
Maximizing Hardware Prefetch Effectiveness with
Machine Learning

Saami Rahman∗, Martin Burtscher†, Ziliang Zong‡, and Apan Qasem§
Department of Computer Science

Texas State University
San Marcos, TX 78666

∗ saami.rahman@txstate.edu, † burtscher@txstate.edu, ‡ ziliang@txstate.edu, § apan@txstate.edu

Abstract—Modern processors are equipped with multiple
hardware prefetchers, each of which targets a distinct level
in the memory hierarchy and employs a separate prefetching
algorithm. However, different programs require different subsets
of these prefetchers to maximize their performance. Turning on
all available prefetchers rarely yields the best performance and,
in some cases, prefetching even hurts performance. This paper
studies the effect of hardware prefetching on multithreaded code
and presents a machine-learning technique to predict the optimal
combination of prefetchers for a given application. This technique
is based on program characterization and utilizes hardware
performance events in conjunction with a pruning algorithm to
obtain a concise and expressive feature set. The resulting feature
set is used in three different learning models. All necessary steps
are implemented in a framework that reaches, on average, 96%
of the best possible prefetcher speedup. The framework is built
from open-source tools, making it easy to extend and port to
other architectures.

I. INTRODUCTION

A prefetcher monitors and extrapolates streaming access
patterns in applications and preemptively brings data into
higher levels of cache to hide memory latency. Because of the
disparity between CPU and memory speeds, prefetching has
always been an important technique for code optimization. The
significance of prefetching has increased on current multicore
architectures. As an increasing number of cores are being
attached to the same memory system, the number of candidate
streams for prefetching, often from different threads in the
same program, has increased as well. Effective coordination of
multiple prefetch streams can not only hide memory latency
but also directly affect parallel efficiency.

Although prefetching is a critical transformation on current
architectures, determining optimal prefetch parameters poses
several challenges. First, a prefetcher must be accurate in pre-
dicting memory access patterns. If the prefetcher is incorrect, it
can result in increased memory traffic, and more importantly,
cause contention for space in the small and valuable cache.
Second, a prefetch instruction must be timely. If a prefetch
causes data to be present in a higher level of memory earlier
than required, it may be evicted to accommodate more urgently
required data. These challenges are amplified further in multi-
threaded programs. Since lower levels of memory such as L2
can be shared across multiple threads, each of which may

The authors acknowledge support from the National Science Foundation
through awards CNS-1253292 and CNS-1305302.

potentially request data from different parts of memory, it can
be difficult to correctly identify memory access patterns.

In this paper, we address these challenges and devise a
strategy for effective prefetching based on machine-learning
techniques. We study the effect of prefetching on the PARSEC
programs [1] as well as on two idealized programs that exhibit
sequential and randomized access patterns. We examine the
performance when enabling individual hardware prefetchers
and combinations thereof on an Intel processor with four built-
in prefetchers. We train several machine-learning algorithms to
obtain recommendations on which prefetchers should be used
for a given program.

A key step to successfully using an machine-learning-based
approach is to characterize programs in a quantitative manner
that captures their essential differences. We employ hardware
performance events for this purpose. Since there are hundreds
of such events available, we designed a simple yet effective
procedure to prune the number of events needed to charac-
terize a program. We demonstrate the efficacy of our pruning
algorithm by testing different feature sets on a decision tree.
Finally, we develop a framework that recommends hardware
prefetching configurations for unseen programs on the basis of
previously seen training programs. On average, this framework
can help the user gain up to 96% of the achievable speedup
provided by the hardware prefetchers.

There are several advantages of using such a recommen-
dation system to adjust the hardware configuration. First, it
enables us to use existing hardware more effectively. Second, it
does not require any source-code changes of the program being
optimized. Rather, it works directly on the executable. Lastly,
the framework relies on open-source technologies, making it
is easy to extend and port to other architectures.

II. RELATED WORK

Prefetching is a widely explored area, and the benefits of
prefetching are broadly documented and studied. Lee et al. [2]
were one of the first researchers to introduce the concept
of data prefetching in hardware to hide the memory-access
latency. Chen et al. [3], in their early work, studied the effects
of data prefetching in both hardware and software. Numerous
of work on data prefetching has been done since then.

With the introduction of multicore processors, the effects
of prefetching have become more interesting. Prefetching can

hurt performance, and the ill-effects of prefetching have been
studied [4], [5]. Puzak et al. [6] demonstrate cases where
prefetching hurts and propose a characterization of prefetching
based on timeliness, coverage, and accuracy. Lee et al. [7] con-
ducted an in-depth investigation of when and why prefetching
works. They performed an extensive analysis of both software
and hardware prefetching performance on the SPEC CPU2006
benchmark programs, which are serial workloads.

Jayasena et al. [8] demonstrated the effectiveness of a
decision tree to prune performance events used as features
for detecting false sharing. Their approach has motivated us to
include decision trees in our work. Cavazos et al. [9] developed
a machine-learning model to find the best optimization con-
figuration for the SPEC CPU2006 benchmark suite. The goal
of their work was to select a set of compiler optimizations
that results in good performance improvement. They report
high classification accuracies when using performance events
as features for a learning algorithm. Milepost GCC [10] is a
large project to further crowdsourced optimization learning.
It uses static features to characterize programs. Similar work
by Demme et al. [11] uses graph clustering based on the data
and control flow of programs to characterize program behavior.
However, such characterizations are difficult to perform as they
involve modifying the compiler or working on an intermediate
representation of a program, making them hard to port.

Among the works we have studied, the following two are
the most similar to ours. McCurdy et al. [12] characterized
the impact of prefetching on scientific applications using
performance events. They experimented with a combination of
several benchmark programs on AMD processors. Their work
primarily focuses on serial workloads, but they also studied
the effects of running multiple serial programs simultane-
ously. Their work hinges on successfully isolating performance
events that are expressive enough to capture the effects of
prefetching. They hand-picked the performance events for the
AMD architectures they worked on and would have to repeat
the process of studying all available performance events for any
new architecture. Liao et al. [13] presented a machine-learning-
based approach to selecting the optimal prefetch configuration
in a way similar to ours. However, their work also hinges
on identifying architecture-specific performance events, which
they did by hand. In addition, their work focuses on serial
workloads whereas we are interested in parallel programs.

III. MACHINE-LEARNING FRAMEWORK

Figure 1 shows the major tasks that our machine-learning
framework performs. There are two key phases: training and
testing. In the training phase, sample programs are run to
generate features. Moreover, the programs are run with all
possible prefetcher settings to determine the performance and
identify the optimal hardware configuration. This information
is used to train the learning models. The testing phase is
simpler. First, an unseen program is run once to collect its
features. Second, these features are fed into the trained model
to obtain a recommendation of prefetch configuration.

A. Prefetcher Configurations

Many modern processors implement hardware prefetchers.
For example, our Intel Core2 processor is equipped with the
following four prefetchers:

(a) Training phase of the machine-learning framework

(b) Testing phase of the machine-learning framework

Fig. 1. Operation of machine-learning framework

1) Data cache unit (DCU) prefetcher: this prefetcher
attempts to recognize a streaming algorithm and
prefetches the next line into the L1 data cache.

2) Instruction pointer (IP) based stride prefetcher:
this prefetcher tracks individual load instructions and
attempts to detect strided accesses. It can detect
strides of up to 2kB and prefetches into the L1 cache.

3) Spatial prefetcher (CL): this prefetcher attempts to
complete a cache line brought into the L2 by fetching
the paired line to form a 128-byte aligned chunk.

4) Stream prefetcher (HW): this prefetcher attempts
to detect streaming requests from the L1 cache and
brings in anticipated cache lines into the L2 and LLC.

It should be noted that more recent Intel architectures, such
as SandyBridge and Haswell, include the same prefetchers.
Interestingly, it is not defined which of these four prefetchers
are enabled or disabled by default [13]. In this work, we define
a configuration to be the enabled/disabled state of the prefetch-
ers, expressed by a four-bit bitmask, where each bit represents
a prefetcher. The value 1 means the corresponding prefetcher
is enabled and a 0 means it is disabled. From most significant
bit to least, the mapping of bits to prefetchers is: HW, CL,
DCU, and IP. We controlled the prefetcher configuration of
the processor using the open-source tool Likwid [14].

It may seem that turning on all prefetchers, i.e., configu-
ration 1111, should result in the best performance. However,
other configurations can be superior. In fact, Figure 2 shows
that, in some cases, configuration 1111 hurts performance.
The reported speedup values are runtime improvements over
our baseline configuration, which is 0000. For each config-
uration, we carried out three runs and used the best runtime
to shield the results somewhat from operating system jitter.
Since the run yielding the best performance is not only the
least interrupted but also the run that finished the task in the
shortest amount of time, we strive to improve upon this value.

Several observations can be made from Figure 2. First,
within the same program, changing the prefetcher configura-
tion can have a significant impact on performance. For exam-
ple, freqmine and streamcluster show large variances
in performance when the configuration is altered. Second,
configuration 1111 is not always the best option, as can be
seen in the cases of random, stream, streamcluster,

b
la
ck
sc
h
o
le
s

b
o
d
y
tr
a
ck

ca
n
n
e
a
l

fa
ce

si
m

fe
rr
e
t

fl
u
id
a
n
im

a
te

fr
e
q
m
in
e

0.6

0.8

1.0

1.2

1.4

1.6
none

ip

dcu

dcu_ip

cl

cl_ip

cl_dcu

cl_dcu_ip

hw

hw_ip

hw_dcu

hw_dcu_ip

hw_cl

hw_cl_ip

hw_cl_dcu

hw_cl_dcu_ip

ra
n
d
o
m

ra
y
tr
a
ce

st
re
a
m

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

v
ip
s

x
2
6
4

0.6

0.8

1.0

1.2

1.4

1.6
none

ip

dcu

dcu_ip

cl

cl_ip

cl_dcu

cl_dcu_ip

hw

hw_ip

hw_dcu

hw_dcu_ip

hw_cl

hw_cl_ip

hw_cl_dcu

hw_cl_dcu_ip

Fig. 2. Performance of all prefetcher configurations relative to no prefetching

and vips. Third, configuration 0000 can be the best con-
figuration, that is, using prefetching can hurt performance, as
in the case of canneal, fluidanimate, and in several
configurations of random. Finally, in several cases, there are
multiple “good” configurations, that is, several configurations
perform almost as well as the best.

B. Feature Extraction

We measured all performance events supported by our
processor and used them as the initial feature set to characterize
programs. Counting events such as L2 cache misses and
stalled CPU cycles provides quantified insight into a program’s
behavior and has previously been employed to characterize
programs [8], [9], [12], [13]. However, using all available
events is problematic as it takes a long time to measure them
and the supported events vary across processors. We use the
pruning algorithm described below to address these problems.

Once generated, the features are normalized to event counts
per million executed instructions. This scaling is necessary
to be able to compare different programs and different runs
of the same program. For instance, one hundred page faults
may not be significant for a program that executes one billion
instructions, but it will be significant for a program that
only runs ten thousand instructions. For the program with
ten thousand instructions, the normalized value will be higher
compared to the program with one billion instructions, thus
correctly capturing the difference in significance.

Figure 3 shows the count for all events for our 14 programs.
The x-axis represents the events. The axes are removed as this

figure is used only as a visualization. Two key observations
can be made from the figure. First, many events have similar
values, therefore they do not carry discriminatory information
for program behavior. Second, many of the events result in a
very high count and cause other events with smaller ranges to
disappear. We address this issue with feature scaling.

C. Feature Selection

We used Algorithm 1 to prune the feature set. It con-
sists of two subroutines: FindEvents and EventsUnion.
FindEvents takes the event counts from two programs as
input. For every distinct event, it checks if the two counts differ
by at least φ, where φ is the relative difference expressed in
the interval (0.0, 1.0). If they do, the event is included in a
set. At the end of the subroutine, the set contains all events
that sufficiently capture the distinctiveness between the two
programs. The Diff function returns the absolute difference
of its arguments divided by their maximum. We experimentally
found φ = 0.95 to work well and exclusively use this threshold.

The EventsUnion subroutine takes a list of programs as
input and, for all possible pairs of these programs, calls the
FindEvents subroutine. It includes the returned sets in a
multiset, which eventually contains the expressive events for all
program pairs. Next, the EventsUnion subroutine employs
a map to count the number of times each event occurs in the
multiset. Finally, the map is sorted by the counts.

This algorithm is driven by the idea that, if an event has
highly distinct counts between two programs, it captures an
important aspect in which the two programs differ, and we
should consider that event. However, there are many events
that differ significantly for any two programs, and we end up
with a large number of events. This is why we sort the map to
prioritize the events by how often they are useful to distinguish
between programs. From the sorted map, we can easily select
the top most important events to build our ultimate feature set.

We use a final preprocessing step, called feature scaling,
before the learning stage. Learning models are known to
struggle when there is a large variance in the numeric ranges
of the features. For example, if one feature has a range of 1
to 10 and another feature in the same feature set has a range
of -10,000 to +10,000, the learning model might struggle to
draw accurate decision boundaries. As a remedy, we scale all
features in feature vector x using the following formula:

x′i =
xi − µ(x)

max(x)−min(x)
for i = 1 to len(x)

where µ(x) is the average of the values in feature vector x.
After scaling, all features are within the range -1 to 1.

Figure 4 shows the effect of feature scaling. The plots
are significantly different from those in Figure 3. Also, the
differences in program behavior are now much more apparent.
For example, without scaling, the plots for blackscholes
and bodytrack are not as distinguishable as they are with
scaling. Additionally, canneal now appears substantially
different from both bodytrack and blackscholes. This
is because many event counts in canneal are not 0, con-
trary to how it appears in Figure 3. Similarly, the plots for
swaptions, vips, and x264 look very similar without

blackscholes

bodytrack

canneal

swaptions

vips

x264

Fig. 3. Event-count visualization before feature scaling

scaling but are quite different once the features are scaled. The
same is true for the other programs. The plots of the unscaled
features are sparse whereas the plots of the scaled features
differ more substantially between programs and are denser.

D. Learning Models

The final component of our framework is a learning model.
We evaluated two different traditional learning models, logis-
tic regression and decision trees, and designed a Euclidean-
distance-based classifier that is tailored to our needs and
captures the available information well.

1) Training Labels: The learning target is formulated in
two ways for two different purposes. In the first formulation,
we use a binary classifier that specifies whether a program
benefits from prefetching or not. If the best prefetching con-
figuration results in a speedup of at least 10% over configu-
ration 0000, the program is said to benefit from prefetching.
According to this metric, programs ferret, swaptions,

fluidanimate, and canneal do not benefit. We use this
formulation to decide how many of the top events found by
Algorithm 1 to use (cf. Section IV.C). In the second formu-
lation, we inspect the effect of each prefetcher in isolation. If
enabling a specific prefetcher for a given program results in a
speedup of at least 2% over configuration 0000, we classify
the prefetcher as useful on that program. This yields four
instances of learning models, one per prefetcher. Table I shows
the resulting training labels. It also lists the best configuration
for each program. Note that learning models should be trained
on multiple examples for each class label. This is why we
use four instances rather than a single instance that includes
all combinations of prefetchers, i.e., 16 distinct class labels,
which would require a lot more than our 14 programs to train.

2) Euclidean-Distance-Based Model: We use the Eu-
clidean distance as a similarity metric for predicting good
prefetcher configurations for previously unseen programs. The
motivation behind this approach is that the four independent

blackscholes

bodytrack

canneal

swaptions

vips

x264

Fig. 4. Event-count visualization after feature scaling

TABLE I. TRAINING LABELS FOR OUR FOUR INDEPENDENT
CLASSIFIERS AND ACTUAL BEST CONFIGURATION

Program
Training Labels

Actual best configuration
hw dcu cl ip

blackscholes 0 1 0 1 1010

bodytrack 0 0 0 0 1111

facesim 1 1 1 1 1110

ferret 0 0 0 0 0000

freqmine 1 0 0 1 1111

raytrace 1 1 0 0 1011, 1110, 1111

swaptions 0 0 0 0 0000

fluidanimate 0 0 0 0 0000, 1000

vips 0 1 1 1 0011

x264 0 1 1 0 0100, 0110

canneal 0 0 0 0 0000

streamcluster 1 1 1 1 0110

random 1 0 0 1 1000, 1011

stream 1 1 0 1 1000, 1001, 1011

classifiers do not capture the interaction between the prefetch-
ers. Comparing the classifiers to the best configuration in
Table I illustrates this problem, i.e., the combination of the
four classifiers often is not the configuration that results in
the maximum speedup. For example, consider raytrace,
where the individually recommended prefetchers are hw and
dcu, which corresponds to configuration 1100. However,
the combination of these two prefetchers does not yield the
best performance. To counteract this problem, our Euclidean-
distance-based model calculates the distance between the un-
seen program and every known program from the training set.
It then uses these distances as weights to compute a score for
each of the 16 possible prefetcher configurations. Concretely,
the model computes the following 16-element vector:

Score =

[m∑
i=1

Pi[1]

d 2
i

,

m∑
i=1

Pi[2]

d 2
i

, ...
m∑
i=1

Pi[16]

d 2
i

]

Algorithm 1 Finding events that differ between two programs
Require: Ea and Eb contain measurements of the same events in the same order
1: function FINDEVENTS(Ea, Eb, φ)
2: set ← {}
3: for i← 1 to Ea.size do
4: if DIFF(Ea[i].value, Eb[i].value) ≥ φ then . relative difference
5: set.INCLUDE(Ea[i].name)
6: end if
7: end for
8: return set
9: end function

10: function EVENTSUNION(programs, φ)
11: multiset← {}
12: map← MAP() . key: event name, value: occurrence
13: numProgs← programs.length

14: for i← 1 to numProgs− 1 do
15: for j ← i+ 1 to numProgs do
16: set← FINDEVENTS(programs[i], programs[j], φ)

17: multiset.INCLUDE(set)

18: end for
19: end for
20: for set in multiset do
21: for event in set do
22: if map.CONTAINS(event.name) then
23: map[event.name] += 1

24: else
25: map[event.name] = 1

26: end if
27: end for
28: end for
29: return SORT(map) . sorts by values
30: end function

where m is the number of programs in the training set.
Pi is a 16-element vector associated with program i. Each
element in this vector corresponds to a configuration, which is
simply the element’s index in binary notation. The element’s
value represents the fraction of the achievable speedup that
was reached when using the corresponding configuration on
program i. For example, P2[3] represents the fraction of
speedup that was obtained on the 2nd training program using
configuration 0011, since 310 = 00112. Finally, di denotes
the Euclidean distance between the unseen program and the
ith training program.

The resulting vector contains a weighted score for each
prefetching configuration. The recommended configuration is
the binary representation of the index belonging to the max-
imum element. This approach combines the effect of every
prefetching configuration on all training programs and quali-
fies the scores using distance squared. Thus, the prefetching
performance of similar programs carries a greater weight than
that of dissimilar programs. Moreover, if an unseen program is
close to multiple programs, our approach ensures that the most
similar program is not the sole basis for the recommendation.

IV. RESULTS AND ANALYSIS

A. Experimental Environment

We performed our measurements on a 2.4 GHz Intel Core2
Quad Q6600 processor with eight 32 kB L1 caches and two
4 MB L2 caches. All programs were compiled using GCC
4.8.2 with optimization level -O2 on an Ubuntu 14.04 oper-
ating system. The PARSEC programs were invoked using the
parsecmgmt script that ships with the suite and run with the
native input on eight threads. We repeated the experiments

TABLE II. EFFECT OF VARYING THE NUMBER OF FEATURES ON
PRECISION, RECALL, AND ACCURACY

Featureset Precision Recall Accuracy
All events 0.50 0.40 0.64

Top 2 0.25 0.20 0.50

Top 3 0.33 0.20 0.57

Top 4 0.40 0.40 0.57

Top 5 0.40 0.40 0.57

Top 6 0.75 0.60 0.78

Top 7 0.75 0.60 0.78

Top 8 0.80 0.80 0.85

Top 9 0.80 0.80 0.85

Top 10 0.80 0.80 0.85

Top 20 0.60 0.60 0.71

Top 30 0.50 0.60 0.64

with different numbers of threads, but no significant change in
prefetching effectiveness was observed.

B. Evaluation Method

We used (k - 1) cross-validation to asses our learning
models. Initially, we focused on the prediction accuracy. How-
ever, this does not capture the quality of the recommenda-
tion as multiple prefetching configurations may yield near-
optimal performance. For instance, the best configuration for
streamcluster is 0110 giving a speedup of 1.37, but
0111 results in 1.34. Therefore, we found it more useful to
look at what fraction of the achievable speedup can be obtained
using the recommendations from the learning model.

C. Choosing the Optimal Number of Features

To test the efficacy of the feature-selection procedure in
Algorithm 1, we trained and tested a decision tree using the
top two events and fed the model with an increasing number
of events to identify the saturation point. This point is reached
when we use the top eight events, as shown in Table II. Using
more than eight events degrades the learning performance. This
demonstrates that our pruning algorithm is able to identify
events that truly capture the differences between programs.
Henceforth, we use the top eight events as our feature set
except in the case of the Euclidean-distance-based model,
which we found to work best with just the top six events.

D. Recommending a Good Prefetcher Configuration

Figure 5 shows the performance of the three learning
models in terms of how close the recommended configuration’s
speedup is to that of the best possible configuration.

The logistic regression model reaches, on average, 92.4%
of the achievable speedup. It performs poorly on freqmine
because of how the training labels are derived. Applying the
cl and dcu prefetchers separately on this program does not
yield a speedup, which is why the models are trained to turn
them off. However, good configurations for freqmine have
both prefetchers turned on. Hence, this is a case where two
prefetchers that do not result in significant speedup individu-
ally deliver a combined speedup that is greater than their sum.

The decision-tree-based model performs better than the
logistic regression model on average, reaching 95.3% of the

b
la

ck
sc

h
o
le

s

b
o
d
y
tr
a
ck

fa
ce

si
m

fe
rr
e
t

fr
e
q
m

in
e

ra
y
tr
a
ce

sw
a
p
ti
o
n
s

fl
u
id

a
n
im

a
te

v
ip

s

x
2
6
4

ca
n
n
e
a
l

st
re

a
m

cl
u
st

e
r

ra
n
d
o
m

st
re

a
m

a
v
e
ra

g
e

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
Po

te
n
ti
a
l
S
p
e
e
d
u
p

Logistic Regression Decision Tree Euclidean Distance

Fig. 5. Fraction of achievable speedup reached by the three learning models

achievable speedup. For freqmine, it is able to suggest the
best configuration. However, this has likely occurred by chance
as information about the interaction between prefetchers is not
carried into the independent models.

The Euclidean distance model reaches 96.1% of the achiev-
able speedup on average. It is able to suggest a good configura-
tion for freqmine because it takes into account the similarity
between the test program and multiple training programs.
Moreover, it utilizes information about the performance of ev-
ery possible prefetcher configuration on all training programs.
In contrast, the other classifiers attempt to predict the best
configuration based on the impact of the individual prefetchers.

The Euclidean distance model performs substantially worse
than the other models on facesim. This is because it deter-
mines random to be the most similar program, i.e., well-
performing configurations for random greatly influence its
decision. When we inspected the model internally, we found
the second highest recommendation to be 0110, which results
in 98% of the achievable speedup for facesim. Clearly, the
similarity metric turned out to be imperfect in this case.

All models perform poorly on streamcluster. The
logistic regression and decision tree classifiers suffer from
the aforementioned problem because the training label is
1111 whereas the actual best configuration is 0110. The
Euclidean distance model suffers because streamcluster
is significantly different from every other program, i.e., there
is no similar program in the training set. It is closest to
stream, but applying the best configuration from stream
on streamcluster results in a speedup of 1.07, which is
only 78% of the best possible speedup of 1.37 using 0110.

V. SUMMARY

This paper presents a framework to help users maximize
the effectiveness of the hardware prefetchers in their systems.
The processor on which we conducted our experiments con-
tains four such prefetchers, resulting in 16 possible prefetching
configurations as each prefetcher can be enabled or disabled
individually. Our framework performs an exhaustive search of

these 16 combinations and records the performance of each
configuration on a set of training programs. It uses hardware
performance events to characterize codes for the purpose of
determining similarities between a previously unseen appli-
cation and the training programs. Since modern processors
support hundreds of performance events, our framework em-
ploys a pruning algorithm to construct a concise yet expressive
feature set. This feature set, combined with the performance
of the various prefetcher configurations, is used to train three
machine-learning models. One of them is a Euclidean-distance-
based model that we designed specifically for recommending
prefetcher configurations. On average, its recommendations de-
liver 96% of the possible prefetching speedup on the PARSEC
benchmark suite and two additional programs.

REFERENCES

[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[2] R. L. Lee, P.-C. Yew, and D. H. Lawrie, “Multiprocessor cache
design considerations,” in Proceedings of the 14th annual international
symposium on Computer architecture. ACM, 1987, pp. 253–262.

[3] T. Chen and J. Baer, “A performance study of software and hardware
data prefetching schemes,” in Computer Architecture, 1994., Proceed-
ings the 21st Annual International Symposium on. IEEE, 1994, pp.
223–232.

[4] H. Kang and J. L. Wong, “To hardware prefetch or not to prefetch?:
a virtualized environment study and core binding approach,” in ACM
SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 357–368.

[5] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware
shared resource management for multi-core systems,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 3, pp. 141–152, 2011.

[6] T. R. Puzak, A. Hartstein, P. G. Emma, and V. Srinivasan, “When
prefetching improves/degrades performance,” in Proceedings of the 2nd
conference on Computing frontiers. ACM, 2005, pp. 342–352.

[7] J. Lee, H. Kim, and R. Vuduc, “When prefetching works, when
it doesn’t, and why,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 1, p. 2, 2012.

[8] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu, “Detection of false
sharing using machine learning,” in Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 30.

[9] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and
O. Temam, “Rapidly selecting good compiler optimizations using
performance counters,” in Code Generation and Optimization, 2007.
CGO’07. International Symposium on. IEEE, 2007, pp. 185–197.

[10] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather et al., “Milepost gcc:
machine learning based research compiler,” in GCC Summit, 2008.

[11] J. Demme and S. Sethumadhavan, “Approximate graph clustering for
program characterization,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 8, no. 4, p. 21, 2012.

[12] C. McCurdy, G. Marin, and J. Vetter, “Characterizing the impact
of prefetching on scientific application performance,” in International
Workshop on Performance Modeling, Benchmarking and Simulation of
HPC Systems (PMBS13), 2013.

[13] S. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Ma-
chine learning-based prefetch optimization for data center applications,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. ACM, 2009, p. 56.

[14] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Parallel Processing Workshops (ICPPW), 2010 39th International Con-
ference on. IEEE, 2010, pp. 207–216.

