

* This is a corrected version of the original paper.

Ge

Real-time, Unobtrusive, and Efficient Program Execution Tracing with
Stream Caches and Last Stream Predictors *

Vladimir Uzelac§, Aleksandar Milenković§, Milena Milenković¥, Martin Burtscher†
§ECE Department, The University of Alabama in Huntsville

¥IBM, Austin, Texas, †ICES, The University of Texas at Austin

Abstract—This paper introduces a new hardware mechanism
for capturing and compressing program execution traces unob-
trusively in real-time. The proposed mechanism is based on two
structures called stream cache and last stream predictor. We
explore the effectiveness of a trace module based on these struc-
tures and analyze the design space. We show that our trace
module, with less than 600 bytes of state, achieves a trace-port
bandwidth of 0.15 bits/instruction/processor, which is over six
times better than state-of-the-art commercial designs.

I. INTRODUCTION
Debugging and testing of embedded processors is tradi-

tionally done through a JTAG port that supports two basic
functions: stopping the processor at any instruction or data
access, and examining the system state or changing it from
outside. This approach is obtrusive and may cause the order
of events during debugging to deviate from the order of
events during “native” program execution without interfer-
ence from debug operations. These deviations can cause the
original problem (e.g., a data race) to disappear in the debug
run. In addition, stepping through the program is time-
consuming for programmers and is simply not an option for
debugging real-time embedded systems, where setting a
breakpoint may be impossible or harmful. A number of even
more challenging issues arise in multi-core systems. They
may have multiple clock and power domains, and we must be
able to support debugging of each core, regardless of what
other cores are doing. Debugging through a JTAG port is not
well suited to meet these challenges.

Recognizing these issues, many vendors have developed
modules with tracing capabilities and integrated them into
their systems on a chip (SoCs), e.g., ARM’s ETM [1],
MIPS’s PDTrace [2], and Infinion’s OCDS [3]. The IEEE’s
Industry Standard and Technology Organization has proposed
a standard for a global embedded processor debug interface
(Nexus 5001) [4].

The trace and debug infrastructure on a chip typically in-
cludes logic that captures address, data, and control signals
within SoCs, logic to filter and compress the trace informa-
tion, buffers to store the traces, and logic that emits the con-
tent of the trace buffers through a trace port to an external
trace unit or host machine. Traces can be classified into three

categories, depending on the type of information they con-
tain: program traces, data traces, and interconnect traces.

In this paper we focus on program execution traces that re-
cord which instructions were executed. Such traces are
widely used for hardware and software debugging as well as
for program optimization and tuning. In their basic form,
these traces consist of the addresses of all committed instruc-
tions. However, they can be more compactly represented by a
trace that reports only changes in the program’s control flow.

Many existing trace modules employ trace compression
and buffering to achieve about 1 bit/instruction/CPU band-
width at the trace port at the cost of about 7,000 gates [5].
They rely on large on-chip buffers to store execution traces of
sufficiently large program segments and/or on relatively wide
trace ports that can transfer a large amount of trace data in
real-time. However, large trace buffers and/or wide trace
ports substantially increase the system complexity and cost.
Moreover, they do not scale well, which is a significant prob-
lem in the era of multicore chips. Whereas commercially
available trace modules typically implement only rudimen-
tary forms of hardware compression, several recent research
efforts in academia propose compression techniques tailored
to program execution traces that can achieve much higher
compression ratios [6-8]. For example, Kao et al. [6] propose
an LZ-based program trace compressor that achieves a good
compression ratio for a selected set of programs. However,
the proposed module has high complexity (over 50,000
gates), and it is unclear how effective this module would be
in tracing more diverse programs.

In this paper we introduce a very cost-effective mechanism
for capturing and compressing program execution traces un-
obtrusively in real-time. The proposed trace module relies on
two new structures called stream cache and last stream pre-
dictor to translate a sequence of program streams into a se-
quence of hit or miss events in these structures (Section 2).
We also introduce several enhancements of the original
mechanism that reduce the trace port bandwidth or module
complexity and size. We explore tradeoffs in the design of
the proposed trace module and evaluate its effectiveness
(Section 3). The experimental evaluation based on a set of
benchmarks from the MiBench suite [9] shows that our trace
module with less than 600 bytes of state can achieve a trace

port bandwidth of only 0.15 bits/instruction/CPU, which is
over six times lower than state-of-the-art commercial solu-
tions.

II. PROGRAM TRACING AND DEBUGGING WITH
STREAM CACHES AND LAST STREAM PREDICTORS

A program execution can be replayed offline by recording
changes in the program flow caused by control-flow instruc-
tions and exceptions (including interrupts). When a change in
the program flow occurs, we need to capture the starting ad-
dress of a new instruction stream, which is either the target
address of the currently executing branch instruction or the
starting address of an exception handler. Consequently, the
program execution can be recreated by recording information
about program streams, also known as dynamic basic blocks.
Each instruction stream can be uniquely represented by its
starting address (SA) and its length (SL). The pair (SA, SL) is
called stream descriptor and it replaces the complete trace of
instruction addresses in the corresponding stream.

A sequence of full stream descriptors (SA, SL) is subopti-
mal for recording program executions, because it includes
redundant information that can be inferred directly from the
program binary during program replay. For example, if an
instruction stream starts at the target of a direct conditional
branch, a partial stream descriptor (-, SL) will suffice because
its starting address can be inferred from the binary. Next, if
an instruction stream ends with a direct unconditional branch,
we may opt not to terminate the current instruction stream at
that instruction. Rather, the stream continues with the next
instruction, which is located at the target address of the
branch. Our approach includes these modifications to mini-
mize the size of the trace records.

Most programs have only a small number of unique pro-
gram streams, with just a fraction of them responsible for the
majority of the program execution. Table 1 shows some im-
portant characteristics of the MiBench [9] programs collected
using SimpleScalar [10] running ARM binaries. The columns
(a-d) show the number of executed instructions in millions
(IC), the number of unique streams (USC), and the maximum
(maxSL) and average stream length (avgSL), respectively.
The total number of unique streams traversed during program
execution is fairly limited – it ranges from 341 (adpcm_c) to
6871 (ghostscript), and the average dynamic stream length is
between 5.9 (bf_e) and 54.7 (adpcm_c) instructions. The fifth
column (e) shows the number of unique program streams that
constitute 90% of the dynamically executed streams. This
number ranges between 1 (adpcm_c) and 235 (lame) and is
78 on average. Note that all calculations use a weighted aver-
age, where the weights are based on the number of executed
instructions, since the size of the raw instruction trace is di-
rectly proportional to the number of executed instructions.
The maximum stream length in our benchmarks never ex-
ceeds 256, thus we may choose to use 8 bits to represent SL

(MaxSL=255).
Table 1. MiBench Program Characteristics.

IC USC max avg CDF
(mil.) SL SL 90%

adpcm_c 733 341 71 54.7 1
bf_e 544 403 70 5.9 22
cjpeg 105 1590 239 12.3 47
djpeg 23 1261 206 25.1 31
fft 631 846 94 10.5 209
ghostscript 708 6871 251 10.0 67
gsm_d 1299 711 165 19.5 33
lame 1285 3229 237 32.4 235
mad 287 1528 206 20.7 42
rijndael_e 320 513 77 21.0 45
rsynth 825 1238 180 17.6 49
stringsearch 4 436 65 6.0 48
sha 141 519 65 15.4 10
tiff2bw 143 1038 43 12.8 2
tiff2rgba 152 1131 75 27.7 2
tiffmedian 541 1335 92 22.3 5
tiffdither 833 1777 67 14.3 63
Average 816 1791 145 21.6 77.8

(a) (b) (c) (d) (e)
Fig. 1 shows a system view of the proposed tracing

mechanism. The target platform executes a program on a
target processor core. The trace module is coupled with the
CPU core through a simple interface that consists of the pro-
gram counter, branch type information (direct/indirect, condi-
tional/unconditional), and possibly an exception control sig-
nal. The trace module consists of relatively simple hardware
structures and logic dedicated to capturing, compressing, and
buffering program traces. The recorded trace is read out of
the chip through a trace port. The trace records can be col-
lected on an external trace unit for later analysis or forwarded
to a host machine running a software debugger.

CPU
Core

Target CPU

Program
Binary

Software
Debugger

Debug HOST

External
Trace Unit

Stream
Detector

Stream
Cache

(SA,SL)

PC Exce-
ption (SA/-,SL) SCIHit/

Miss

Trace Record Encoder

Trace Buffer

Trace Buffer

Trace Record Decoder
Hit/
Miss

(SA/-,SL)

Branch
Type

SCI

Trace
Storage

Last Stream
Predictor

Hit/
Miss

Stream
Cache

Last Stream
Predictor

Hit/
Miss

(SA/-,SL)

Fig. 1. System view of program tracing and replay.

The software debugger reads, decodes, and decompresses

the trace records. To decompress the trace records, the de-
bugger maintains exact software copies of the state in the
trace module structures. They are updated during program
replay by emulating the operation of the hardware trace mod-
ule. Decompression produces a sequence of stream descrip-

tors that, in conjunction with the program binary, provide
enough information for a complete program replay off-line.

The proposed mechanism performs the capture and com-
pression of program execution traces in three stages. In the
first stage, a stream detector detects instruction streams and
forwards their descriptors to the second stage. In the second
stage, a stream cache (SC) translates the stream descriptors
into stream cache indices (SCI). In the third and final stage, a
last stream predictor (LSP) compresses the SCI trace into
trace records that are stored into a trace buffer (Fig. 1).

Stream Detector. Whenever a control-flow instruction of a
certain type (direct conditional, indirect, or return) or an ex-
ception causes the program flow to depart from sequential
execution, the stream detector captures the current stream
descriptor (SA, SL) and prepares for the beginning of a new
instruction stream by recording its starting address in the SA
register and zeroing out the SL register (Fig. 2). The captured
stream descriptors (SA, SL) are placed into a stream buffer
that serves to smoothen out possible bursts of short streams.

Fig. 2. The three trace module structures.

Stream Cache. To exploit the observed program character-

istics, the second stage consists of a cache-like structure
called stream cache with NWAY ways and NSET sets (Fig. 2).
An entry in the stream cache keeps a complete stream de-
scriptor (SA, SL). The SC translates a stream descriptor into a
relatively short stream-cache index as follows. A stream de-
scriptor is read from the stream buffer and a stream cache
lookup is performed. A set in the stream cache is calculated
as a simple function of the stream descriptor, e.g., bit-wise
XOR of selected bits from SA and SL. If the incoming stream
descriptor matches an entry in the selected set, we have an SC
hit; the corresponding stream cache index SCI, determined by
concatenating the set and way indices (SCI={iSet, iWay}), is
forwarded to the next stage. In case of an SC miss, a reserved
index zero is emitted (SCI=0). If necessary, an entry in the
selected set is evicted based on the replacement policy (e.g.,
least recently used) and updated with the incoming stream
descriptor.

The compression ratio achieved by our stream detection
and stream cache compression, CR(SC), is defined as the
ratio of the raw instruction address trace size, calculated as

the number of instructions multiplied by the address size
(IC*4 bytes), and the total size of the SCI output (Eq. 1). It
can be expressed analytically as a function of the avgSL, the
stream cache hit rate (hrSC), the stream cache size
(NSET*NWAY), and the probability that a stream starts with a
target of an indirect branch (pIND). For each instruction stream
(the number of dynamic streams is equal to IC/avgSL),
log2(NSET*NWAY) bits are emitted to the SCI output. On each
stream cache miss, a 5-byte (SA, SL) or 1-byte (-, SL) stream
descriptor is output. Eq. 1 is useful in exploring the design
space with the goal to maximize the compression ratio. The
parameters avgSL and pIND are benchmark dependent and
cannot be changed except maybe through program optimiza-
tion. Smaller stream caches require shorter indices but likely
have a lower hit rate, which negatively affects the compres-
sion ratio. Thus, a detailed exploration of the stream cache
design space is necessary to determine a good hash access
function and stream cache size and organization.

Eq. 1

[]1)1(5)1()(log125.0
4)(

2 ⋅−+⋅⋅−+⋅⋅
⋅

=
INDINDWAYSSET pphrSCNN

avgSLSCCR

Last Stream Predictor. The third stage is designed to ex-

ploit redundancy in the SCI output. Perfect trace compression
without stream pattern recognition would replace each stream
with just a single bit. We can approach this goal by using a
simple last value predictor as shown in Fig. 2. A linear pre-
dictor table with NP entries is indexed by a hash function that
is based on the history of previous stream cache indices. If
the selected predictor entry contains a match for the incoming
stream index, we have an LSP hit. Otherwise, we have an
LSP miss, and the selected predictor entry is updated by the
incoming stream cache index.

In case of an LSP hit, a single-bit trace record with header
bit (hb) ′1′ is placed into the trace buffer. Upon seeing this
bit, the debugger’s decompressor retrieves the current stream
descriptor from its software structures that mirror those in the
trace module. In case of an LSP miss, a trace record with a
single-bit header ′0′, followed by the value of the stream
cache index is placed in the trace buffer. Finally, in case of an
SC miss, a trace record with a header bit ′0′ followed by
SCI=0 and the stream descriptor (SA/-, SL) is placed in the
trace buffer.

The compression ratio achievable by the LSP stage alone,
CR(LSP), can be calculated as shown in Eq. 2. It depends on
the size of one SCI record and the LSP hit rate, hrLSP. The
maximum compression ratio that can be achieved by this
stage is log2(NSET*NWAY). The design space exploration for
the last stream predictor includes determining the hash access
function and the number of entries in the predictor NP.

Eq. 2
)(log/1)1(

1)(
2 WAYSSET NNhrLSP

LSPCR
⋅+−

=

III. EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is threefold. First,

we explore the design space to find good parameters for the
proposed structures and access functions. As a measure of
performance we use the average number of bits emitted per
instruction on the trace port, which is equivalent to
32/(compression ratio). Second, we introduce several en-
hancements and explore their effectiveness in further improv-
ing the compression ratio at minimal added complexity or in
reducing the trace module size. Finally, we compare the ef-
fectiveness of the proposed mechanism to several recent pro-
posals from the literature.

A. Design Space Exploration
Stream Cache Access Function. We have evaluated a num-

ber of stream cache access functions. Access functions com-
bining the SA and SL portions of the stream descriptor out-
perform those based solely on the SA because multiple
streams can have the same starting address. Our experiments
indicate that the hash function shown in Eq. 3 performs the
best for different sizes and configurations of the trace mod-
ule. The SA is shifted by Shift bits and then the result is
XOR-ed with the SL. The lower bits of this result are used as
the set index, iSet. With our benchmarks and inputs, the op-
timal value for Shift was found to be 4.

Eq. 3 SLxorShiftSAiSet)(<<=

Stream Cache Size and Organization. Fig. 3 shows the av-

erage trace port bandwidth when varying the total number of
entries in the stream cache as well as the number of ways
(NWAYS=1, 2, 4, 8). The results reflect the weighted average
for the whole benchmark suite. The trace port bandwidth is
calculated assuming an LSP with the same number of entries
as the SC and a simple hash access function that uses the pre-
vious stream cache index to access the LSP.

The results show that increasing the stream cache associa-
tivity helps reduce the bandwidth on the trace port and thus
improves the compression ratio, but only up to a point. In-
creasing the associativity beyond 4 ways yields little or no
benefit. The results further indicate that even relatively small
stream caches with as few as 32 entries perform well, achiev-
ing less than 0.5 bits/instruction (bits/ins) on the trace port.
Increasing the SC and consequently the LSP size beyond 256
entries is not beneficial as it only yields diminishing returns
in compression ratio. Based on these results, we believe a 4-
way associative stream cache with 128 entries and a 128-
entry LSP to be a good choice for our trace module. This con-
figuration represents a sweet spot in the trade-off between
trace port bandwidth and design complexity; on our bench-
marks, it yields under 0.2 bits/ins at a modest cost.

Last Stream Predictor. We have evaluated several LSP or-
ganizations. The number of entries in the LSP may exceed

the number of entries in the stream cache. In this case, the
LSP access function should be based on the program path
taken to a particular stream. The path information may be
maintained in a history buffer as a function of previous
stream cache indices. However, our results indicate that such
configurations provide fairly limited improvements in trace
port bandwidth. The reason is that our workload has a rela-
tively small number of indirect branches, and those branches
mostly have a very limited number of targets taken during
program execution. Consequently, we chose the simpler solu-
tion of always having the same number of entries in the LSP
and the SC, which only requires an access function that is
solely based on the previous stream cache index. We call this
scheme BASE.

Trace Port Bandwidth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512 1024

SC and LSP Size

bi
ts
/i
ns
.

Nways=1
Nways=2
Nways=4
Nways=8

Fig. 3. Trace port bandwidth as a function of SC size and organization.

Table 2 shows the trace port bandwidth for individual

benchmarks and for different sizes of the SC and LSP. The
trace port bandwidth for a trace module configuration <32x4,
128> (i.e., 4-way associative 128-entry SC and 128-entry
LSP) varies between 0.019 bits/ins for adpcm_c and 0.616
bits/ins for fft and is 0.174 bits/ins on average. The fft bench-
mark significantly benefits from an increase in SC size and
requires 0.354 bits/ins for the <64x4, 256> configuration.
Many of the remaining benchmarks perform well even with
very small trace module configurations, e.g., adpcm_c, tiff-
median, and tiff2rgba.

B. Enhancements for Reducing Trace Port Bandwidth
The output trace records have a lot of redundant informa-

tion that can be eliminated with low-cost enhancements. The
three components of the output trace are (i) the LSP hit trace
(hLSPt), (ii) the LSP miss with SC-hit trace (hSCt), and (iii)
the LSP miss and SC miss trace (mSCt). With small configu-
rations, the mSCt component dominates the output trace; e.g.,
it is responsible for 41.3% of the total output trace for the
<16x4, 64> configuration. For larger configurations, the
hLSPt component dominates the output trace with long runs
of consecutive ones; e.g., the hSLPt represents 48.5% of the
total output trace for the <64x4, 256> configuration.

By analyzing the mSCt we observe that the upper address
bits of the starting address (SA) field rarely change. To take

advantage of this property we slightly modify our BASE
compressor as follows. An additional u-bit register called
LVSA is added to record the u upper bits of the SA field from
the last miss trace record. The upper u-bit field of the SA of
each incoming miss trace record is compared to the LVSA. If
there is a match, the new miss trace record will include only
the lower (32-u) address bits. Otherwise, the whole 32-bit
address is emitted and the LVSA register is updated accord-
ingly. To distinguish between these two cases, an additional
bit is needed in the trace record to indicate whether all or only
the lower address bits are emitted. Note that SA[1:0] is al-
ways ‘00’ for the ARM ISA and is omitted from the mSCt.
For the ARM Thumb ISA only SA[0] can be omitted.

Table 2. Trace port bandwidth requirements for the BASE scheme.

Program/Size 32 64 128 256 512 1024
adpcm_c 0.019 0.019 0.019 0.019 0.019 0.019
bf_e 0.405 0.359 0.357 0.384 0.410 0.437
cjpeg 0.204 0.138 0.131 0.134 0.140 0.146
djpeg 0.125 0.093 0.075 0.070 0.072 0.075
fft 1.492 1.007 0.616 0.354 0.256 0.219
ghostscript 1.585 0.823 0.232 0.227 0.229 0.234
gsm_d 0.103 0.094 0.086 0.077 0.076 0.075
lame 0.129 0.108 0.102 0.101 0.100 0.093
mad 0.295 0.136 0.129 0.124 0.124 0.128
rijndael_e 0.743 0.284 0.192 0.099 0.105 0.111
rsynth 0.382 0.245 0.175 0.116 0.115 0.122
sha 0.178 0.097 0.101 0.106 0.111 0.116
stringsearch 1.369 0.938 0.472 0.387 0.401 0.382
tiff2bw 0.151 0.135 0.104 0.087 0.083 0.084
tiff2rgba 0.114 0.077 0.045 0.040 0.040 0.040
tiffdither 0.332 0.249 0.190 0.164 0.157 0.160
tiffmedian 0.085 0.077 0.066 0.058 0.055 0.056
WAverage 0.426 0.272 0.174 0.142 0.136 0.135

The experimental analysis shows that this enhancement re-

duces the mSCt component by 18% for the <32x4, 128> con-
figuration when u=14. It should be noted that the reduction in
the total output trace size is much more significant for smaller
configurations and insignificant for larger configurations
(where the miss trace component is relatively small).

The redundancy in the hLSPt component can be reduced
using a counter that counts the number of consecutive bits
with value ‘1’. This counter is called one length counter
(OLC). Long runs of ones are replaced by the counter value
preceded by a new header. The number of bits used to encode
this trace component is determined by the counter size.
Longer counters can capture longer runs of ones, but too long
a counter results in wasted bits. Our analysis of the hLSPt
component shows a fairly large variation in the average num-
ber of consecutive ones, ranging from 5 in ghostscript and fft
to hundreds in adpcm_c and tiff2bw. In addition, these se-
quences of consecutive ones may vary across different pro-
gram phases, implying that an adaptive OLC length method
would be optimal.

The adaptive one-length counter (AOLC) dynamically ad-

justs the OLC size to the program flow characteristics. A 4-
bit saturating counter monitors the hLSPt component and is
updated as follows. It is incremented by 3 when the number
of consecutive ones in the hLSPt trace exceeds the current
size of the OLC. The monitoring counter is decremented by 1
whenever the number of consecutive ones is smaller than half
of the maximum OLC counter value. When the monitoring
counter reaches the maximum (15) or minimum (0) values, a
change in the OLC size occurs.

Using an AOLC necessitates a slight modification of the
trace output format. We use a header bit ‘1’ that is followed
by log2(AOLC Size) bits. The counter size is automatically
adjusted as described above. Of course, the software de-
compressor needs to implement the same adaptive algorithm.
We call the scheme with the LVSA and AOLC optimizations
eBASE.

C. Enhancements for Reducing Size
The LVSA enhancement could be slightly modified to re-

duce the overall size of the trace module implementation. For
example, the uppermost 12 bits do not change with a prob-
ability of 0.99 in our benchmarks. Consequently, we may opt
not to keep the upper address bits SA[31:20] in the stream
cache, thus reducing its size. The upper address bits are han-
dled entirely by the LVSA register. This requires one addi-
tional modification. In the LVSA enhancement, we only con-
sidered trace records in the miss trace (mSCt), whereas here
we need to continuously update the LVSA register, regardless
of whether we have a hit or a miss in the SC and LSP struc-
tures. Moreover, a miss in the LVSA register results in send-
ing a stream descriptor to the output trace; the SC and LSP
are updated accordingly. To determine the optimal number of
upper bits that should be handled by the LVSA predictor, we
need to consider the stream cache performance. Reducing the
number of address bits that are stored in the stream cache
reduces its size but may result in an increased stream cache
miss rate and thus increase the trace port bandwidth. A modi-
fied eBASE with the uppermost 12 address bits handled by
the LVSA appears optimal on our benchmarks. We call this
final scheme rBASE.

D. Putting it all Together
Fig. 4 shows the trace port bandwidth for a range of trace

module configurations and the three presented schemes. The
eBASE scheme reduces the trace port bandwidth for small
trace module configurations, predominantly due to a reduc-
tion in the miss trace size. For example, the average trace port
bandwidth for eBASE with the <8x4, 32> configuration is
0.35 bits/ins, compared to 0.43 bits/ins for BASE. Similarly,
for large trace module configurations the hit trace is signifi-
cantly reduced. For example, eBASE with the <128x4, 512>
configuration requires 0.11 bits/ins instead of 0.14 bits/ins for
BASE. Some benchmarks benefit significantly from the

AOLC enhancement, especially those with a high hLSP rate,
such as adpc_c (over 14 times higher compression), tiff2bw
(3.45), and tiff2rgba (3.67).

The rBASE scheme requires slightly higher bandwidth on
the trace port than eBASE. For example, the trace module
configuration <32x4, 128> achieves 0.15 bits/ins at the trace
port versus 0.146 bits/ins for the eBASE scheme. However,
this degradation is less than 3%, an acceptable tradeoff for
significant savings in the size of the stream cache.

To underline the effectiveness of the proposed mechanism,
we compare it with the software compression utility gzip that
implements the Lempel-Ziv compression algorithm. It should
be noted that gzip uses large memory buffers and implement-
ing it in hardware would be cost-prohibitive. We use the
stream descriptor sequences as an input for gzip. The gzip
utility achieves a trace port bandwidth of 0.031 bits/ins with
small buffers (gzip -1) taking stream descriptors as inputs.
We also evaluated a recent adaptation of the LZ algorithm for
compressing program execution traces [6]. It achieves 0.47
bits/ins on our benchmark suite with a sliding dictionary of
256 12-bit entries at a total cost of 51,678 gates. Using a very
large buffer of 8192 12-bit entries, this scheme approaches
0.1 bits/ins, which is comparable to our proposed mechanism,
but requires much larger resources

To estimate the size of the proposed trace module, we need
to include the size of all structures, including the SC, the
LSP, the stream buffer, and the output trace buffer. The out-
put trace buffer capacity should be such that the CPU never
has to stall due to program tracing and that no trace records
are lost. We assume a single-bit trace port that can output one
bit per CPU clock cycle. Using a cycle-accurate processor
model that corresponds to Intel’s XScale CPU we find that
the worst case in our benchmark suite is ghostscript (80 bits
in the trace output buffer). The estimates of the total storage
requirements in the trace module with the <32x4, 128> con-
figuration are as follows: it is equivalent to 771 bytes of stor-
age for BASE, 775 bytes for eBASE, and 582 bytes for
rBASE.

IV. CONCLUSION
This paper describes a new low-cost hardware mechanism

for the real-time compression of program execution traces.
The mechanism exploits temporal and spatial locality of pro-
gram streams using two new structures called stream cache
and last stream predictor to achieve compression ratios that
are over six times higher than commercial state-of-the-art
solutions’. We introduce several enhancements to the BASE
scheme and explore their effectiveness. Our smallest scheme
rBASE achieves compression ratios between 32,000:1 and
58:1 on MiBench, with an average of 213:1 (which translates
into 0.15 bits/ins on the trace port) at the cost of 582 bytes of

state and some extra logic.

Trace Port Bandwidth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

32 64 128 256 512 1024

SC and LSP size

bi
ts
/i
ns
.

BASE

eBASE

rBASE

Fig. 4. Trace port bandwidth requirements for BASE, eBASE, and rBASE.

REFERENCES
[1] ARM, "Embedded Trace Macrocell Architecture Specifi-

cation."
[2] MIPS, "The Pdtrace™ Interface and Trace Control Block

Specification," 2008.
[3] Infineon, "Tc1775 System Units 32-Bit Single-Chip Mi-

crocontroller," 2001.
[4] IEEE-ISTO, "The Nexus 5001 Forum Standard for a

Global Embedded Processor Debug Interface," IEEE- In-
dustry Standards and Technology Organization (IEEE-
ISTO), 2003.

[5] W. Orme, "Debug and Trace for Multicore SOCs," ARM
White Paper, 2008.

[6] C.-F. Kao, S.-M. Huang, and I.-J. Huang, "A Hardware
Approach to Real-Time Program Trace Compression for
Embedded Processors," IEEE Transactions on Circuits
and Systems, vol. 54, pp. 530 - 543. 2007.

[7] M.-C. Hsieh and C.-T. Huang, "An Embedded Infrastruc-
ture of Debug and Trace Interface for the DSP Platform,"
45th Design Automation Conference, 2008.

[8] M. Milenkovic, A. Milenkovic, and M. Burtscher, "Algo-
rithms and Hardware Structures for Unobtrusive Real-
Time Compression of Instruction and Data Address
Traces," Data Compression Conference, pp. 283-292,
2007.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, "MiBench: A Free, Commer-
cially Representative Embedded Benchmark Suite," Work-
shop on Workload Characterization, 2001.

[10] T. Austin, E. Larson, and D. Ernst, "Simplescalar: An
Infrastructure for Computer System Modeling," Computer,
vol. 35, pp. 59-67, 2002.

