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ABSTRACT 

Numeric simulations often generate large amounts of data that 

need to be stored or sent to other compute nodes. This paper in-

vestigates whether GPUs are powerful enough to make real-time 

data compression and decompression possible in such environ-

ments, that is, whether they can operate at the 32- or 40-Gb/s 

throughput of emerging network cards. The fastest parallel CPU-

based floating-point data compression algorithm operates below 

20 Gb/s on eight Xeon cores, which is significantly slower than 

the network speed and thus insufficient for compression to be 

practical in high-end networks. As a remedy, we have created the 

highly parallel GFC compression algorithm for double-precision 

floating-point data. This algorithm is specifically designed for 

GPUs. It compresses at a minimum of 75 Gb/s, decompresses at 

90 Gb/s and above, and can therefore improve internode commu-

nication throughput on current and upcoming networks by fully 

saturating the interconnection links with compressed data. 

Categories and Subject Descriptors 

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-

tures (Multiprocessors) – Parallel Processors D.1.3 [Program-

ming Techniques]: Concurrent Programming – Parallel Pro-

gramming E.4 [Coding and Information Theory]: Data Com-

paction and Compression 

General Terms 

Algorithms, Measurement, Performance, Design, Experimentation 

Keywords 

GPGPU, Lossless Data Compression, Floating-Point Data, Real-

Time Compression 

1. INTRODUCTION 
Large-scale numeric computations, such as weather forecasting, 

earthquake simulations, and climate modeling, generally run on 

clusters of interconnected compute nodes. They generate large 

amounts of floating-point results that must be transferred to sec-

ondary storage or off-site for further analysis and visualization. 

Even larger data sets are exchanged between the compute nodes 

of these clusters during simulation. 

Most high-end compute clusters and many smaller clusters use 

InfiniBand or High-Speed Ethernet links for communication. For 

example, the 2048-core Longhorn system [19] uses 10-Gb/s High-

Speed Ethernet links and the state of the art 22,656 core Lonestar 

cluster [18] has a 40 Gb/s InfiniBand network. Future clusters will 

undoubtedly be equipped with even faster interconnects. Ethernet 

cards that support 40 and 100 Gb/s are already available. Infini-

Band currently supports 40 Gb/s and projects speeds of 104 Gb/s 

for 2011 [13]. 

It is desirable to compress large data sets to reduce their storage 

requirement and to speed up their transfer. However, employing 

data compression in high-performance computing environments is 

only useful if it can match the network’s data rate, i.e., if it can be 

done in real time. In fact, the compression and decompression 

throughput needs to exceed the network’s bandwidth by a factor 

that is at least equal to the compression ratio to saturate the net-

work with compressed data. To achieve real-time speeds, a very 

fast compression and decompression algorithm is required, and its 

implementation must be tailored to the capabilities of the hard-

ware to reach the necessary performance. 

Data compression research has resulted in many efficient lossless 

encoding algorithms. Dictionary-based encoders, such as the 

Lempel-Ziv family of algorithms, replace input strings with poin-

ters to a dictionary data structure updated by the encoder. Varia-

ble-length entropy encoders, such as Huffman and arithmetic 

coding, assign prefix codes to each input symbol based on its 

statistical frequency of occurrence. The codes can either be deter-

mined statically up front, requiring two passes over the data, or 

adaptively during compression. Run-length coders store repeated 

values as a single instance and a count. These encoding methods, 

as well as transforms such as Burrows-Wheeler, form the basis of 

common compression utilities, including gzip and bzip2. There 

are also specialized compression algorithms targeted specifically 

at floating-point data. These floating-point compressors often 

employ an approach based on the suppression of leading zeros in 

the residuals between the input values and their predicted values. 

Neither existing general-purpose nor floating-point data compres-

sors offer the throughput required to allow real-time encoding at 

today’s high-end network speeds. 

Graphics processing units (GPUs) typically have many more 

processing cores and wider memory busses than conventional 

CPUs, making them ideal for speeding up programs that exhibit a 

lot of parallelism, require little synchronization, and access mem-

ory in a streaming fashion, as is often the case for large-scale 

vector- and matrix-based codes [16]. GPUs frequently outperform 

CPUs on such codes by several factors [8], and their better 

price/performance, power/performance, and size/performance 

ratios have led to their use in many of the world’s fastest super-

computers [23]. Given the high processing power and memory 

throughput of GPUs and their growing presence in computing 

clusters, this paper investigates whether GPUs can be used for 

floating-point data compression at throughputs above 40 Gb/s 

(after compression) to match the speeds of next-generation high-

end network links. 
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Because their hardware is primarily designed to process blocks of 

pixels at high speed and with wide parallelism, GPUs differ sub-

stantially from conventional CPUs, which can make it difficult to 

write efficient implementations of non-graphics algorithms. Data 

compression and decompression are generally serial operations 

because the processing of every data item depends more or less on 

all previous data items. These data dependencies make it hard to 

extract parallelism. Nevertheless, we have been able to design and 

implement a double-precision floating-point compression algo-

rithm, called GFC, in CUDA that compresses at or above 75 Gb/s 

and decompresses above 90 Gb/s on a GTX-285, i.e., meets the 

throughput demands of the currently fastest commodity networks. 

This paper makes the following contributions. 1) It describes the 

GFC compression algorithm, which is specifically designed to 

map well to GPUs. 2) It explains several important code optimiza-

tions that are included in the GFC implementation to make it very 

efficient. 3) It compares GFC to five other compressors and shows 

that GFC compresses nearly as well as they do. 4) It demonstrates 

that GFC is four times faster than the fastest parallel CPU-based 

compressor. 5) It makes our implementation of GFC available at 

http://www.cs.txstate.edu/~burtscher/research/GFC/. 

The rest of this paper is organized as follows. Section 2 provides 

an overview of the GFC compression algorithm and describes our 

GPU implementation thereof. Section 3 summarizes related work. 

Section 4 presents the evaluation methods. Section 5 discusses the 

results. Section 6 concludes the paper with a summary. 

2. THE GFC ALGORITHM 

2.1 Algorithm 
The GFC algorithm is a novel lossless compression algorithm for 

double-precision floating-point data targeted for parallel execution 

on a GPU. GFC breaks the data dependencies that typically turn 

compression into a serial operation without (much) loss of com-

pressibility for floating-point data, thus making the algorithm 

suitable for GPUs that require thousands of parallel activities to 

unleash their full performance. 
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Figure 1. Overview of warp, block, and chunk assignment 

 

GFC divides the data to be compressed into n chunks, as shown in 

Figure 1. The number of chunks is user selectable and should 

match the warp width of the target GPU for best performance. 

However, other sizes are also supported, for example, to decom-

press data that were compressed on a GPU with a different width. 

An integer multiple of 32 double-precision floating-point values is 

assigned to each chunk. If necessary, the last chunk is padded 

with extra values to reach a multiple of 32. The chunk sizes are 

balanced and never differ by more than 32 doubles. 

The chunks are compressed and decompressed independently and 

can therefore be processed in parallel. Each chunk is split into 

subchunks of 32 doubles each. Each subchunk is compressed and 

decompressed using information from the previous subchunk (or 

all zeros if there is no previous subchunk). 

For performance reasons, the 64-bit floating-point values are 

processed exclusively as 64-bit integers. Hence, GFC does not 

require any floating-point operations even though it compresses 

floating-point data. Like the FPC family of floating-point com-

pressors [4], GFC generates a predicted value for each 64-bit 

word, which is the latest value of the given dimensionality (see 

below) from the previous subchunk. This predicted value is sub-

tracted from the true value, yielding the residual. The sign bit of 

the residual is recorded. If the residual is less than zero, it is ne-

gated. Thus, if the prediction is accurate, the now positive residual 

will have many leading zeros. The residual is leading-zero-byte 

compressed, with the non-zero bytes plus a half-byte storing the 

sign and leading-zero count comprising the encoded output of the 

original 64-bit word. 

Many scientific data sets interleave values from multiple dimen-

sions. This increases the likelihood that, for an n-dimensional data 

set, every nth value be more likely to yield a reasonable prediction 

for the residual calculation and leading-zero compression. For 

instance, the CPU-based pFPC floating-point data compressor 

achieves better compression ratios when the number of threads is 

a multiple of the dimensionality of the data set [5]. Hence, GFC 

takes an optional dimensionality parameter between 1 and 32 to 

improve its performance. The default dimensionality is one. 

 

 

Figure 2. Leading-zero-byte distribution after application of 

the GFC algorithm to the studied data sets 

 

There are nine possible leading-zero-byte counts, zero through 

eight. Figure 2 plots the leading-zero-byte counts for our data sets. 

Because a count of six almost never occurs, we chose to encode 

six leading zero bytes as though there were only five, which re-

duces the number of possibilities to eight and allows encoding 
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with three bits. This does not affect the correctness of the decoder; 

values where the residual has six leading zero bytes are merely 

encoded as if they had five leading zero bytes and three bytes of 

non-zero data. Thus, a 64-bit value is compressed into between 

zero and eight non-zero residual bytes, a sign bit, and a 3-bit field 

that specifies the number of leading-zero bytes. The sign bit and 

the 3-bit count field of each of the 32 values in a subchunk are 

emitted together, followed by the non-zero bytes of the 32 resi-

duals. 

As illustrated in Figure 3, in the best case where all values are 

correctly predicted, the 32 64-bit values in a subchunk are com-

pressed down to 16 bytes, resulting in an upper bound of 16 for 

the compression ratio. In the worst case where all residuals have 

eight non-zero bytes, the “compressed” output is 16 bytes larger 

per subchunk than the uncompressed input, resulting in a com-

pression ratio of 0.94, i.e., an expansion by 6%. 

We evaluated several variations of this algorithm, including calcu-

lating the exclusive-or of the predicted and true values rather than 

the difference as well as choosing the best of 32 prediction values 

and using a full byte to encode the prediction selection and the 

leading zero count. We also investigated an algorithm that uses a 

fixed offset within each subchunk for the prediction value, rather 

than a fixed dimensionality. The approach described above 

yielded the best average compression ratio on our data sets. 

GFC’s output includes a 4-byte count specifying the number of 

doubles in the original data set, a 1-byte value that records the 

dimensionality, a 2-byte value specifying n, and one 4-byte value 

per chunk specifying the compressed size in bytes. This header 

information is emitted first and is followed by the compressed 

data from each chunk. 

Decompression first reads the header information to determine 

how many chunks there are and where the data for each chunk 

start. Then it decompresses each chunk, one subchunk at a time, 

by reading the 32 sign and leading-zero-byte-count fields, compu-

ting the number of non-zero bytes, extracting the corresponding 

bytes, zero extending them to form the 64-bit residuals, negating 

them if the sign bit is set, and adding the resulting values to the 

appropriate values from the previous subchunk to recreate the 

original uncompressed values. Any padding values are removed at 

the end using the total number of doubles stored in the header. 

Note that the values used for padding are chosen so that they will 

be perfectly predicted and thus do not expand the compressed data 

unnecessarily. 

2.2 Implementation 
The GFC algorithm described above is designed so that it can be 

implemented efficiently on CUDA-capable GPUs [9], especially 

those with compute capability 1.3. Such GPUs consist of a num-

ber of independent streaming multiprocessors (SMs), each of 

which contains several tightly coupled execution cores. All SMs 

have access to the global memory of the GPU, which is separate 

from the CPU’s main memory. The cores can read and write the 

global memory very efficiently as long as multiple cores simulta-

neously access adjacent memory locations. In fact, the hardware 

converts sets of such accesses into one or two coalesced memory 

accesses. Each SM contains a software-managed cache called 

shared memory that can be accessed in parallel by all cores in the 

SM as long as the accesses do not cause bank conflicts. 

Up to 1024 program threads can be active in an SM at a time. 

However, sets of 32 threads are grouped into warps that must 

execute in lockstep, i.e., all 32 threads must execute the same 

instruction (on different data) in the same cycle. If this is not poss-

ible, for example, because some of the threads execute the then 

block of an if statement while the remaining threads do not, the 

hardware disables the divergent threads until they re-converge. 

Hence, only subsets of the threads in a warp execute concurrently 

whenever not all threads can execute the same instruction, result-

ing in loss of parallelism. 
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Figure 3. The GFC compression algorithm 



To maximally exploit the benefits and avoid the drawbacks of 

GPUs, GFC includes the following code optimizations and fea-

tures. To avoid thread divergence, the algorithm is implemented 

with just a few if statements. Several of them are very short and 

simple so that the compiler can convert them into predicated in-

structions that do not cause any divergence. One if statement in 

both the compressor and decompressor deliberately disables half 

of the threads per warp because they are not needed at that point. 

The remaining few if statements are necessary to reduce memory 

accesses, which is more important for performance in our memo-

ry-bound code than is minimizing thread divergence. Another 

optimization we included is allocating extra space in the shared 

memory for each warp so that the prefix sums (which are needed 

so that the threads can access the proper compressed bytes in pa-

rallel) can be computed without divergence. 

To maximize the memory performance, our implementation ac-

cesses global memory in a coalesced fashion whenever possible. 

In fact, only a single access per subchunk is not coalesced in both 

the compressor and the decompressor. This degree of coalescing 

is achieved by packing and unpacking compressed bytes in shared 

memory. The shared memory accesses, in turn, are performed in a 

way that minimizes bank conflicts. 

To maximally exploit parallelism, we map the chunks, which can 

be compressed independently, to individual warps across the SMs. 

In fact, the entire algorithm is implemented in a warp-based man-

ner, meaning that warps never communicate with each other, even 

the warps that run on the same SM. Each warp iteratively 

processes the subchunks in its assigned chunk, but the 32 threads 

in a warp process the 32 values of a subchunk in parallel. The 

threads communicate via shared memory with the other threads in 

the same warp to accomplish this, and inter-thread communication 

within each warp is limited to the prefix sum computation re-

quired for access to the variably sized compressed data values. 

Because the warps are independent, no synchronization is needed 

other than the implicit global barrier at the end of the kernel that 

waits for all warps to finish. There is also no synchronization 

needed among the threads within a warp, even though they com-

municate, since the hardware forces them to execute in lockstep, 

i.e., they are always synchronized. Thus, the code includes only a 

few memory fences to prevent the compiler and hardware from 

reordering the memory accesses that communicate data between 

threads during the prefix sum calculation. Otherwise, it is com-

pletely synchronization and communication free. 

3. RELATED WORK 
Floating-point data compression algorithms are divided into lossy 

and lossless approaches. Audio and images can tolerate some 

imprecision in data reconstruction. GFC targets the many applica-

tions, e.g., scientific programs, where data loss is unacceptable. 

There is little prior work on GPU-based lossless data compres-

sion. Balevic et al. [3] designed a block-parallel arithmetic coder 

for post-processing of scientific simulation data directly on the 

GPU before transfer back to the host. Their work achieved signif-

icant storage savings for the resulting compressed data on the 

GPU and therefore reduced the number of data transfers required. 

However, they demonstrated that the compression overhead out-

weighed the resulting timesavings in I/O transfer to the host. 

More recently, Balevic [2] presented a GPU-based parallel encod-

ing algorithm using Huffman coding that exploits atomic opera-

tions on the GPU’s shared memory to enable variable-length co-

deword writes. This algorithm, which also relies on a parallel 

prefix scan to compute output positions, resulted in approximately 

32 Gb/s performance on a GeForce GTX-280, up to a 35-fold 

improvement over their serial version running on a 2.66 GHz 

CPU, but slightly under the throughput of state of the art and 

emerging networks. Aqrawi and Elster [1] investigated both lossy 

and lossless compression techniques for seismic data, concluding 

that the GPU is inferior to the CPU for Huffman compression due 

to the sequential nature of the algorithm and the GPU’s limited 

bitwise operation capabilities. Their proposed compressor utilizes 

the GPU for DCT filtering and the CPU for lossless run-length 

encoding of the transformed data 

There exist several GPU implementations of the parallel prefix 

sum algorithm that we use in our compressor [12]. 

In the area of image processing, GPUs have been successfully 

employed for the acceleration of image transforms (e.g., DCT) [1] 

and texture compression algorithms such as DXT [7]. There also 

is substantial prior literature exploring the use of GPUs for image 

compression, including via lossless algorithms such as run-length 

encoding [15]. Existing work also explores GPU-based decom-

pression, with the intent of reducing storage and bandwidth re-

quirements and allowing for on-the-fly decoding and rendering on 

the GPU [17]. 

A larger body of work exists in the area of lossless floating-point 

data compression on the CPU. Burtscher and Ratanaworabhan 

presented FPC [4], a lossless compressor for double-precision 

floating-point data designed for high throughput. GFC derives its 

leading-zero-count encoding method from the FPC algorithm, 

although FPC uses an exclusive-or of predicted and true values 

rather than subtraction. Below, we compare both FPC and its pa-

rallel implementation, pFPC [5], to GFC. 

4. EVALUATION METHODOLOGY 

4.1 Systems and Compilers 
We evaluated GFC and compared it to pFPC, a parallel CPU-

based compressor for floating-point data, on one compute node of 

the Longhorn cluster at TACC [19]. The compute node contains 

two quad-core Intel Xeon E5540 processors running at 2.53 GHz 

and 48 GB of main memory. Each of the eight cores has a 32 kB 

L1 data cache and a unified 256 kB L2 cache, and the four cores 

on a processor share an 8 MB L3 cache. The operating system is 

TACC’s version of x86_64 GNU/Linux 2.6.18. We used the gcc 

C compiler 4.1.2 with the “-O3 -pthread -std=c99” flags. 

The compute node further contains four NVIDIA FX 5800 GPUs, 

of which we used one. The GPU has 30 streaming multiprocessors 

with 8 cores running at 1.3 GHz and 4 GB of global memory. 

Each multiprocessor has 16 kB of software-managed cache and 

16,384 registers that are shared among the threads allocated to the 

multiprocessor. We used the CUDA compiler 3.2 with the “-O3 

-arch=sm_13” flags. 

4.2 Measurements 
All timing measurements are performed by instrumenting the 

source code, i.e., by adding code to read the timer before and after 

the measured code section and recording the difference. For both 

GFC and pFPC, we measure the runtime of the compression and 

decompression code only, excluding the time it takes to read the 

input data into an array and, in the case of GFC, to transfer data to 

and from the GPU. Each experiment was conducted nine times in 

a row and the median runtime is reported. Averaged compression 

ratios and throughput numbers refer to the harmonic mean 

throughout this paper. 



4.3 Data Sets 
We used the 13 FPC datasets for our evaluation [4], [22]. They 

include program input (observational data), output (simulation 

results), and messages exchanged between compute nodes (MPI 

messages). Table 1 summarizes pertinent information about each 

dataset. The first two data columns list the size in megabytes and 

in thousands of subchunks. The middle column shows the percen-

tage of values that are unique. The fourth column displays the 

first-order entropy of the doubles in bits. The last column ex-

presses the randomness of the datasets in percent, i.e., it reflects 

how close the first-order entropy is to that of a truly random data-

set with the same number of unique 64-bit values. 

 

Table 1. Statistical information about the data sets 

 

 

5. RESULTS 

5.1 Algorithm Comparison 
Figure 4 displays the harmonic-mean compression ratio over the 

13 data sets for GFC and five compression algorithms from the 

literature that are run in their fastest mode. The results show that 

GFC’s mean compression ratio is in line with that of other algo-

rithms on these hard-to-compress data sets. Previous work has 

demonstrated that these compression ratios suffice to substantially 

speed up message-passing applications if the messages can be 

compressed in real time [14]. 

 

 

Figure 4. Harmonic-mean compression ratio of six algorithms 

sorted from slowest (leftmost) to fastest (rightmost) 

Bzip2 [6], gzip [11], and lzop [20] are general-purpose compres-

sors that operate at byte granularity. FPC [10], pFPC [21], and 

GFC are special-purpose algorithms designed to compress double-

precision floating-point data. Lzop is the fastest of the studied 

general-purpose algorithms but achieves the lowest compression 

ratio. GFC and bzip2 both compress somewhat better than lzop, 

and gzip, FPC and pFPC achieve noticeably higher compression 

ratios. FPC has been shown to be one to two orders of magnitude 

faster than gzip and bzip2 [4]. pFPC is a parallel implementation 

of FPC and is the fastest CPU-based compression algorithm for 

floating-point data of which we are aware. Most of these com-

pressors support slower modes in which they compress better. 

However, even in their fastest mode, all of them except pFPC 

(discussed next) are over a factor of ten slower than GFC. 

Figure 5 plots the compression and decompression throughput of 

GFC and pFPC against their compression ratio. It shows pFPC 

results for progressively slower but better compressing modes 

from left to right. Whereas GFC compresses a little less than 

pFPC, Figure 5 clearly illustrates that GFC does not merely 

represent a continuation of pFPC’s performance trend but a large 

improvement. In fact, a single GPU running GFC compresses our 

data sets 4.5 times faster and decompresses them 4.0 times faster 

than two Xeon CPUs (8 Nehalem cores) running pFPC. 

 

 

Figure 5. Throughput versus compression ratio of GFC and 

pFPC with different modes (fastest on left, best compressing 

on right) 

 

5.2 Data Set Comparison 
Figure 6 depicts the compression and decompression throughput 

of GFC in gigabits per second on the thirteen data sets as well as 

the harmonic mean. The results show that GFC’s throughput is 

consistently high on all data sets. It compresses them at 75 Gb/s or 

higher and decompresses them at 90 Gb/s or higher, reaching over 

87 Gb/s compression throughput and 121 Gb/s decompression 

throughput on sppm. The harmonic mean is 77.9 Gb/s for com-

pression and 96.6 Gb/s for decompression. The results are largely 

independent of the data set size. However, the throughputs corre-

late with the compression ratio (given below). Higher compres-

sion ratios increase the throughput because less data have to be 

accessed. 

Table 2 lists the compression ratio of GFC on each data set as 

well as the harmonic mean. It provides results for four different 

values of n, i.e., different numbers of chunks. Clearly, the number 

of chunks, and therefore the amount of parallelism, has a neg-
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ligible impact on the compression ratio. This means that GFC can 

easily provide the high levels of parallelism needed to exploit the 

hardware capabilities of GPUs, at least for data sets that are suffi-

ciently large so that each chunk contains multiple subchunks. 

 

Table 2. GFC’s compression ratio as a function of the number 

of chunks 

 
 

6. SUMMARY AND CONCLUSIONS 
This paper describes and evaluates the GFC compression algo-

rithm for double-precision floating-point data. This algorithm is 

specifically designed for use on a GPU. It compresses and de-

compresses at throughputs of over 75 Gb/s on a GTX-285 while 

still achieving a significant compression ratio on numeric data 

sets. GFC is over four times faster than the fastest parallel CPU-

based compression algorithm, making GFC the first compressor 

with the potential for providing real-time compression for emerg-

ing InfiniBand and Ethernet networks that operate at 40 Gb/s and 

above. We expect GFC’s performance to increase significantly on 

Fermi-based GPUs, in particular because Fermi cores support an 

instruction to count the leading zero bits in an integer, which is a 

frequent operation in the GFC code. 

The system we evaluated can transfer data between the CPU and 

the GPU via the PCIe bus even while the GPU is compressing or 

decompressing. However, the maximum bandwidth of this bus is 

25 Gb/s, rendering the high throughput on the GPU useless for 

network speeds much above 10 Gb/s. However, the same PCIe 

bus is used to communicate with the network interface card 

(NIC), which will have to be made faster to support the next gen-

eration of networks. Hence, communication with the GPU should 

become equally faster. In fact, NVIDIA is working on direct 

GPU-to-GPU data transfers, which may be extensible to support 

direct GPU-to-NIC transfers. Moreover, AMD’s recent demon-

stration of the Fusion APU indicates that their CPUs and GPUs 

will increasingly be on the same chip, and NVIDIA’s Tegra prod-

ucts already combine a CPU and a GPU in the same package, thus 

eliminating the need for explicit data transfers and allowing the 

full benefit of GFC to be reaped. 

Our open-source CUDA implementation of GFC is freely availa-

ble at http://www.cs.txstate.edu/~burtscher/research/GFC/. 
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