects less information.

The overhead of PARLOT increases as we scale the applications to more
compute nodes. However, the increase is quite small. Going from 16 to 1024
cores, a 64-fold increase in parallelism, only increases the average overhead by
between 1.3- and 2.1-fold. In contrast, CALLGRIND’s overhead decreases with
increasing node count, making it more scalable. Having said that, CALLGRIND’s
overhead is larger for the C inputs whereas PARLOT’s overhead is larger for the
smaller B inputs. In other words, PARLOT scales better to larger inputs than
CALLGRIND.

PARLOT’s scaling behavior can be explained by correlating it with the ex-
pected function-call frequency. When distributing a fixed problem size over more
cores, each core receives less work. As a consequence, less time is spent in the
functions that process the work, resulting in more function calls per time unit,
which causes more work for PARLOT. In contrast, when distributing a larger
problem size over the same number of cores, each core receives more work. Hence,
more time is spent in the functions that process the work, resulting in fewer func-
tion calls per time unit, which causes less work for PARLOT and therefore less
tracing overhead. Hence, we believe PARLOT’s overhead to be even lower on
long-running inputs, which is where our tracing technique is needed the most.

14 S. Taheri et al.

B ParLOT(m)
W ParLOT(a)
W Caligrind

Hhlalidia

sp GeoMean

N w s uame®

Now s noum®

Fig. 4. Average required bandwidth per core (kB/s) on the NPB applications - Input
B

B ParLOT(m)
m ParLOT(a)
H Callgrind

e

sp GeoMean

MW s naume®

w a0 oume®

Fig. 5. Average required bandwidth per core (kB/s) on the NPB applications - Input
C

In summary, PARLOT’s overhead is in the single digits for all evaluated
applications and configurations, including for 1024-core runs. It appears to scale
reasonably to larger node counts and well to larger problem sizes.

5.2 Required Bandwidth

Table 2, Fig. 4 and Fig. 5 show how much trace bandwidth each tool requires
during the application execution. On average, PARLOT (M) requires less band-
width than CALLGRIND, especially for smaller inputs. PARLOT(A)’s bandwidth
is much higher as it collects call information from all images and not just the
main image like PARLOT (M) does.

We see that the required bandwidth for different input sizes of the NPB
applications are almost equal in PARLOT. According to the NPB documentation,
the number of iterations for inputs B and C are the same for all applications.
They only differ in the number of elements or the grid size. It is clear that

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 15

® ParLOT(m)
M ParLOT(a)
10

mooi iii

sp GeoMean

Now s nome™

N s e

Fig. 6. Average compression ratio of PARLOT on the NPB applications - Input B

W ParLOT(m)
M ParLOT(a)

10

mgoi Iii .

sp GeoMean

Nw s nome™

Now b o e

Fig. 7. Average compression ratio of PARLOT on the NPB applications - Input C

the required bandwidth of PARLOT is independent of the problem size, unlike
CALLGRIND, where the input size has a linear impact on the results.

5.3 Compression Ratio

Table 3 shows the compression ratios for all configurations and inputs. On aver-
age, PARLOT stores between half a kilobyte and a kilobyte of trace information
in a single byte. We observe that the average compression ratio for PARLOT (A)
on input C is 644.3, and its corresponding required bandwidth from Table 2
is 56.4 kB/s. This means PARLOT can collect more than 36 MB worth of
data per core per second while only needing 56 kB/s of the system bandwidth,
leaving the rest of the available bandwidth to the application. In comparison,
CALLGRIND collects less than 100 kB of data but still adds more overhead
compared to either PARLOT(A) or PARLOT (M). The average amount of trace
data that can be collected by PARLOT(A) is 360x (85x for PARLOT (M)) larger
than that for CALLGRIND. In the best observed case, the compression ratio of

16 S. Taheri et al.

PARLOT exceeds 21000. This is particularly impressive because it was achieved
with relatively low overhead and incremental on-the-fly compression. Generally,
the compression ratios of PARLOT (M) are higher than those of PARLOT(A)
because the variety of distinct function calls on the main image is smaller than
when tracing all images, thus compression performs better on PARLOT (M). Also
by looking at Fig. 4, Fig. 5, Fig. 6 and Fig. 7, we find EP to have the highest
compression ratio of the NPB applications. At the same time, it has the mini-
mum required bandwidth. The opposite is true for CG, which exhibits the lowest
compression ratio and the highest required bandwidth. CG is a conjugate gra-
dient method with irregular memory accesses and communications whereas EP
is an embarrassingly parallel random number generator. CG’s whole-program
trace contains a larger number of distinct calls and more complex patterns than
that of EP, thus resulting in a higher bandwidth and lower compression ratio.

PARLOT’s compression mechanism works better on larger input sizes because
larger inputs tend to result in longer streams of similar function calls (e.g., a call
that is made for every processed element).

Table 3. Compression ratio

Input Tool # Nodes| bt cg ep ft is lu mg Sp GM
1 3035.9 94.4 12456.2 12173.5 9718.4 167.7 99.1 878.3| 1255.2
4 586.6 82.510368.4 1737.1 909.2 140.3 255.0 338.2| 5594
PARLOT (M) 16 346.7 113.3 8563.9 1077.4 1200.6 179.0 387.6 123.0/ 496.8
64 252.2 147.8 7611.0 1122.6 1908.0 366.8 437.3 152.9| 591.1
B AVG 1055.4 109.5 9749.9 4027.6 3434.0 213.5 294.7 373.1| 725.6
1 514.5 137.4 3335.8 1226.7 543.2 314.6 2609 303.9] 500.2
4 315.7 1372 1266.9 436.2 316.2 287.3 329.6 199.7| 330.7
PARLOT(A) 16 226.9 181.6 1246.7 1026.5 927.1 299.3 469.3 171.5| 430.4
64 329.2 247.3 1394.1 10439 1984.6 410.3 548.5 307.2| 597.6

AVG 346.6 1759 1810.9 933.3 942.8 3279 402.1 245.6] 464.7
1 8619.0 111.2 13068.0 21335.6 21856.5 350.0 247.4 1977.4| 2371.4
4 1910.6 110.512418.7 6520.3 2256.6 112.8 268.0 472.7| 928.2

PARLOT (M) 16 580.8 133.211017.4 1239.3 13479 164.5 396.9 143.1] 582.8
64 322.8 1319 9155.0 1065.1 1896.3 223.7 465.7 168.9| 585.7
a AVG | 28583 121.711414.7 7540.1 6839.3 212.7 344.5 690.5| 1117.0
1 2579.4 181.8 T7377.0 5143.1 15204 408.2 314.8 650.7| 1107.4
4 448.6 161.3 3194.6 1062.9 5273 2747 3194 237.4| 4774
PARLOT (A) 16 285.1 185.7 1765.5 588.9 1106.3 273.6 467.4 141.7| 426.9
64 290.0 214.7 15129 1237.3 2038.7 329.0 496.2 270.8) 565.8

AVG 900.8 185.9 3462.5 2008.1 1298.2 321.4 3994 325.2 644.4

5.4 Overheads

Table 4 presents the average overhead added to each application for different
versions of PARLOT. Last rows of each section of this table present the geometric
mean. This information captures how much each phase of PARLOT slows down
the native execution.

17

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications

V'L 9¢ g€ 0’9 9€ Ve v 8C 9¢C g¢ LT LT O

91T €e LC 9¢ 9¢ c'e 0'¢ 9¢C ¥'c 0¢ LT LT ds

(&S T'e LT [vy €V 0¢€ LT g'c €¢ Ly 87 Sw

V'€c 9v vy 01 1% 6°¢ 8Y LC qc €C LT LT np

88 e €'¢ c'e 8C 6'C e 6C 8C 0L (% vy st v
g€ 0¢ Te 9'¢ 6°C 8'C 8¢ LG 9¢C 89 LC 8C Y

v 8¢ v ey €€ '€ T'L Ve T'e [xéd v €V ds

€01 c'e €€ €1 (a4 (174 vy 0¢ 8C 8¢ LC 9¢C D)

WA I'e 8'C 06 g€ c'e 19 gc €¢ 1’9 81 LT q

€€ ¢'c jd 0'€ 1'c €T 6°C LT LT 'y 61 81 D

g'c 0¢ 6T €'C 1'c 1'c g'e LT L1 e €1 €T ds

81 6'T 6T 9c v'e 9C a1 g1 G'1 LC g'c gc Sw

9 € 0¢ 9¢ L'C LC ¢t LT LT V1 €1 €1 np

L €V ey 8'T L1 1'c 0c LT L1 87 Ve v'e St UureN
1'c 6T 1'c ¢'C 81 0c LC LT L1 19 |4 8T 3

9c €cC 9c 0'¢ 6T ¥'e €¢ 81 6T ¥°0¢ 9c 6C da

9v 1'c € vy gc LT 9¢C 81 81 €c 81 LT b

g€ ' 8T 0¢ 1'c ' 0¢ LT L1 9'¢ a1 91 q
ON-LOTdVd 1OTdVd LINJ-NIJ|DN-T.O0THVd LOTHVL LINI-NIJ|DN-LOTIVd 1OTdVd LINJ-NIJ|DN-LOTHVd JOTHVd LINJ-NIJ|:S[0O], [fI2q g :nduy

79

91

4

T

1 SOPON

g mduf -7,0T9VJ JO SUOISI9A JO peayIsA0 Suel], *§ 9[qel,

18 S. Taheri et al.

M Pin-init
B ParlLOT

Jﬁuu@ﬂmm

t cg ep ft lu mg sp
Fig. 8. Variability of PARLOT (M) overhead on 16 nodes - Input B

In general, one expects the following inequality to hold: the overhead of
PIN-INIT should be less than that of PARLOT, which should be less than that
of PARLOT-NC. This is not always the case because of the non-deterministic
runtimes of the applications. In fact, the variability across three runs of each
experiment is shown in Fig. 8 where we present the minimum, maximum and
median overheads. These overheads are for input size B and 16 nodes. This
variability explains the seeming inconsistencies in Table 4.

On average, PIN-INIT adds an overhead of 3.28 and PARLOT(A) adds an
overhead of 3.42. This means that almost 96% of ParLoT(a)’s overhead
is due to PIN. The results of PARLOT (M) and other inputs follow the same
pattern as shown in Fig. 11 and 12. The overhead that PARLOT (excluding
the overhead of PIN-INIT) adds to the applications is very small. If we were to
switch to a different instrumentation tool that is not as general as PIN but more
lightweight, the overhead would potentially reduce drastically.

5.5 Compression Impact

Fig. 9 and Fig. 10 show the overhead breakdown of PARLOT-NC, which illus-
trate the impact of compression. They also highlight the importance of incorpo-
rating compression directly in the tracing tool. On average, PARLOT-NC slows
down the application execution almost 2x more than PARLOT(A). The aver-
age overhead across Table 4 for PARLOT(A) is 3.4. The corresponding factor
for PARLOT-NC is 6.6. The numbers of PARLOT(M) and input C follow the
same pattern. For example, PARLOT-NC slows down the application execution
almost 1.66x more than PARLOT (M).

Clearly, compression not only lowers the storage requirement but also the
overhead. This is important as it shows that the extra computation to perform
the compression is more than amortized by the reduction in the amount of data
that need to be written out.

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 19

B Tracing(w/o Compression+I/0)
B Pin-Init
W Native Run

0~ Main.1 Main.e Main.lo Main.oé All.1 All.a All.16 All.64

Fig. 9. PARLOT-NC tracing overhead breakdown - Input B

W Tracing(w/o Compression+I/0)
B Pin-Init
H Native Run

o

Main.l Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64

Fig. 10. PARLOT-NC tracing overhead breakdown - Input C

This result validates our approach and highlights that incremental, on-the-
fly compression is likely essential to make whole-program tracing possible at low
overhead.

6 Discussion and Conclusion

In this paper, we present PARLOT, a portable low overhead dynamic binary
instrumentation-based whole-program tracing approach that can support a vari-
ety of dynamic program analyses, including debugging. Key properties of PAR-
LoT include its on-the-fly trace collection and compression that reduces timing
jitter, I/O bandwidth, and storage requirements to such a degree that whole-
program call/return traces can be collected efficiently even at scale.

We evaluate various versions of PARLOT created by disabling/enabling com-
pression, not collecting any traces, etc. In order to provide an intuitive compar-
ison against a well known tool, we also compare PARLOT to CALLGRIND. Our

20 S. Taheri et al.

W Tracing(Compression+1/0)
® Pin-Init
H Native Run

O Main.1 Main.4 Main.16 Main.64 All.1 All.4 All.16 All.64

Fig. 11. Tracing overhead breakdown - Input B

B Tracing(Compression+1/0)
® Pin-Init
H Native Run

0 Main.1 Main.4 Main.16 Main.e4 AllLL All.a All.16 All.64

Fig. 12. Tracing overhead breakdown - Input C

metrics include the tracing overhead, required bandwidth, achieved compression
ratio, initialization overhead, and the overall impact of compression. Detailed
evaluations on the NAS parallel benchmarks running on up to 1024 cores estab-
lish the merit of our tool and our design decisions. PARLOT can collect more
than 36 MB worth of data per core per second while only needing 56 kB/s of
bandwidth and slowing down the application by 2.7x on average. These results
are highly promising in terms of supporting whole program tracing and debug-
ging, in particular when considering that most of the overhead is due to the DBI
tool and not PARLOT.

The traces collected by PARLOT cut through the entire stack of heteroge-
neous (MPI, OpenMP, PThreads) calls. This permits a designer to project these
traces onto specific APIs of interest during program analysis, visualization, and
debugging.

A number of improvements to PARLOT remain to be made. These include
allowing users to selectively trace at specific interfaces: doing so can further
increase compression efficiency by reducing the variety of function calls to be

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 21

handled by the compressor. We also discuss the need to bring down initialization
overheads, i.e., by switching to a less general-purpose DBI tool.

Acknowledgment

This research was supported by the NSF. We thank our colleague Dr. Hari Sun-
dar from the University of Utah who provided insight and expertise that greatly
assisted the research. We also thank the Texas Advanced Computing Center
(TACC) and the San Diego Supercomputer Center (SDSC) for the infrastruc-
ture they provided for running our experiments.

References

1. Aguilar, X., Frlinger, K., Laure, E.: Online mpi trace compression using event flow
graphs and wavelets. Procedia Computer Science 80(Supplement C), 1497 — 1506
(2016). https://doi.org/https://doi.org/10.1016/j.procs.2016.05.471, international
Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego,
California, USA

2. Aguilar, X., Frlinger, K., Laure, E.: Online mpi trace compression using
event flow graphs and wavelets. Procedia Computer Science 80, 1497 -
1506 (2016). https://doi.org/https://doi.org/10.1016/j.procs.2016.05.471,
http://www.sciencedirect.com/science/article/pii/S1877050916309565, inter-
national Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016,
San Diego, California, USA

3. Arnold, D.C.,; Ahn, D.H., de Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.:
Stack trace analysis for large scale debugging. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS). pp. 1-10 (2007)

4. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum,
L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Si-
mon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The nas parallel bench-
marks—summary and preliminary results. In: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing. pp. 158-165. Supercomputing 91,
ACM, New York, NY, USA (1991). https://doi.org/10.1145/125826.125925

5. Burtscher, M., Rabeti, H.: A scalable heterogeneous parallelization frame-
work for iterative local searches. In: 2013 IEEE 27th International Sym-
posium on Parallel and Distributed Processing. pp. 1289-1298 (May 2013).
https://doi.org/10.1109/IPDPS.2013.27

6. Burtscher, M., Mukka, H., Yang, A., Hesaaraki, F.: Real-time synthesis of
compression algorithms for scientific data. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 23:1-23:12. SC ’16, IEEE Press, Piscataway, NJ, USA (2016),
http://dl.acm.org/citation.cfm?id=3014904.3014935

7. Claggett, S., Azimi, S., Burtscher, M.: SPDP: An Automatically Synthesized Loss-
less Compression Algorithm for Floating-Point Data. In: 2018 Data Compression
Conference (2018)

8. Coplin, J., Yang, A., Poppe, A., Burtscher, M.: Increasing Telemetry Through-
put Using Customized and Adaptive Data Compression. In: ATAA SPACE and
Astronautics Forum and Exposition (2016)

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Taheri et al.

Freitag, F., Caubet, J., Labarta, J.: On the Scalability of Tracing Mech-
anisms, pp. 97-104. Springer Berlin Heidelberg, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-45706-2-10

Gamblin, T., de Supinski, B.R., Schulz, M., Fowler, R., Reed, D.A.: Scal-
able load-balance measurement for spmd codes. In: SC ’08: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing. pp. 1-12 (Nov 2008).
https://doi.org/10.1109/SC.2008.5222553

Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edn. (1997)

Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on galois (concept) lattices. Computational Intelligence 11(2), 246-267
Gopalakrishnan, G., Hovland, P.D., Iancu, C., Krishnamoorthy, S., Laguna, I.,
Lethin, R.A., Sen, K., Siegel, S.F., Solar-Lezama, A.: Report of the HPC correct-
ness summit, jan 25-26, 2017, washington, DC. CoRR abs/1705.07478 (2017),
http://arxiv.org/abs/1705.07478

Hazelwood, K., Klauser, A.: A dynamic binary instrumentation engine for the arm
architecture. In: Proceedings of the 2006 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems. pp. 261-270. CASES 06, ACM,
New York, NY, USA (2006). https://doi.org/10.1145/1176760.1176793

Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
SAND2009-5574 3 (2009)

Intel: Pin, a dynamic binary instrumentation, https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool

Jurenz, M., Brendel, R., Knupfer, A., Muller, M., Nagel, W.E.: Memory allocation
tracing with vampirtrace. In: Proceedings of the 7th International Conference on
Computational Science Part II. pp. 839-846. ICCS ’07, Springer-Verlag, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72586-2-118

Kniipfer, A., Rossel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y.,
Philippen, P., Saviankou, P., Schmidl, D., Shende, S., Tschiiter, R., Wagner, M.,
Wesarg, B., Wolf, F.: Score-p: A joint performance measurement run-time infras-
tructure for periscope, scalasca, tau, and vampir. In: Tools for High Performance
Computing 2011 - Proceedings of the 5th International Workshop on Parallel Tools
for High Performance Computing, ZIH, Dresden, September 2011. pp. 79-91 (2011)
Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 190-200. PLDI ’05,
ACM, New York, NY, USA (2005). https://doi.org/10.1145/1065010.1065034
Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin,
R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn par-
allel performance measurement tool. IEEE Computer 28(11), 37-46 (1995).
https://doi.org/10.1109/2.471178, https://doi.org/10.1109/2.471178

Mohror, K., Karavanic, K.L.: Evaluating similarity-based trace reduction tech-
niques for scalable performance analysis. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. pp. 55:1-55:12. SC
’09, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1654059.1654115,
http://doi.acm.org/10.1145/1654059.1654115

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

PARLOT: Efficient Whole-Program Call Tracing for HPC Applications 23

Nataraj, A., Malony, A., Morris, A., C. Arnold, D., Miller, B.: A framework for
scalable, parallel performance monitoring 22, 720-735 (01 2009)

Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: Proceedings of the 3rd International Conference on Virtual Execution
Environments. pp. 65-74. VEE 07, ACM, New York, NY, USA (2007)
Nethercote, N., Seward, J.: Valgrind: A program supervision framework. Electr.
Notes Theor. Comput. Sci. 89(2), 44-66 (2003). https://doi.org/10.1016/S1571-
0661(04)81042-9, https://doi.org/10.1016/S1571-0661(04)81042-9

Network, M.D.: C sequence points, https://msdn.microsoft.com/en-
us/library/azk8zbxd.aspx

Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R.: Scalatrace: Scal-
able compression and replay of communication traces for high-performance com-
puting. Journal of Parallel and Distributed Computing 69(8), 696 — 710 (2009).
https://doi.org/https://doi.org/10.1016/j.jpdc.2008.09.001, best Paper Awards:
21st International Parallel and Distributed Processing Symposium (IPDPS 2007)
de Oliveira, D., Humphrey, A., Meng, Q., Rakamaric, Z., Berzins, M., Gopalakr-
ishnan, G.: Systematic debugging of concurrent systems using coalesced stack
trace graphs. In: Proceedings of the 27th International Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC) (September 2014),
http://www.sci.utah.edu/publications/Oli2014a/OliveiraLCPC2014.pdf
Ratanaworabhan, P., Burtscher, M.: Program phase detection based on criti-
cal basic block transitions. In: ISPASS 2008 - IEEE International Symposium
on Performance Analysis of Systems and software. pp. 11-21 (April 2008).
https://doi.org/10.1109/ISPASS.2008.4510734

Roth, P.C., Arnold, D.C., Miller, B.P.: Mrnet: A software-based multi-
cast/reduction network for scalable tools. In: Supercomputing, 2003 ACM/IEEE
Conference. pp. 21-21 (Nov 2003). https://doi.org/10.1145/1048935.1050172
Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open | speedshop: An open source infrastructure for parallel performance analysis.
Scientific Programming 16(2-3), 105-121 (2008). https://doi.org/10.3233/SPR-
2008-0256, https://doi.org/10.3233/SPR-2008-0256

Shende, S.S., Malony, A.D.: The Tau parallel performance system.
International Journal on High Performance Computer Applications
20, 287311 (May 2006). https://doi.org/10.1177/1094342006064482,
http://portal.acm.org/citation.cfim?id=1125980.1125982

Strande, S.M., Cai, H., Cooper, T., Flammer, K., Irving, C., von Laszewski,
G., Majumdar, A., Mishin, D., Papadopoulos, P., Pfeiffer, W., Sinkovits, R.S.,
Tatineni, M., Wagner, R., Wang, F., Wilkins-Diehr, N.; Wolter, N., Norman,
M.L.: Comet: Tales from the long tail: Two years in and 10,000 users later.
In: Proceedings of the Practice and Experience in Advanced Research Com-
puting 2017 on Sustainability, Success and Impact. pp. 38:1-38:7. PEARCI17,
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3093338.3093383,
http://doi.acm.org/10.1145/3093338.3093383

Tikir, M.M., Laurenzano, M., Carrington, L., Snavely, A.: A.: Pmac binary instru-
mentation library for powerpc/aix. In: In: Workshop on Binary Instrumentation
and Applications (2006)

Weidendorfer, J.: Sequential performance analysis with callgrind and kcachegrind.
In: Tools for High Performance Computing - Proceedings of the 2nd International
Workshop on Parallel Tools for High Performance Computing, July 2008, HLRS,
Stuttgart. pp. 93-113 (2008). https://doi.org/10.1007/978-3-540-68564-7-7

24

35.

36.

S. Taheri et al.

Yang, A., Mukka, H., Hesaaraki, F., Burtscher, M.: MPC: A massively
parallel compression algorithm for scientific data. In: 2015 IEEE In-
ternational Conference on Cluster Computing. pp. 381-389 (Sept 2015).
https://doi.org/10.1109/CLUSTER.2015.59

Ziv, J., Lempel, A.: A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theor. 23(3), 337-343 (Sep 2006).
https://doi.org/10.1109/TIT.1977.1055714

