
Floating-Point Data Compression at 75 Gb/s on a GPU

Molly A. O’Neil
Department of Computer Science

Texas State University-San Marcos

moneil@txstate.edu

Martin Burtscher
Department of Computer Science

Texas State University-San Marcos

burtscher@txstate.edu

ABSTRACT

Numeric simulations often generate large amounts of data that

need to be stored or sent to other compute nodes. This paper in-

vestigates whether GPUs are powerful enough to make real-time

data compression and decompression possible in such environ-

ments, that is, whether they can operate at the 32- or 40-Gb/s

throughput of emerging network cards. The fastest parallel CPU-

based floating-point data compression algorithm operates below

20 Gb/s on eight Xeon cores, which is significantly slower than

the network speed and thus insufficient for compression to be

practical in high-end networks. As a remedy, we have created the

highly parallel GFC compression algorithm for double-precision

floating-point data. This algorithm is specifically designed for

GPUs. It compresses at a minimum of 75 Gb/s, decompresses at

90 Gb/s and above, and can therefore improve internode commu-

nication throughput on current and upcoming networks by fully

saturating the interconnection links with compressed data.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-

tures (Multiprocessors) – Parallel Processors D.1.3 [Program-

ming Techniques]: Concurrent Programming – Parallel Pro-

gramming E.4 [Coding and Information Theory]: Data Com-

paction and Compression

General Terms

Algorithms, Measurement, Performance, Design, Experimentation

Keywords

GPGPU, Lossless Data Compression, Floating-Point Data, Real-

Time Compression

1. INTRODUCTION
Large-scale numeric computations, such as weather forecasting,

earthquake simulations, and climate modeling, generally run on

clusters of interconnected compute nodes. They generate large

amounts of floating-point results that must be transferred to sec-

ondary storage or off-site for further analysis and visualization.

Even larger data sets are exchanged between the compute nodes

of these clusters during simulation.

Most high-end compute clusters and many smaller clusters use

InfiniBand or High-Speed Ethernet links for communication. For

example, the 2048-core Longhorn system [19] uses 10-Gb/s High-

Speed Ethernet links and the state of the art 22,656 core Lonestar

cluster [18] has a 40 Gb/s InfiniBand network. Future clusters will

undoubtedly be equipped with even faster interconnects. Ethernet

cards that support 40 and 100 Gb/s are already available. Infini-

Band currently supports 40 Gb/s and projects speeds of 104 Gb/s

for 2011 [13].

It is desirable to compress large data sets to reduce their storage

requirement and to speed up their transfer. However, employing

data compression in high-performance computing environments is

only useful if it can match the network’s data rate, i.e., if it can be

done in real time. In fact, the compression and decompression

throughput needs to exceed the network’s bandwidth by a factor

that is at least equal to the compression ratio to saturate the net-

work with compressed data. To achieve real-time speeds, a very

fast compression and decompression algorithm is required, and its

implementation must be tailored to the capabilities of the hard-

ware to reach the necessary performance.

Data compression research has resulted in many efficient lossless

encoding algorithms. Dictionary-based encoders, such as the

Lempel-Ziv family of algorithms, replace input strings with poin-

ters to a dictionary data structure updated by the encoder. Varia-

ble-length entropy encoders, such as Huffman and arithmetic

coding, assign prefix codes to each input symbol based on its

statistical frequency of occurrence. The codes can either be deter-

mined statically up front, requiring two passes over the data, or

adaptively during compression. Run-length coders store repeated

values as a single instance and a count. These encoding methods,

as well as transforms such as Burrows-Wheeler, form the basis of

common compression utilities, including gzip and bzip2. There

are also specialized compression algorithms targeted specifically

at floating-point data. These floating-point compressors often

employ an approach based on the suppression of leading zeros in

the residuals between the input values and their predicted values.

Neither existing general-purpose nor floating-point data compres-

sors offer the throughput required to allow real-time encoding at

today’s high-end network speeds.

Graphics processing units (GPUs) typically have many more

processing cores and wider memory busses than conventional

CPUs, making them ideal for speeding up programs that exhibit a

lot of parallelism, require little synchronization, and access mem-

ory in a streaming fashion, as is often the case for large-scale

vector- and matrix-based codes [16]. GPUs frequently outperform

CPUs on such codes by several factors [8], and their better

price/performance, power/performance, and size/performance

ratios have led to their use in many of the world’s fastest super-

computers [23]. Given the high processing power and memory

throughput of GPUs and their growing presence in computing

clusters, this paper investigates whether GPUs can be used for

floating-point data compression at throughputs above 40 Gb/s

(after compression) to match the speeds of next-generation high-

end network links.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GPGPU-4, Mar 05-05 2011, Newport Beach, CA, USA

Copyright 2011 ACM 978-1-4503-0569-3/11/03…$10.00.

Because their hardware is primarily designed to process blocks of

pixels at high speed and with wide parallelism, GPUs differ sub-

stantially from conventional CPUs, which can make it difficult to

write efficient implementations of non-graphics algorithms. Data

compression and decompression are generally serial operations

because the processing of every data item depends more or less on

all previous data items. These data dependencies make it hard to

extract parallelism. Nevertheless, we have been able to design and

implement a double-precision floating-point compression algo-

rithm, called GFC, in CUDA that compresses at or above 75 Gb/s

and decompresses above 90 Gb/s on a GTX-285, i.e., meets the

throughput demands of the currently fastest commodity networks.

This paper makes the following contributions. 1) It describes the

GFC compression algorithm, which is specifically designed to

map well to GPUs. 2) It explains several important code optimiza-

tions that are included in the GFC implementation to make it very

efficient. 3) It compares GFC to five other compressors and shows

that GFC compresses nearly as well as they do. 4) It demonstrates

that GFC is four times faster than the fastest parallel CPU-based

compressor. 5) It makes our implementation of GFC available at

http://www.cs.txstate.edu/~burtscher/research/GFC/.

The rest of this paper is organized as follows. Section 2 provides

an overview of the GFC compression algorithm and describes our

GPU implementation thereof. Section 3 summarizes related work.

Section 4 presents the evaluation methods. Section 5 discusses the

results. Section 6 concludes the paper with a summary.

2. THE GFC ALGORITHM

2.1 Algorithm
The GFC algorithm is a novel lossless compression algorithm for

double-precision floating-point data targeted for parallel execution

on a GPU. GFC breaks the data dependencies that typically turn

compression into a serial operation without (much) loss of com-

pressibility for floating-point data, thus making the algorithm

suitable for GPUs that require thousands of parallel activities to

unleash their full performance.

user selects
m (warps/block)

and
q (# of blocks)

chunk 0 chunk 1

warp 0 warp 1 warp m

subchunk 0 subchunk 1 subchunk r

...
...

(32 doubles)... ...

ch
0 chunk 1 ch m

 chunk n

warp n

uncompressed
data, divided into
n equally-sized
chunks

chunk
n

compressed
data

pa
dd

ed

chunk m

block 0 block q

Figure 1. Overview of warp, block, and chunk assignment

GFC divides the data to be compressed into n chunks, as shown in

Figure 1. The number of chunks is user selectable and should

match the warp width of the target GPU for best performance.

However, other sizes are also supported, for example, to decom-

press data that were compressed on a GPU with a different width.

An integer multiple of 32 double-precision floating-point values is

assigned to each chunk. If necessary, the last chunk is padded

with extra values to reach a multiple of 32. The chunk sizes are

balanced and never differ by more than 32 doubles.

The chunks are compressed and decompressed independently and

can therefore be processed in parallel. Each chunk is split into

subchunks of 32 doubles each. Each subchunk is compressed and

decompressed using information from the previous subchunk (or

all zeros if there is no previous subchunk).

For performance reasons, the 64-bit floating-point values are

processed exclusively as 64-bit integers. Hence, GFC does not

require any floating-point operations even though it compresses

floating-point data. Like the FPC family of floating-point com-

pressors [4], GFC generates a predicted value for each 64-bit

word, which is the latest value of the given dimensionality (see

below) from the previous subchunk. This predicted value is sub-

tracted from the true value, yielding the residual. The sign bit of

the residual is recorded. If the residual is less than zero, it is ne-

gated. Thus, if the prediction is accurate, the now positive residual

will have many leading zeros. The residual is leading-zero-byte

compressed, with the non-zero bytes plus a half-byte storing the

sign and leading-zero count comprising the encoded output of the

original 64-bit word.

Many scientific data sets interleave values from multiple dimen-

sions. This increases the likelihood that, for an n-dimensional data

set, every nth value be more likely to yield a reasonable prediction

for the residual calculation and leading-zero compression. For

instance, the CPU-based pFPC floating-point data compressor

achieves better compression ratios when the number of threads is

a multiple of the dimensionality of the data set [5]. Hence, GFC

takes an optional dimensionality parameter between 1 and 32 to

improve its performance. The default dimensionality is one.

Figure 2. Leading-zero-byte distribution after application of

the GFC algorithm to the studied data sets

There are nine possible leading-zero-byte counts, zero through

eight. Figure 2 plots the leading-zero-byte counts for our data sets.

Because a count of six almost never occurs, we chose to encode

six leading zero bytes as though there were only five, which re-

duces the number of possibilities to eight and allows encoding

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f d
o

u
b

le
s

(i
n

 m
ill

io
n

s)
 w

it
h

 X

le
ad

in
g

ze
ro

 b
yt

es

with three bits. This does not affect the correctness of the decoder;

values where the residual has six leading zero bytes are merely

encoded as if they had five leading zero bytes and three bytes of

non-zero data. Thus, a 64-bit value is compressed into between

zero and eight non-zero residual bytes, a sign bit, and a 3-bit field

that specifies the number of leading-zero bytes. The sign bit and

the 3-bit count field of each of the 32 values in a subchunk are

emitted together, followed by the non-zero bytes of the 32 resi-

duals.

As illustrated in Figure 3, in the best case where all values are

correctly predicted, the 32 64-bit values in a subchunk are com-

pressed down to 16 bytes, resulting in an upper bound of 16 for

the compression ratio. In the worst case where all residuals have

eight non-zero bytes, the “compressed” output is 16 bytes larger

per subchunk than the uncompressed input, resulting in a com-

pression ratio of 0.94, i.e., an expansion by 6%.

We evaluated several variations of this algorithm, including calcu-

lating the exclusive-or of the predicted and true values rather than

the difference as well as choosing the best of 32 prediction values

and using a full byte to encode the prediction selection and the

leading zero count. We also investigated an algorithm that uses a

fixed offset within each subchunk for the prediction value, rather

than a fixed dimensionality. The approach described above

yielded the best average compression ratio on our data sets.

GFC’s output includes a 4-byte count specifying the number of

doubles in the original data set, a 1-byte value that records the

dimensionality, a 2-byte value specifying n, and one 4-byte value

per chunk specifying the compressed size in bytes. This header

information is emitted first and is followed by the compressed

data from each chunk.

Decompression first reads the header information to determine

how many chunks there are and where the data for each chunk

start. Then it decompresses each chunk, one subchunk at a time,

by reading the 32 sign and leading-zero-byte-count fields, compu-

ting the number of non-zero bytes, extracting the corresponding

bytes, zero extending them to form the 64-bit residuals, negating

them if the sign bit is set, and adding the resulting values to the

appropriate values from the previous subchunk to recreate the

original uncompressed values. Any padding values are removed at

the end using the total number of doubles stored in the header.

Note that the values used for padding are chosen so that they will

be perfectly predicted and thus do not expand the compressed data

unnecessarily.

2.2 Implementation
The GFC algorithm described above is designed so that it can be

implemented efficiently on CUDA-capable GPUs [9], especially

those with compute capability 1.3. Such GPUs consist of a num-

ber of independent streaming multiprocessors (SMs), each of

which contains several tightly coupled execution cores. All SMs

have access to the global memory of the GPU, which is separate

from the CPU’s main memory. The cores can read and write the

global memory very efficiently as long as multiple cores simulta-

neously access adjacent memory locations. In fact, the hardware

converts sets of such accesses into one or two coalesced memory

accesses. Each SM contains a software-managed cache called

shared memory that can be accessed in parallel by all cores in the

SM as long as the accesses do not cause bank conflicts.

Up to 1024 program threads can be active in an SM at a time.

However, sets of 32 threads are grouped into warps that must

execute in lockstep, i.e., all 32 threads must execute the same

instruction (on different data) in the same cycle. If this is not poss-

ible, for example, because some of the threads execute the then

block of an if statement while the remaining threads do not, the

hardware disables the divergent threads until they re-converge.

Hence, only subsets of the threads in a warp execute concurrently

whenever not all threads can execute the same instruction, result-

ing in loss of parallelism.

PREVIOUS subchunk CURRENT subchunk

0 1 31 0 1 31

uncompressed chunk of
doubles (processed by single
warp, iteratively by subchunk
[1 thread per double])

double i

1e27 61c4 03da b8f5

double p

1e27 61c4 caff 17c6

diff i

ffff ffff 38db a12f

[63]

true false
==0?

negate

select

residual i

0000 0000 c724 5ed1

leading zero

byte counter

encoder

compressed chunk:
each subchunk stores 4 bits
of sign+count for each of 32

doubles, followed by
variably-sized residual bytes

of 32 doubles

previous
subchunk

next
subchunk

sign cnt
i-1 i-1

x y

sign cnt
i i

1 4

residuali-1 residual i

z

current subchunk

1

64 64

64
3

1+3 0 to 8 bytes

p i

c724 5ed1

SUB
64

64
-diff i

p = 32 – (dim – i % dim)
(index of closest value in

previous subchunk to
current[i] that is a multiple of
the dimensionality parameter)

......

...

Figure 3. The GFC compression algorithm

To maximally exploit the benefits and avoid the drawbacks of

GPUs, GFC includes the following code optimizations and fea-

tures. To avoid thread divergence, the algorithm is implemented

with just a few if statements. Several of them are very short and

simple so that the compiler can convert them into predicated in-

structions that do not cause any divergence. One if statement in

both the compressor and decompressor deliberately disables half

of the threads per warp because they are not needed at that point.

The remaining few if statements are necessary to reduce memory

accesses, which is more important for performance in our memo-

ry-bound code than is minimizing thread divergence. Another

optimization we included is allocating extra space in the shared

memory for each warp so that the prefix sums (which are needed

so that the threads can access the proper compressed bytes in pa-

rallel) can be computed without divergence.

To maximize the memory performance, our implementation ac-

cesses global memory in a coalesced fashion whenever possible.

In fact, only a single access per subchunk is not coalesced in both

the compressor and the decompressor. This degree of coalescing

is achieved by packing and unpacking compressed bytes in shared

memory. The shared memory accesses, in turn, are performed in a

way that minimizes bank conflicts.

To maximally exploit parallelism, we map the chunks, which can

be compressed independently, to individual warps across the SMs.

In fact, the entire algorithm is implemented in a warp-based man-

ner, meaning that warps never communicate with each other, even

the warps that run on the same SM. Each warp iteratively

processes the subchunks in its assigned chunk, but the 32 threads

in a warp process the 32 values of a subchunk in parallel. The

threads communicate via shared memory with the other threads in

the same warp to accomplish this, and inter-thread communication

within each warp is limited to the prefix sum computation re-

quired for access to the variably sized compressed data values.

Because the warps are independent, no synchronization is needed

other than the implicit global barrier at the end of the kernel that

waits for all warps to finish. There is also no synchronization

needed among the threads within a warp, even though they com-

municate, since the hardware forces them to execute in lockstep,

i.e., they are always synchronized. Thus, the code includes only a

few memory fences to prevent the compiler and hardware from

reordering the memory accesses that communicate data between

threads during the prefix sum calculation. Otherwise, it is com-

pletely synchronization and communication free.

3. RELATED WORK
Floating-point data compression algorithms are divided into lossy

and lossless approaches. Audio and images can tolerate some

imprecision in data reconstruction. GFC targets the many applica-

tions, e.g., scientific programs, where data loss is unacceptable.

There is little prior work on GPU-based lossless data compres-

sion. Balevic et al. [3] designed a block-parallel arithmetic coder

for post-processing of scientific simulation data directly on the

GPU before transfer back to the host. Their work achieved signif-

icant storage savings for the resulting compressed data on the

GPU and therefore reduced the number of data transfers required.

However, they demonstrated that the compression overhead out-

weighed the resulting timesavings in I/O transfer to the host.

More recently, Balevic [2] presented a GPU-based parallel encod-

ing algorithm using Huffman coding that exploits atomic opera-

tions on the GPU’s shared memory to enable variable-length co-

deword writes. This algorithm, which also relies on a parallel

prefix scan to compute output positions, resulted in approximately

32 Gb/s performance on a GeForce GTX-280, up to a 35-fold

improvement over their serial version running on a 2.66 GHz

CPU, but slightly under the throughput of state of the art and

emerging networks. Aqrawi and Elster [1] investigated both lossy

and lossless compression techniques for seismic data, concluding

that the GPU is inferior to the CPU for Huffman compression due

to the sequential nature of the algorithm and the GPU’s limited

bitwise operation capabilities. Their proposed compressor utilizes

the GPU for DCT filtering and the CPU for lossless run-length

encoding of the transformed data

There exist several GPU implementations of the parallel prefix

sum algorithm that we use in our compressor [12].

In the area of image processing, GPUs have been successfully

employed for the acceleration of image transforms (e.g., DCT) [1]

and texture compression algorithms such as DXT [7]. There also

is substantial prior literature exploring the use of GPUs for image

compression, including via lossless algorithms such as run-length

encoding [15]. Existing work also explores GPU-based decom-

pression, with the intent of reducing storage and bandwidth re-

quirements and allowing for on-the-fly decoding and rendering on

the GPU [17].

A larger body of work exists in the area of lossless floating-point

data compression on the CPU. Burtscher and Ratanaworabhan

presented FPC [4], a lossless compressor for double-precision

floating-point data designed for high throughput. GFC derives its

leading-zero-count encoding method from the FPC algorithm,

although FPC uses an exclusive-or of predicted and true values

rather than subtraction. Below, we compare both FPC and its pa-

rallel implementation, pFPC [5], to GFC.

4. EVALUATION METHODOLOGY

4.1 Systems and Compilers
We evaluated GFC and compared it to pFPC, a parallel CPU-

based compressor for floating-point data, on one compute node of

the Longhorn cluster at TACC [19]. The compute node contains

two quad-core Intel Xeon E5540 processors running at 2.53 GHz

and 48 GB of main memory. Each of the eight cores has a 32 kB

L1 data cache and a unified 256 kB L2 cache, and the four cores

on a processor share an 8 MB L3 cache. The operating system is

TACC’s version of x86_64 GNU/Linux 2.6.18. We used the gcc

C compiler 4.1.2 with the “-O3 -pthread -std=c99” flags.

The compute node further contains four NVIDIA FX 5800 GPUs,

of which we used one. The GPU has 30 streaming multiprocessors

with 8 cores running at 1.3 GHz and 4 GB of global memory.

Each multiprocessor has 16 kB of software-managed cache and

16,384 registers that are shared among the threads allocated to the

multiprocessor. We used the CUDA compiler 3.2 with the “-O3

-arch=sm_13” flags.

4.2 Measurements
All timing measurements are performed by instrumenting the

source code, i.e., by adding code to read the timer before and after

the measured code section and recording the difference. For both

GFC and pFPC, we measure the runtime of the compression and

decompression code only, excluding the time it takes to read the

input data into an array and, in the case of GFC, to transfer data to

and from the GPU. Each experiment was conducted nine times in

a row and the median runtime is reported. Averaged compression

ratios and throughput numbers refer to the harmonic mean

throughout this paper.

4.3 Data Sets
We used the 13 FPC datasets for our evaluation [4], [22]. They

include program input (observational data), output (simulation

results), and messages exchanged between compute nodes (MPI

messages). Table 1 summarizes pertinent information about each

dataset. The first two data columns list the size in megabytes and

in thousands of subchunks. The middle column shows the percen-

tage of values that are unique. The fourth column displays the

first-order entropy of the doubles in bits. The last column ex-

presses the randomness of the datasets in percent, i.e., it reflects

how close the first-order entropy is to that of a truly random data-

set with the same number of unique 64-bit values.

Table 1. Statistical information about the data sets

5. RESULTS

5.1 Algorithm Comparison
Figure 4 displays the harmonic-mean compression ratio over the

13 data sets for GFC and five compression algorithms from the

literature that are run in their fastest mode. The results show that

GFC’s mean compression ratio is in line with that of other algo-

rithms on these hard-to-compress data sets. Previous work has

demonstrated that these compression ratios suffice to substantially

speed up message-passing applications if the messages can be

compressed in real time [14].

Figure 4. Harmonic-mean compression ratio of six algorithms

sorted from slowest (leftmost) to fastest (rightmost)

Bzip2 [6], gzip [11], and lzop [20] are general-purpose compres-

sors that operate at byte granularity. FPC [10], pFPC [21], and

GFC are special-purpose algorithms designed to compress double-

precision floating-point data. Lzop is the fastest of the studied

general-purpose algorithms but achieves the lowest compression

ratio. GFC and bzip2 both compress somewhat better than lzop,

and gzip, FPC and pFPC achieve noticeably higher compression

ratios. FPC has been shown to be one to two orders of magnitude

faster than gzip and bzip2 [4]. pFPC is a parallel implementation

of FPC and is the fastest CPU-based compression algorithm for

floating-point data of which we are aware. Most of these com-

pressors support slower modes in which they compress better.

However, even in their fastest mode, all of them except pFPC

(discussed next) are over a factor of ten slower than GFC.

Figure 5 plots the compression and decompression throughput of

GFC and pFPC against their compression ratio. It shows pFPC

results for progressively slower but better compressing modes

from left to right. Whereas GFC compresses a little less than

pFPC, Figure 5 clearly illustrates that GFC does not merely

represent a continuation of pFPC’s performance trend but a large

improvement. In fact, a single GPU running GFC compresses our

data sets 4.5 times faster and decompresses them 4.0 times faster

than two Xeon CPUs (8 Nehalem cores) running pFPC.

Figure 5. Throughput versus compression ratio of GFC and

pFPC with different modes (fastest on left, best compressing

on right)

5.2 Data Set Comparison
Figure 6 depicts the compression and decompression throughput

of GFC in gigabits per second on the thirteen data sets as well as

the harmonic mean. The results show that GFC’s throughput is

consistently high on all data sets. It compresses them at 75 Gb/s or

higher and decompresses them at 90 Gb/s or higher, reaching over

87 Gb/s compression throughput and 121 Gb/s decompression

throughput on sppm. The harmonic mean is 77.9 Gb/s for com-

pression and 96.6 Gb/s for decompression. The results are largely

independent of the data set size. However, the throughputs corre-

late with the compression ratio (given below). Higher compres-

sion ratios increase the throughput because less data have to be

accessed.

Table 2 lists the compression ratio of GFC on each data set as

well as the harmonic mean. It provides results for four different

values of n, i.e., different numbers of chunks. Clearly, the number

of chunks, and therefore the amount of parallelism, has a neg-

data sub- unique 1st-order random-

size chunks values entropy ness

(MB) (1000s) (%) (bits) (%)

bt 254.0 1040.6 92.9 23.7 95.1

lu 185.1 758.3 99.2 24.5 99.8

sp 276.7 1133.2 98.9 25.0 99.7

sppm 266.1 1089.8 10.2 11.2 51.6

sweep3d 119.9 491.1 89.8 23.4 98.6

brain 135.3 554.1 94.9 24.0 99.9

comet 102.4 419.3 88.9 22.0 93.8

control 152.1 623.1 98.5 24.1 99.6

plasma 33.5 137.1 0.3 13.7 99.4

error 59.3 242.8 18.0 17.8 87.2

info 18.1 73.9 23.9 18.1 94.5

spitzer 189.0 774.1 5.7 17.4 85.0

temp 38.1 156.0 100.0 22.3 100.0

o
b
s
e
rv

a
-

ti
o
n
a
l
d
a
ta

M
P

I

m
e
s
s
a
g
e
s

s
im

u
la

ti
o
n

re
s
u
lt
s

1.00

1.05

1.10

1.15

1.20

1.25

bzip2 gzip lzop FPC pFPC GFC

H
ar

m
o

n
ic

 m
e

an
 c

o
m

p
re

ss
io

n

ra
ti

o

0

10

20

30

40

50

60

70

80

90

100

1.15 1.20 1.25 1.30 1.35 1.40

H
ar

m
o

n
ic

 m
e

an
 t

h
ro

u
gh

p
u

t
(G

b
/s

)

Harmonic mean compression ratio

compression

decompression

GFC

pFPC

ligible impact on the compression ratio. This means that GFC can

easily provide the high levels of parallelism needed to exploit the

hardware capabilities of GPUs, at least for data sets that are suffi-

ciently large so that each chunk contains multiple subchunks.

Table 2. GFC’s compression ratio as a function of the number

of chunks

6. SUMMARY AND CONCLUSIONS
This paper describes and evaluates the GFC compression algo-

rithm for double-precision floating-point data. This algorithm is

specifically designed for use on a GPU. It compresses and de-

compresses at throughputs of over 75 Gb/s on a GTX-285 while

still achieving a significant compression ratio on numeric data

sets. GFC is over four times faster than the fastest parallel CPU-

based compression algorithm, making GFC the first compressor

with the potential for providing real-time compression for emerg-

ing InfiniBand and Ethernet networks that operate at 40 Gb/s and

above. We expect GFC’s performance to increase significantly on

Fermi-based GPUs, in particular because Fermi cores support an

instruction to count the leading zero bits in an integer, which is a

frequent operation in the GFC code.

The system we evaluated can transfer data between the CPU and

the GPU via the PCIe bus even while the GPU is compressing or

decompressing. However, the maximum bandwidth of this bus is

25 Gb/s, rendering the high throughput on the GPU useless for

network speeds much above 10 Gb/s. However, the same PCIe

bus is used to communicate with the network interface card

(NIC), which will have to be made faster to support the next gen-

eration of networks. Hence, communication with the GPU should

become equally faster. In fact, NVIDIA is working on direct

GPU-to-GPU data transfers, which may be extensible to support

direct GPU-to-NIC transfers. Moreover, AMD’s recent demon-

stration of the Fusion APU indicates that their CPUs and GPUs

will increasingly be on the same chip, and NVIDIA’s Tegra prod-

ucts already combine a CPU and a GPU in the same package, thus

eliminating the need for explicit data transfers and allowing the

full benefit of GFC to be reaped.

Our open-source CUDA implementation of GFC is freely availa-

ble at http://www.cs.txstate.edu/~burtscher/research/GFC/.

7. ACKNOWLEDGMENTS
The authors acknowledge the Texas Advanced Computing Center

(TACC) at The University of Texas at Austin for providing HPC

resources that have contributed to the research results reported in

this paper. We further thank NVIDIA Corporation for donating

the GPUs that were used to develop the GFC algorithm presented

in this paper.

8. REFERENCES
[1] Aqrawi, A. A. and Elster, A. C. 2010. Accelerating disk

access using compression for large seismic datasets on mod-

ern GPU and CPU. Para 2010 State of the Art in Scientific

and Parallel Computing, extended abstract #131.

[2] Balevic, A. 2009. Parallel variable-length encoding on

GPGPUs. In Proceedings of the 2009 International Confe-

rence on Parallel Processing. Euro-Par’09. Springer-Verlag,

Berlin, Heidelberg, 26-35.

[3] Balevic, A., Rockstroh, L., Wroblewski, M. and S. Simon.

2008. Using arithmetic coding for reduction of resulting si-

mulation data size on massively parallel GPGPUs. In Pro-

1 chunk 10 chunks 100 chunks 1000 chunks

bt 1.20055 1.20055 1.20053 1.20030

lu 1.14857 1.14857 1.14854 1.14821

sppm 3.52841 3.52835 3.52764 3.52059

sp 1.20329 1.20329 1.20326 1.20298

sweep3d 1.21929 1.21929 1.21922 1.21857

brain 1.09112 1.09112 1.09109 1.09079

comet 1.11123 1.11123 1.11121 1.11106

control 1.01327 1.01327 1.01326 1.01314

plasma 1.12984 1.12982 1.12966 1.12805

error 1.23827 1.23825 1.23810 1.23656

info 1.15138 1.15135 1.15101 1.14764

spitzer 1.02263 1.02263 1.02262 1.02257

temp 1.03954 1.03953 1.03946 1.03873

har_mean 1.18803 1.18802 1.18793 1.18710

Figure 6. Compression and decompression throughput of GFC

0

20

40

60

80

100

120
T

h
ro

u
g

h
p

u
t

(G
b

/s
)

compression decompression

ceedings of the 15th European PVM/MPI Users’ Group

Meeting on Recent Advances in Parallel Virtual Machine

and Message Passing Interface. Springer-Verlag, Berlin,

Heidelberg, 295-302.

[4] Burtscher, M. and Ratanaworabhan, P. 2009. FPC: A high-

speed compressor for double-precision floating-point data.

IEEE Trans. Comput. 58, 1 (January 2009), 18-31.

[5] Burtscher, M. and Ratanaworabhan, P. 2009. pFPC: A paral-

lel compressor for floating-point data. In Proceedings of the

2009 Data Compression Conference. DCC’09. IEEE Com-

puter Society, Washington, DC, 43-52.

[6] Bzip2. Retrieved February 1, 2011 from

http://www.bzip.org/.

[7] Castaño, I. 2009. High Quality DXT Compression using

OpenCL for CUDA. Whitepaper. NVIDIA Corp. Retrieved

February 1, 2011 from

http://developer.download.nvidia.com/compute/cuda/3_0/sdk

/website/OpenCL/website/OpenCL/src/oclDXTCompression/

doc/opencl_dxtc.pdf.

[8] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W. and

Skadron, K.. 2008. A performance study of general-purpose

applications on graphics processors using CUDA. J. Parallel

Distrib. Comput. 68, 10 (October 2008), 1370-1380.

[9] CUDA C Programming Guide 3.2. 2010. Retrieved February

1, 2011 from

http://developer.download.nvidia.com/compute/cuda/3_2/too

lkit/docs/CUDA_C_Programming_Guide.pdf.

[10] FPC 1.1. 2009. Retrieved February 1, 2011 from

http://www.csl.cornell.edu/~burtscher/research/FPC/.

[11] Gzip. Retrieved February 1, 2011 from http://www.gzip.org/.

[12] Harris, M., Sengupta, S. and Owens, J. D. 2007. Parallel

prefix sum (scan) with CUDA. NVIDIA GPU Gems 3. Addi-

son-Wesley Professional, chapter 39.

[13] InfiniBand Trade Association. 2010. Retrieved February 1,

2011 from

http://www.infinibandta.org/content/pages.php?pg=press_roo

m_item&rec_id=679.

[14] Ke, J., Burtscher, M. and Speight, E. 2004. Runtime com-

pression of MPI messages to improve the performance and

scalability of parallel applications. In Proceedings of the

2004 ACM/IEEE Conference on Supercomputing. SC’04.

IEEE Computer Society, Washington, DC, 59-65.

[15] Lietsch, S. and Marquardt, O. 2008. A CUDA-supported

approach to remote rendering. In Proceedings of the 3rd In-

ternational Conference on Advances in Visual Computing.

ISVC’07. Springer –Verlag, Berlin, Heidelberg, 724-733.

[16] Lindholm, E., Nickolls, J., Oberman, S. and Montrym, J.

2008. NVIDIA Tesla: A unified graphics and computing ar-

chitecture. IEEE Micro 28, 2 (March 2008), 39-55.

[17] Lindstrom, P. and Cohen, J. D. 2010. On-the-fly decompres-

sion and rendering of multiresolution terrain. In Proceedings

of the 2010 ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games. I3D’10. ACM, New York, NY, 65-73.

[18] Lonestar user guide. Retrieved February 1, 2011 from

http://services.tacc.utexas.edu/index.php/lonestar-user-guide.

[19] Longhorn user guide. Retrieved February 1, 2011 from

http://services.tacc.utexas.edu/index.php/longhorn-user-

guide.

[20] Lzop. Retrieved February 1, 2011 from http://www.lzop.org/.

[21] pFPC v1.0. 2009. Retrieved February 1, 2011 from

http://users.ices.utexas.edu/~burtscher/research/pFPC/.

[22] Scientific IEEE 754 64-Bit Double-Precision Floating-Point

Datasets. 2009. Retrieved February 1, 2011 from

http://www.csl.cornell.edu/~burtscher/research/FPC/datasets.

html.

[23] Top500 fastest supercomputers. Retrieved February 1, 2011

from http://www.top500.org/.

