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Abstract
The computation nodes of modern supercomputers commonly
consist of multiple multicore processors. To maximize the per-
formance of such systems requires measurement, analysis, and
optimization techniques that specifically target multicore envi-
ronments. This paper first examines traditional unicore met-
rics and demonstrates how they can be misleading in a mul-
ticore system. Second, it examines and characterizes perfor-
mance bottlenecks specific to multicore-based systems. Third,
it describes performance measurement challenges that arise in
multicore systems and outlines methods for extracting sound
measurements that lead to performance optimization opportu-
nities. The measurement and analysis process is based on a
case study of the HOMME atmospheric modeling benchmark
code from NCAR running on supercomputers built upon AMD
Barcelona and Intel Nehalem quad-core processors. Applying
the multicore bottleneck analysis to HOMME led to multicore
aware source-code optimizations that increased performance by
up to 35%. While the case studies were carried out on multichip
nodes of supercomputers using an HPC application as the target
for optimization, the pitfalls identified and the insights obtained
should apply to any system that is composed of multicore pro-
cessors.

1 Introduction
The compute nodes of modern servers and supercomputers are
typically constructed with multicore processors. However, many
application codes have been migrated to these architectures with
little or no optimization for the multicore environment. As a re-
sult, these programs can often only use a fraction of the available
cores effectively and may not obtain maximum performance
on the cores they do utilize. While performance optimization
for multicore chips is receiving intense attention, a systematic
methodology is still lacking. Detailed measurement and analy-
sis studies are scarce, even though it is well established that the
analyses and optimizations for performance bottlenecks on uni-
core chips are not sufficient for multicore processors [8]. Multi-
chip nodes, where the chips are multicore processors, add even
more complexity to performance analysis through NUMA and
interference effects. As a result, diagnosis of performance bot-
tlenecks on multicore-based systems is difficult and laborious,
as are multicore targeted optimizations.

Early source-code optimizations tended to be CPU centric.

Such optimizations focus on reducing computation, by employ-
ing strategies of lowering branch costs through unrolling or
memoizing previously computed values. Over time, the in-
creasing importance of the memory latency and bandwidth made
data-access issues dominate. Typical optimizations for unicore
chips are core-local in scope and target better use of caching
through blocking arrays and padding data structures. Other op-
timization techniques involve reading and writing data sequen-
tially or with constant strides to aid prefetchers. Comparatively
little work has been done on non-local memory optimization
techniques.

Due to shared resources in the memory hierarchy, multicore
applications tend to be limited by off-chip bandwidth. At first
glance, other optimization strategies would seem moot as all
applications would simply run at the speed of memory. How-
ever, we found that when the memory system is saturated, the
order and pattern of data accesses becomes a performance-
determining factor. We call this state of operation the multi-
core regime. As discussed in Section 3, the same optimization
can yield very different results in unicore and multicore regimes.
For example, many optimizations that increase performance in
the multicore regime can slow down uniprocessor code.

This paper makes the following contributions.

• It examines traditional unicore metrics such as cache miss
rates and demonstrates how they can be misleading in a
multicore system.

• It presents an in-depth study of performance bottlenecks
originating in multicore-based systems. The study iden-
tifies and characterizes three important bottlenecks (shared
L3 cache capacity, shared off-chip memory bandwidth, and
DRAM page conflicts) that are exacerbated by multicore
chip architectures.

• It describes performance measurement challenges that arise
in multicore systems including unpredictable and unrepeat-
able memory behavior, execution skew across cores, and
measurements that disturb program behavior. It suggests
remedies for each of these challenges and incorporates the
these remedies into a systematic process for multicore spe-
cific performance measurment.

• It introduces a source-code optimization called loop
microfission that is designed specifically to alleviate



multicore-related performance bottlenecks. We observed
a performance increase of up to 35% when applying mi-
crofission to a well-known supercomputing application.

We conducted this study using the HOMME atmospheric
modeling benchmark code from NCAR, a complex application,
running on supercomputers built upon AMD Barcelona and Intel
Nehalem quad-core processors. While our studies were carried
out on this single application, the process for measurement and
optimization derived and the insights obtained apply broadly to
systems comprising nodes of either single or multiple multicore
chips that are used for executing computations that have pre-
dictable access patterns and good spatial locality.

The rest of the paper is organized as follows. Section 2 de-
scribes our methodology. Section 3 introduces performance is-
sues that arise in measurement and optimization of multicore
chips and multichip nodes. Section 4 presents the optimizations
and results. Section 5 sketches related work. Section 6 provides
conclusions and ideas for future work.

2 Methodology
The results reported in this paper are based on experimental
measurements on two compute clusters: Ranger, a half petaflop
AMD Barcelona-based supercomputer, and Longhorn, an Intel
Nehalem-based supercomputer, both located at the Texas Ad-
vanced Computing Center. The HPC application we chose for
our case studies is the High Order Method Modeling Environ-
ment (HOMME), developed by NCAR for their Climate Model
2 [10]. We used the performance tools gprof [9], mpiP [17],
Pin [14], PAPI [21], perfctr [22], TAU [24], HPCToolkit [1] and
PerfExpert [4] as well as the PGI and Intel compilers. This paper
primarily presents our insights and results; additional data and
details can be found in the accompanying technical report [7].

2.1 Systems
Ranger [23] consists of 3,936 16-way SMP compute nodes, each
housing four 2.3 GHz AMD Barcelona-class Opteron quad-core
processors for a total of 15,744 processors or 62,976 cores, and
a theoretical peak performance of 579 teraflops. Each node has
32 GB of DRAM, of which each quad-core chip controls 8 GB.
Nodes are connected by a 1 GByte/second InfiniBand network.

Longhorn [13] is a hybrid system with 256 nodes. Each node
contains two quad-core Nehalem-EP processors operating at 2.5
GHz, between 48 GB and 144 GB of DRAM, and two NVIDIA
Quadro FX 5800 GPUs. The nodes are connected via a QDR
InfiniBand interconnect. For this study, only the 2,048 Nehalem
cores were used since our focus is on performance of homoge-
neous multicore nodes.

Ranger’s Barcelona chips support almost 500 hardware per-
formance counter events. Moreover, Ranger has a wide spec-
trum of performance tools installed, which is why we chose it
as our primary host for measurements. However, the Barcelona
chips have known core scalability issues [15], whereas the Ne-
halem chips were designed to overcome these issues. Hence, we
chose Longhorn as the secondary host to ensure that our meth-

ods, analyses, and insights extend to other processor architec-
tures.

2.2 HOMME Benchmark
Many HPC applications can be categorized by three general
computational patterns. Regular parallel applications have pat-
terns of computations and memory references that tend to be
predictable. Examples include finite difference PDE solvers,
dense linear algebra solvers, and stencil codes. Irregular paral-
lel applications have dynamically changing data structures, such
as adaptive meshes, to handle levels of detail or time-varying ge-
ometry, but may still maintain reasonable locality through strate-
gies such as irregular blocking. Graph parallel applications
have their computation time dominated by graph traversal and
no spatial locality is guaranteed. Examples arise in bioinformat-
ics and the intelligence community. While load balancing and
communication are classical performance bottlenecks for irreg-
ular and graph-based applications, as will be shown later, we are
interested in key intranode scaling issues that are readily present
in all three categories of parallel applications.

For this study, we chose to employ a single large-scale bench-
mark (HOMME), rather than study a suite of small-scale ker-
nels. HOMME contains dozens of functions and a wide spec-
trum of loop structures implementing numerous algorithms.
Therefore, we believe that the measurements and analyses ex-
ecuted on HOMME span a substantial fraction of the interesting
space for regular HPC applications. HOMME is widely used
by the supercomputing community and is one of the five HPC
Challenge benchmarks [19] that are required for supercomputer
acceptance testing.

HOMME (High Order Method Modeling Environment) [10]
is an atmospheric general circulation model (AGCM) that pro-
vides 3D atmospheric simulation similar to the Community At-
mospheric Model (CAM). The code consists of two compo-
nents: a dynamic core with a hydrostatic equation solver and
a physical process module coupled with sub-grid scale models.
HOMME is based on 2D spectral elements in curvilinear co-
ordinates on a cubed sphere combined with a second-order fi-
nite difference scheme for the vertical discretization and advec-
tion. It is written in Fortran 95 and is parallelized with both MPI
and OpenMP. However, we are using the benchmark version of
HOMME, which uses only MPI.

2.3 HOMME Scaling
HOMME is a very sophisticated and diverse example of a “reg-
ular” HPC application. It has been designed to scale well to
tens of thousands of nodes and is highly optimized for com-
putation and locality. In fact, it exhibits near perfect weak in-
ternode scaling (computation per core is constant) to tens of
thousands of cores, and excellent strong scaling (total compu-
tation is constant), requiring a 900-fold increase in node count
before the efficiency drops to half.1 Despite all these advan-
tages, HOMME’s intrachip/intranode scalability, both weak and

1If p is the number of cores and n is the total size of the data, “strong scaling”
means n(p) = n and “weak scaling” means n(p) = np.
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Figure 1: With fixed problem size, HOMME’s node count can
be increased 900 fold before the computation efficiency halves.
The relative cost of communication increases linearly. Elements
Per Core (EPC) describes the work done per core.

strong, can be three orders of magnitude lower than its internode
scalability.

HOMME is only locally regular. The cube mapped sphere is
specified at a certain resolution, and that grid is then broken into
elements consisting of 8x8x96 regular meshes. Each element
stores physical flow properties as a structure of arrays, requiring
48 KB per value that a given function accesses and up to 9 MB
per element. A distributed, general graph connects each element
with its four neighbors. When running, each active core is as-
signed a list of elements to process. Each core computes phys-
ical quantities for each element, then in a communication step
exchanges boundary data with four neighboring elements. The
available memory per compute node limits the possible amount
of work per core from a single element up to 801 elements. We
use the metric elements per core (EPC) to indicate the amount
of work each core performs for a particular mapping of the ap-
plication to the available cores.

To examine the strong internode scalability of HOMME, we
keep the problem size fixed at the standardized “large” reso-
lution of 1,536 elements, and then vary the number of active
Ranger cores from one to 1024. We use 4 cores per node (1 core
per quad-core chip) to isolate inter-node from intra-node scaling
effects. The solid line in Figure 1 shows that, as the core count is
increased and work per core drops, the efficiency (performance
relative to perfect linear speedup) drops relatively slowly. The
ratio of communication time to computation time increases lin-
early as work is spread across more cores. That the efficiency
drops slowly as the communication overhead increases demon-
strates the excellent strong scaling characteristics of HOMME
across multiple nodes.

To examine weak scaling, we chose an input data size as close
as possible to the standardized “standard” workload of 54 el-
ements per core. Loads other than 54 elements per core were
sometimes necessary to ensure that the total number of elements
is divisible by the number of cores, removing issues of load bal-
ancing and interference. We found that HOMME’s internode
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Figure 2: With intranode scaling, HOMME’s efficiency falls be-
low 15% when all 16 cores are used on a fixed problem size.
Even weak scaling performance still drops by about 40%.

weak scaling is ideal, never falling below 94% of linear speedup.
This scalability is a result of using only nearest neighbor com-
munication.

For intranode strong scaling, we chose a fixed resolution that
roughly centered on the standard work load of 54 elements/core.
For weak scaling, we chose a constant 40 elements/core, the
closest we could get to 54 elements/core without imbalancing
the load. Sensitivity tests showed that intranode scaling proper-
ties were strongly independent on the load per core.

Figure 2 shows the strong and weak intra-node scaling profile
from 1 to 16 cores in a four-chip node. For weak intranode scal-
ing, the speedup at 4 cores per chip is 60% of linear and falls
off rapidly as more cores are used. For strong intranode scal-
ing, performance increases very slowly when increasing cores
per node, and provides little performance benefit beyond 4 cores
per node. Regardless of the scaling regime (weak versus strong),
improving single-node multicore performance would provide a
substantial benefit to the performance of the application, inde-
pendent of the inter-node scaling characteristics.

Our primary motivation in this paper is to investigate causes
that prevent HPC applications with excellent conventional scal-
ing properties from being able to utilize entire multicore super-
computers. If HPC applications cannot make good use of quad
core chips now, how will they make use of 8, 12, or even 16
cores per chip in the future?

3 Multicore Performance Analysis
This section explores the ways that conventional performance
bottlenecks, metrics, and measurement error may be qualita-
tively and quantitatively different for multicore processors. Sec-
tion 3.1 examines the basics of good multicore performance
and why classical unicore performance metrics may be mislead-
ing. Section 3.2 describes three fundamental architectural bot-
tlenecks unique to multicore chips that are the primary barriers
to intranode scaling, new performance metrics needed to classify
each bottleneck, and some common code styles that may exac-
erbate them. Section 3.3 describes how measurement artifacts



change with multicore chips, providing a detailed categoriza-
tion of memory measurement issues, the impact of core skew,
and the increased importance of lightweight measurements. The
final section summarizes a systematic approach to multicore per-
formance analysis.

3.1 Multicore Performance Metrics
This section introduces a fundamental approach to measuring
multicore performance along with comments about general per-
formance metrics. It then demonstrates why traditional unicore
performance metrics, such as L1 and L2 cache miss rates, do not
adequately capture multicore memory issues.

3.1.1 Isolating intranode scaling effects

To simplify our experimental search space, we first determined
how small a subset of Ranger we could employ to study intra-
node scaling. We varied both the number of nodes and the num-
ber of cores per node, and found that the efficiency (performance
as a function of total cores) was largely independent of the num-
ber of nodes and extremely dependent on cores per node. This
feature is a testament to the internode scalability of HOMME
and enables studying intranode scaling using as few as four 4-
socket nodes. For the rest of the paper, we employ a total of 16
threads and spread them across 1 to 4 nodes, keeping the total
work constant. We use a density scaling metric in which core
density is defined as the number of cores used per active socket;
core density varies from 1 to 4 in our experiments. We then
used gprof to determine which of HOMME’s procedures con-
tribute most to the execution time and which of these functions
suffer most from intrachip scaling issues.

3.1.2 Metrics for “good” performance

The performance of each function of an HPC application can
be characterized by three rate metrics: Flops Per Cycle (FPC),
the rate of algebraic computation; Instructions Per Cycle (IPC),
how hard the CPU is working; and Loads Per Cycle (LPC), how
hard the memory system is working. If any of these metrics ap-
proach the expected maximum for that architecture, then perfor-
mance is good and further improvement must be accomplished
through algorithmic optimizations. Advertised peak rates for
performance metrics in most chips are well-known to be unre-
alistic. However, reasonably attainable peak rate for application
programs can be derived from targeted micro-benchmarks writ-
ten in high-level languages; these empirically measured rates
should be used for assessing performance of application codes.
Note that the ratio of these three metrics to each other is fixed by
the dynamic instruction mix, so generally only one of them can
reach the hardware’s maximum. If all three metrics are sub par,
then in most cases the performance bottleneck is in the memory
system.

Figure 3 shows these three metrics on Ranger for the most im-
portant functions in HOMME. For most programs, a combina-
tion of a high IPC, a high FPC and a high LPC indicate good per-
formance. An IPC value of 2 is very good for Barcelona chips.
In the middle of the graph are three functions with dramati-
cally higher values on all performance metrics that are CPU-
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Figure 3: Performance metrics for HOMME’s major functions.

bound. The highest performance levels reached by these three
CPU-bound functions is roughly 1.8 IPC, 1.3 FPC, and 0.5 LPC.
These functions also simultaneously achieve the highest mem-
ory performance (LPC) as well. The remaining eight functions
are memory bound, with an FPC of 0.1 or less and similarly low
IPC and LPC. The multicore optimizations described in Sec-
tion 4, which are aimed at improving the LPC, increase the FPC
value to 0.25 FPC, still far below the reasonably attainable peak
rate but more than a factor of two over the FPC of the original
code.

3.1.3 Traditional unicore metrics are insufficient

In traditional performance analysis, L1 and L2 cache miss ratios
typically provide insight into suspected memory bottlenecks.
Furthermore, computation optimizations are often assumed to
be irrelevant to performance, since the processor is waiting idly
for data. However, we found that on modern multicore systems,
these core local performance metrics were not good indicators
of multicore performance issues for three reasons.

L1 miss ratios may be misleading: A low L1 cache miss
ratio by itself is not indicative of good memory performance
on many chips because of the way in which hits are counted.
When a load accesses a missing cache line, it counts as a miss,
but all subsequent loads from that same cache line (which typ-
ically holds eight double-precision floating-point values) count
as a hit, even before the hardware has been able to bring the
cache line into the cache. By itself, this way of counting low-
ers the effective miss ratio to 12.5%, assuming eight values per
cache line, for a regular stride-one application with all misses. In
the presence of hardware prefetches, all accesses to a cache line
that is not yet in the cache may be counted as hits, resulting in
no L1 misses being recorded at all. Finally, once the (relatively
small) maximum number of outstanding loads supported by the
CPU has been reached, all further loads are stalled. The subse-
quent delay can be at least as long as a cache miss without being
counted as one. As a consequence, a modern application can
have great L1 performance but severe bottlenecks lower in the
memory hierarchy. In fact, prefetching makes it fairly common
to see functions with nearly 100% L1 cache hits actually fetch-
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Figure 4: Miss ratio variability of major HOMME functions
across the entire memory hierarchy.

ing every value from DRAM and running at DRAM throughput
rates. Due to bandwidth limitations of current CPUs, such direct
streaming algorithms often suffer a 10-fold slowdown relative to
the expected performance.

L2 cache miss ratios may not be predictive: We initially
tried to infer memory bottlenecks by looking at the way the core
density affected the L2 miss ratios. We assumed that if the L2
miss ratio was low or did not vary much with density, the system
did not likely suffer from significant L3 and DRAM scalability
problems. This assumption turned out to be false for functions
with poor intrachip scalability, but could be corrected by look-
ing at a few additional metrics such as L3 hit and miss ratios
and DRAM page hit ratios. We found that the actual L2 traffic
can be significantly higher due to prefetching, load replays, and
coherence snoops, which we observed to account for as much
as 80% of the L2 bandwidth, even in pure MPI codes without
any direct data sharing between processes. Figure 4 illustrates
the miss rates at all levels of the memory hierarchy for the most
important functions in HOMME. Correlating the heights of the
bars reveals two important multicore effects: (1) L3 and DRAM
miss rates are much higher than L1 and L2 miss rates and (2) the
degree of L1 and L2 miss rates is not predictive of L3 or DRAM
miss rates, and in fact is often uncorrelated with intrachip scal-
ability. Miss rates increase further down the memory hierarchy,
since locality is being skimmed by the higher caches.

Conventional CPU optimizations may be counterproduc-
tive: Applications are typically memory bound when multicore
performance problems are present. However, CPU metrics and
optimizations are still relevant because in the multicore regime,
the exact order of load instructions has a first-class effect on per-
formance. As such, many CPU unicore optimizations actually
have the potential to hurt performance in the multicore regime.
Figure 5 shows compiler flag effects on a baseline and aggres-
sive multicore fission and blocking optimization on PreqRobert,
as described in Section 4. Aggressive compiler optimizations
such as “-O3” nearly doubled performance in the unicore regime
of 1 core per chip, but the combination of optimizations drasti-
cally reduced performance in the multicore regime at 4 cores per
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Figure 5: Effect of compiler optimization flags on Longhorn.
“Opt” is a multicore optimization involving microfission and
blocking arrays for the L1 cache.

chip by creating irregular access patterns. This example quan-
tifies the degree to which CPU optimizations may behave dif-
ferently depending on core density. The degraded performance
stemming from the irregular access patterns generated by higher
levels of unicore compiler optimization is why HPC users com-
monly use the -O2 instead of the -O3 optimization level.

In our experiments with the two compilers available on
Ranger (PGI and Intel’s icc 10.1), we also found that different
compilers produce code with very different memory access pat-
terns from the same source code. Specifically, we observed that
the performance metrics for individual functions may vary by up
to 40% between compilers, and metrics like cache and DRAM
miss rates can vary by 3x.

3.2 Multicore Bottlenecks
This section describes three main architectural resources that we
found to cause scalability issues in multicore chips: L3 cache ca-
pacity, off-chip bandwidth, and DRAM banks. This section also
discusses how to measure and differentiate the effects of each of
these bottlenecks, an important process as the optimizations for
each bottleneck can differ.

Generally, issues in the memory system flow downwards: L3
capacity issues increase off-chip bandwidth demands, and off-
chip bandwidth may exacerbate DRAM bank misses. However,
it is still possible to experience any of these issues as the primary
bottleneck.

3.2.1 L3 cache capacity

As seen in the previous section, the causes of poor intrachip scal-
ing cannot be resolved from only L1 and L2 miss ratios. Further
complicating measurements, the performance counters needed
for L3 measurements and beyond are typically not supported di-
rectly in general purpose performance tools such as PAPI. We
were able to use native hardware counters as defined in proces-
sor user guides [2, 11]. Fortunately, all of the tools we used for
our case studies support passing native counter IDs to the hard-
ware.
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Figure 6: Loads Per Instruction: HOMME has an arithmetic in-
tensity typical of HPC programs, with 60%-100% of the instruc-
tions accessing memory in 8 of the 11 most important functions.

Diagnosis: If the L3 miss ratio significantly increases when
going from the minimum to the maximum core density, it is
likely that at least part of the performance problem is the L3
capacity, since each core can now only use a fraction of the
shared cache. Note that the effective cache capacity can fur-
ther be reduced by associativity issues and false sharing between
processes. Since L3 cache misses directly translate into off-chip
(i.e., node-level) bandwidth, applications with L3 capacity is-
sues also tend to have memory bandwidth issues. Common
solutions involve reducing a function’s cache footprint, either
in absolute terms or ephemerally, by using data serially. Some
common pitfalls are listed next.

Storing intermediate values to reduce computation. When
cache capacity is an issue, a good optimization is to reduce the
memory footprint of a function by reducing or reusing tempo-
rary variables and redundant arrays. DRAM streaming speeds
are 10 to 20 times slower than normal instruction execution,
leaving ample time to compute values redundantly instead of
storing them. Interchanging or promoting loops to minimize
passes over the data can boost arithmetic intensity. Although
these types of optimizations are worthwhile, they may be in-
feasible for large programs or when a programmer has limited
familiarity with the code.

Operating on many values at once, instead of one at a
time. An even easier optimization which does not require
knowledge of the code is described in Section 4, in which a tech-
nique we call loop microfission results in drastically reducing the
short term memory footprint of an application without effecting
the algorithm.

3.2.2 Off-chip bandwidth

Off-chip bandwidth is now recognized as a first order bottleneck
with multicore chips. Figure 6 illustrates LPI, or Loads Per In-
struction, for the key functions in HOMME. More than half
of the key functions require a memory access with almost ev-
ery instruction executed. Because the x86 instruction set allows
most instructions to include a memory operand, the LPI metric

can effectively double as compared to a load/store architecture.
HOMME is typical of HPC applications, which commonly have
little reuse of data values and therefore do not benefit much from
a cache hierarchy. The off-chip memory accesses can be esti-
mated by the L3 misses or DRAM data accesses. It can also be
instructive to look at a function’s “taper”, defined as the number
of bytes a given function needs to read per instruction at a given
level of the memory hierarchy, typically off-chip DRAM. Most
studies focus on bytes read from off-chip DRAM per instruc-
tion. Many functions in HOMME require one in three memory
accesses to go off-chip, which can be used to determine the suit-
ability of a given supercomputer to run a given HPC application.

Averages can be misleading. The performance weighted av-
erage for HOMME is just 0.8 bytes/flop off chip, but this av-
erage includes a significant number of functions that have no
off-chip traffic. Peak values are critical to maintaining average
performance, and we therefore recommend studying functions
individually.

Determining a function’s off-chip bandwidth needs re-
quires minimum thread density. The bandwidth requirements
of a function can only be judged when it is running uncon-
strained at one process per chip. If examined at full core density,
it may paradoxically appear that the function’s bandwidth usage
has decreased, yet performance is worse.

Diagnosis: The magnitude of bandwidth bottlenecks, if any,
can be gauged by the amount the function exceeds its share of
off-chip bandwidth when running at 1 core per chip, which is
the total off-chip bandwidth divided by the number of cores per
chip.

3.2.3 DRAM pages

Perhaps the least studied multicore performance bottleneck in-
volves contention over DRAM pages (not to be confused with
OS pages.) A DRAM page represents a row of data that has
been read from a DRAM bank and is cached within the DRAM
for faster access. DRAM pages can be large, 32 KB in the case
of Ranger, and there are typically two per DIMM. This means
that a Ranger node shares 32 different 32 KB pages among 16
cores on four chips, yielding a megabyte of SRAM cache in the
main memory.

Diagnosis: Most systems have straightforward counters to
estimate the total number of DRAM accesses and DRAM page
hits, which may be significantly greater than the number of
L3 misses due to prefetched data. The performance effect of
DRAM page misses has become a first order concern in the mul-
ticore regime due to the following reasons.

DRAM contention can significantly impact performance.
When a DRAM request is outside an open page, the page must
first be written back to DRAM (closed) and the next page read
out (opened), which adds 30 ns (69 cycles at 2.3 GHz) to the ac-
cess time and reduces DRAM performance. As an optimization,
the DRAM controller will attempt to close a row (write back the
results) after a certain amount of time so the next access only
needs to open a row, saving 15 ns. While this represents only
20% of the access time on Barcelona chips, newer processors
have been reducing absolute latency to DRAM, so the impor-



tance of page misses will grow with time. As the number of
cores per node grows, contention will increase, and making ef-
fective use of DRAM pages will be more difficult. More signif-
icant than this individual increase in latency is the reduction in
effective DRAM bandwidth when DRAM bank miss rates are
high. It is not uncommon to have a more than 50% DRAM bank
miss rate when multiple cores contend for banks. While DRAM
controllers have buffers and schedulers to mitigate these issues,
they tend to by myopic due to limited buffer space.

DRAM Optimization is not necessarily complex. Many pa-
pers in the literature have focused on optimizing memory con-
trollers and thread schedulers to reduce DRAM page contention,
but few have explored the potential of employing high-level
code transformations to reduce DRAM conflicts. Managing
DRAM locality at the program source level is difficult because
we cannot easily control where memory is physically allocated,
where those physical pages reside in the node, or when exactly
the cores on a node access different pages. However, high-level
code transformations can alter the locality in the access patterns
to reduce the average number of conflicts and thereby increase
performance. Section 4 illustrates the most important multicore
optimization we found, using specially targeted loop fission to
reduce DRAM page conflicts.

3.3 Multicore Measurement Issues
The previous subsections described what is important to mea-
sure. However, these new scaling and optimization behaviors
resulting from multicore architectural bottlenecks also lead to
performance measurement issues that are not merely different,
but that can be extremely difficult to overcome. This section cat-
egorizes the ways in which multicore measurement issues fun-
damentally differ from traditional performance measurements,
and follows with a description of the disturbance impact of core
skew and techniques required to minimize measurement distur-
bances.

Classical optimizations focus on CPU performance and CPU
monitoring. Their primary metric is speed, and aside from un-
certainty regarding out-of-order execution, timing code could
simply subtract out its own execution time and have minimal
disturbance on running code. Although memory performance
is critical for a wide span of applications ranging from HPC to
databases that tend to have low arithmetic intensity (Figure 6),
multicore scalability issues tend to arise from complex inter-
actions of a hierarchical memory structure contested by many
cores. This observation leads to the following fundamental dif-
ficulties when trying to trace a memory performance issue to its
cause in software.

• Memory effects are highly context sensitive. They depend
on the state of all the caches and DRAM banks in the sys-
tem. The performance of a given function that always per-
forms the same amount of computation will tend to have a
much higher degree of variability, and depend much more
on its calling context, since performance will depend on
the data the calling functions have brought on chip and the
state of the memory system upon entering the function.

• Memory bottlenecks tend to be bursty. This results in ex-
treme local variations in performance that might be hidden
in larger averages.

• Memory interactions are nondeterministic. Just as de-
bugging parallel programs can be hard due to non-
determinism, memory bottlenecks caused by the interac-
tions of threads on the memory system also tend to be non-
deterministic.

• Memory bottlenecks can be highly non-local. Because the
latency of the memory system can be hundreds to thou-
sands of cycles, and because memory access speed is af-
fected by the activities of previous memory operations,
an apparent memory bottleneck often is caused by earlier
functions. Additionally, the natural time skew between the
activities of different cores and chips tend to spread the
range of memory effects far beyond the time of complete
cache turn over, the time it takes for all data in the on-chip
memory hierarchy to be replaced with new data.

• Disturbing memory behavior in the attempt to measure it
is much easier in the multicore regime, due to the diffi-
culty in bracketing memory effects. The influence of a
performance measurement may be felt much later, while
the counter events recorded during the actual timing calls
may have been caused by code in an earlier timing inter-
val or may even have been influenced by a different core
running different code. Any sophisticated timing library
will need to make multiple round trips to main memory to
update counter totals, resulting in time dilations of thou-
sands to millions cycles, which along with such effects as
prefetching and cache interference can create disturbances
in the entire memory system that last for tens of billions of
cycles. More details on this appear in the following sub-
section. For this reason, we have found that developing or
utilizing extremely light weight timing libraries is required
to see an optimization’s effects on the running code and not
simply the optimization’s effects on the timing code.

As a result of these fundamental issues, the notion of a given
function having “average performance characteristics” is less
certain, and the performance effects of the measurements them-
selves are much more difficult to isolate and remove. The next
subsection discusses these issues in more detail and suggests
techniques to overcome them.

3.3.1 Effects of Core Skew

An important performance effect in the multicore regime is what
we call “core skew” effects. Because each core might be in
a slightly different phase of execution, different functions may
be running on different cores at the same time. This effect can
be due to natural drift between synchronizations, such as from
NUMA effects or non-deterministic memory contention, or due
to an intense memory event having a somewhat serializing ef-
fect, pushing the cores further out of phase. Finally, this effect
can be caused by a single core performing unique duties, such
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Figure 7: Core skew causes significant jitter and prolongs dis-
turbances for tens of billions of cycles, making temporal context
critical in measurement.

as printing results or doing performance monitoring, that kicks
that core further out of phase relative to the others. The effect
is that an intense event gets “smeared out” over time, because it
remains in operation from the time the first core starts the sec-
tion until the last core finishes it. At a phase change boundary,
light computational functions may slightly overlap with memory
intensive functions, slowing their performance.

Figure 7 shows all these effects in HOMME. The figure
demonstrates the average execution time of a single function,
PreqRobert, for each major computational timestep, across a
trillion cycle window. These are not short term performance
fluctuations, but averages of hundreds of executions over more
than a billion cycles. In particular, the extreme oscillations
caused by program initialization (not shown on graph) still cause
performance oscillations of 35% (clipped in graph) tens of bil-
lions of cycles later. The latent perturbations are large enough
to throw off total performance averages dramatically. Note that
these perturbations last many times longer than the complete
turnover of all data in the memory system, which occurs many
times per major timestep, and even longer than a single ma-
jor timestep, during which all cores resynchronize execution
through a local barrier.

In addition, because the continuous performance oscillation
(on the order of a few billion cycles, or 3 timesteps on Ranger
and 8 timesteps on Longhorn) is larger than the difference in av-
erage performance, average performance values do not correctly
convey which optimization is better. While this graph demon-
strates background oscillations of just a few percent, we have
observed periodic oscillations up to 20%.

Many people already know to fast forward over the initial-
ization and cache warm-up time. But in the multicore regime,
one must fast forward tens of billions of cycles into regular code
execution for the skew disturbances to die down. It is also crit-
ical to minimize clock skew by having all cores do as similar
operations as possible.

Performance oscillations and extreme perturbation delays

function size % exec time
2,000 cycles or less 20%

2,000 to 10,000 cycles 10%
10K to 200K 15%

200K to 1 million cycles 15%
1 million to 10 million cycles 0%

10 million or more cycles 35%

Table 1: Duration of important HOMME functions

combine and make it critical for performance measurements to
preserve temporal context. The variation spikes on the left side
of Figure 7 are so high that the average performance of many key
functions depends on exactly when the timing starts. This is why
for HOMME, temporal context was much more important than
calling context. Another classic example where temporal con-
text is critical is when touching a page for the first time causes
TLB misses with page initializations taking 25,000 cycles each.
If the system in use does not support huge pages, initialization
can consume a large fraction of execution time.

Because conventional instruction logging is completely im-
practical for functions that recur tens of millions of times a sec-
ond or more, we developed a hierarchical scheme in which per-
formance metrics were averaged over sub millisecond periods,
and then these period averages were used to accumulate statisti-
cal information about variation with time.

3.3.2 Minimizing measurement disturbance

Many measurement tools are very heavyweight, but rely on the
concept of sampling versus explicit measurements. The idea
is to mitigate huge perturbations to the code by only doing the
measurement once in a while. As a result, it is not uncommon
for many tools to dilate execution time several, if not dozens
of times over [1]. While this approach will always work if
only a single measurement is taken during an entire run, it can
lead to serious disturbance issues when averaging many sam-
ples over many functions by completely changing the behavior
of the memory system. This paper has already shown that mem-
ory disturbances can last for billions of cycles. The result is
that perceived bottlenecks and optimization solutions are actu-
ally optimizing the measurement code.

On modern CPUs, cycle latencies are much larger. A single
assembly instruction to read one performance counter takes 9
cycles. Reading 4 counters at once takes 30 cycles and is done
twice per interval. A user function call can take 40 cycles. A
running total must be updated, and in typical HPC functions,
will be flushed from the cache between calls. Even a single
low level user call to PAPI READ to get a performance counter
value takes 400 cycles, and a system call can take 5,000 cycles.
Yet, even these calls are trivial compared to more heavyweight
timing code that may take tens of millions of cycles and com-
pletely disrupt the memory system.

In contrast to this trend, Table 1 shows the distribution of
lifespans of the most important HOMME functions. Roughly
half of HOMME’s run time (45%) is spent in very small func-
tions, with 20% of execution time spent in functions only 2,000



cycles long, less than a single microsecond. Note that only the
largest category in the table includes functions that run for 1 mil-
lisecond or longer. Additionally, short lived functions are called
with extremely high frequency, with some exceeding tens of mil-
lions of calls per second. And the effect of core skew means that
these functions exhibit a large variation in performance charac-
teristics. While we found conventional measurement techniques
would work for relatively large functions taking several millisec-
onds or longer, about half the important HOMME functions re-
quire special measurement care to avoid arbitrarily wrong mea-
surements. This is even more essential when evaluating poten-
tial code optimizations.

The important message is that correct assessment of bottle-
necks requires utilizing multiple performance analysis tools to
get qualitatively correct answers. Higher level measurement
tools, which are simple to use but extremely heavy weight, are
convenient for initial classification and for analysis of long run-
ning functions of tens of milliseconds or more. But once small,
important functions are discovered, proper analysis requires a
more delicate and targeted measurement approach such as cus-
tom PAPI or PerfCtr calls, or using lightweight or targeted tools
like gprof and TAU. We provide a brief summary of our tool
experiences below.

We found gprof [9] was the easiest tool to use and had the low-
est overhead of any available tool aside from our custom PerfCtr
code. gprof uses statistical sampling, but was accurate for all
but the three smallest functions in HOMME. Tau had the low-
est overhead of any explicit sampling tool, and could handle any
kind of sampling context [24]. HPCToolkit had high overhead,
but was the only tool that found code hot spots in arbitrary loop
nests [1]. In fact HPCToolkit was responsible for isolating three
of the top 11 most important code regions. PerfExpert [4, 6] is
a new tool designed to be as easy to use as gprof, and it worked
reasonably well on this task. However, for our most difficult
measurement tasks, we resorted to code instrumentation to mea-
sure performance counters with low enough disturbance to see
meaningful results for the actual code and optimization effects,
instead of just measuring the performance measurement code.
We found we sometimes needed this approach even on medium
sized functions taking up to a million cycles.

3.4 Multicore Analysis Summary
Based on the general challenges highlighted in the previous sec-
tions, we have distilled out the following recipe that provides
a systematic approach to optimizing performance on multicore
systems.

• Begin the analysis in a traditional way, i.e., by determin-
ing a representative run configuration and using a tool like
gprof to identify the most important functions by total ex-
ecution time. Running this test at minimum and maximum
core density will determine the functions with the poorest
intracore scalability.

• Compare the IPC, FPC and LPC values for these functions
at maximum core density to good values for the underlying

system to determine the optimization headroom. For func-
tions with poor performance, gather multicore performance
counter information such as L3 and DRAM miss rates for
minimum and maximum core densities.

• If the L3 miss rates increase with core density, focus on
optimizations that minimize cache footprints or temporary
variables, or serialize data accesses.

• If there are functions that, at minimum core density, greatly
exceed their share of off-chip bandwidth, but capacity is
not an issue, focus on loop interchanges that may allow
greater data reuse, or replace stored data with redundant
computation where possible.

• If there is an increase in DRAM bank miss rates with core
density, focus on rearranging loops to access only a single
array at a time.

• For medium and large functions that take multiple mil-
liseconds or longer to execute per invocation, any conve-
nient measurement tool, such as TAU, HPCToolkit or PAPI
will suffice. Shorter functions require minimal overhead
timing approaches, such as a selective TAU run or PerCtr
code. Averages should be checked for variations at differ-
ent points of the execution.

4 Multicore Optimizations
The goal of performance measurement and analysis is usu-
ally optimization. We consider two categories of optimiza-
tions: algorithmic optimization, in which the algorithms are
changed, and source-code optimizations, which are typically lo-
cal to a loop nest or function and leave the algorithm unchanged.
Source-code optimizations often require little knowledge of the
algorithm and are simpler to implement. Some source-code op-
timizations can be automatically applied by the compiler.

The previous section identifies and establishes procedures for
measuring and analyzing three multicore-specific performance
bottlenecks: L3 capacity, off-chip bandwidth, and DRAM page
misses. Algorithmic optimizations for alleviating these bottle-
necks include making an algorithm more computationally heavy
or helping reduce off-chip bandwidth and bus contention. But
algorithmic optimizations often require more detailed program
comprehension, spread across large code sections, and may not
be portable across applications. Therefore, we concentrate on
source-code optimizations.

The most effective local multicore optimization we found is
microfission, which is a specialization of two well-known com-
piler optimizations, loop fission and loop fusion [3]. This opti-
mization first splits (fissions) complex loops that reference mul-
tiple arrays into simple loops such that no more than two in-
dependent arrays are accessed in each loop nest, and no more
than one array is brought in from main memory per loop nest.
(Each loop nest is of the form C[i] = f(C[i], X[i]), where C[i]
is cached and X[i] is streamed in.) Then, wherever possible, the
optimization combines (fuses) loop bodies that operate on the
same two arrays. For example, Figure 8 shows a key loop in



do k=1,nlev
do j=1,nv
do i=1,nv
T(i,j,k,n0) = T(i,j,k,n0) + smooth*(T(i,j,k,nm1) &

- 2.0D0*T(i,j,k,n0) + T(i,j,k,np1))
v(i,j,1,k,n0) = v(i,j,1,k,n0) + smooth*(v(i,j,1,k,nm1) &

- 2.0D0*v(i,j,1,k,n0) + v(i,j,1,k,np1))
v(i,j,2,k,n0) = v(i,j,2,k,n0) + smooth*(v(i,j,2,k,nm1) &

- 2.0D0*v(i,j,2,k,n0) + v(i,j,2,k,np1))
div(i,j,k,n0) = div(i,j,k,n0) + smooth*(div(i,j,k,nm1) &

- 2.0D0*div(i,j,k,n0) + div(i,j,k,np1))
end do

end do
end do

Figure 8: Loops in HOMME typically iterate over many differ-
ent arrays at the same time (code shows loop from PreqRobert
update).

do k=1,nlev
do j=1,nv ! Load T(i,j,k,n0) into cache
do i=1,nv ! May need to block across all loops in T
T(i,j,k,n0) = (1.0 - 2.0*smooth) * T(i,j,k,n0)

end do
end do

end do

do k=1,nlev
do j=1,nv
do i=1,nv
T(i,j,k,n0) = T(i,j,k,n0) + smooth * T(i,j,k,nm1)

end do
end do

end do

do k=1,nlev
do j=1,nv
do i=1,nv
T(i,j,k,n0) = T(i,j,k,n0) + smooth * T(i,j,k,np1)

end do
end do

end do

Figure 9: Applying microfission to the first line of the loop body
in Figure 8. At any one time, one array stays in the private cache
while a second array is streamed in.

HOMME that accesses four different arrays and 24 different ar-
ray sequences in a single loop. Figure 9 shows how the first line
of the loop body is broken up so that each time only one array
is brought into the private cache and at most one array is kept in
the private cache.

This optimizations offers two critical benefits to code execut-
ing on a multicore chip or multichip node. First, it reduces the
loop-level working set to two arrays. This may significantly re-
duce L3 cache misses. Second, it reduces the total number of
independent locations being requested from the memory system
across all the cores in a node. The result is a reduction in the
number of DRAM page misses, while empowering the memory
controllers to batch requests more intelligently. Finally, compil-
ers are good at optimizing small loop bodies and thus end up
producing better code once microfission has been applied.

A practical complication is that modern compilers are “smart”
enough to fuse small loops and undo the optimization. To
save the microfission optimization from such compiler trans-
formations, we encapsulate each micro-loop in a separate func-
tion. While this process introduces a substantial CPU overhead
(which could be avoided by better control of compiler optimiza-
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Figure 10: Effect of performing the microfission optimization:
L3 miss rate and off-chip BW cut in half, DRAM page hits more
than doubled, and performance increased by 35%

tion), it still improves performance. This result clearly suggests
defining a compiler switch or pragma to disable loop fusion.

One important assumption of microfission is that two arrays
fit completely in one core’s share of the on-chip caches. For
the HOMME data sets used, this is the case, as each array for
a single blocked element takes up just 48KB. If the arrays were
too large to fit in the caches, blocking would be necessary.

The performance effects of microfission are illustrated in Fig-
ure 10 as measured on Ranger. The second set of bars (L2 MR)
show that the L2 miss rate is essentially unaffected, increasing
slightly from 7.4% to 7.9%, despite the increased private cache
bandwidth incurred by the optimization. This confirms that pri-
vate cache bandwidth is ample to support the lowest arithmetic
intensity HPC codes, and that microfission is a multicore opti-
mization having minimal effect on individual cores. The next
bars to the right (L3 MR) illustrate the reduction in contention
for shared on-chip resources. L3 miss rates, typically above 50%
for HPC applications, are cut in half from 66% to 33% due to
the local drop in working set size. Off-chip bandwidth needs
are reduced accordingly. The DRAM page hit rate (bars labeled
Page HR), previously below 20%, is 2.5 times as high, breaking
the 50% mark, while the page miss rate (Page MR) is down from
53% to 25%. DRAM conflict miss rates (Page CR), represent-
ing the worst type of DRAM contention, are down by a more
modest 11% from an already low rate of 27%. As a result of
reducing resource contention, actual performance (the first set
of bars) increased by 33% on Ranger and by 35% on Longhorn.

Microfission also improves intrachip/intranode scaling. Com-
paring the optimized code at 4 cores per chip to the base code
at 1 core per chip, we see a 33% increase in scalability – on
Ranger/Barcelona, the optimized code reaches 78% efficiency at
4 cores per chip and actually manages to benefit from 3 cores per
chip. On Longhorn/Nehalem, the optimized version has 10%
better intrachip scaling properties over the unoptimized version.
However, comparing the optimized version at 4 cores per chip
over the unoptimized base at 1 core per chip, the efficiency in-



creases to 58%, a 42% improvement in intrachip scalability that
is able to benefit from all 4 cores.

The computational pattern that enables microfission, i.e., mul-
tiple terms in an equation discretized on the same grid, is com-
mon across regular HPC applications so that microfission should
enhance the performance and scalability of many such appli-
cations. The detailed measurement and analysis of the perfor-
mance of HOMME on multicore chips and the success of mi-
crofission suggests some guidelines for coding regular applica-
tions for multicore chips: (i) employ structures of arrays rather
than arrays of structures, (ii) group all computations on a logical
data structure in the same loop as much as possible, (iii) mini-
mize the number of temporary arrays that are declared and used,
and (iv) adjust array/loop block sizes to fit in the caches that are
characteristic of multicore chips.

5 Related Research
The literature is full of work on optimizing specific scientific
kernels for multicore CPUs, including stencil computations [5],
sparse matrix-vector multiplication [25], and even a Lattice-
Boltzmann computation [20]. Development of the STREAM
benchmark suite [15, 16], which demonstrates highly optimized
memory performance, was achieved based on detailed architec-
tural knowledge. Mytkowicz et al. analyzed SPEC benchmarks
using PAPI to read hardware counters and noted that measure-
ment error due to measurement perturbation, OS context, and
compiler flags can be so significant and unpredictable that cor-
rect performance conclusions cannot be easily drawn [18]. In
fact, our study of a full-scale application in the context of a mod-
ern multicore supercomputer showed almost an order of magni-
tude greater perturbation. Their optimizations are measurement
instead of code based – they recommend running tests over a
wide range of OS parameters and validating any performance
conclusions by conducting detailed tests to confirm hypotheses.
Our research goes into more depth about measurement errors
and how to avoid them or at least limit their impact.

Dongarra et al. focus attention on the impact of multicore ar-
chitectures on scientific applications [8]. For example, they ob-
served that multiple cores on a chip cannot be treated as a tra-
ditional SMP due to shared on-chip resources, and, as a result,
new scientific code would become much more complex because
it would have to take increasingly varying architectures into ac-
count. Whereas they further identify potential difficulties in pro-
gramming and compilation for multicore architectures, they do
not focus on issues with performance measurement.

Jayaseelan et al. investigate various performance characteris-
tics of three compilers on the integer SPEC benchmarks, focus-
ing on PAPI hardware counters as primary metrics [12]. They
observed that different compilers do better in different functions,
and that judging a compiler only by total program performance
can be a mistake. They also note compiler differences in cache
miss rates and fundamental instruction counts and recommend
some optimizations. Our research focuses more on memory and
less on CPU optimizations. We note the impact of the compiler
on memory access patterns in the multicore regime and recom-

mend fundamental but simple changes to the way compilers op-
timize code for multicore processors.

The previous research that most directly addresses bottleneck
analysis and optimization approaches specific to multicore chips
is the Roofline model from Berkeley [26]. This model defines
a number of key performance metrics and uses microbench-
marks to estimate realistic values for a given hardware platform.
Comparing the actual performance of several HPC proxy ker-
nels (the original seven Berkeley dwarfs) then provides insight
into multicore bottlenecks and code optimization techniques on
a half dozen single-chip multicore systems. While insightful
and useful, the Roofline paper focuses on a much coarser level,
examines a different scale of programs, and targets more tra-
ditional optimization techniques like blocking and CPU-centric
approaches such as successful vectorization and balancing mul-
tiplies with adds. It does not employ hardware counters, nor
does it focus on the difficulties in making accurate measure-
ments or interpretations of those measurements. Roofline does
not consider the on-chip memory hierarchy or the complications
of DRAM pages and access patterns along with their perfor-
mance impact on high-level compiler optimizations.

6 Summary and Conclusion
This paper details an experimental study of intrachip/intranode
scalability and the factors that determine this scalability for HPC
applications running on systems with multicore chips and multi-
chip nodes. Our study focuses on a deep analysis of HOMME,
an at-scale application used for production climate modeling.

Our results demonstrate that effective measurement, analy-
sis, and optimization of memory performance bottlenecks in-
trinsic to multicore nodes require a different and more complex
approach than memory bottleneck detection and alleviation in
unicore nodes. We show that multicore systems exhibit qualita-
tive and quantitative differences in performance bottlenecks and
metrics, in experimental and measurement issues, and in opti-
mization strategies.

For example, we show that accurate memory performance
measurements in multicore environments must account for the
delayed effects of memory references and the nondeterminis-
tic interactions among the cores on a chip and/or node, which
are immaterial or absent in unicore nodes. We further show the
temporal context of the measurements to be critical, and obtain-
ing sufficient measurement accuracy may require using multiple
tools. We demonstrate a range of measurement techniques to
overcome these complications. We also describe a structured
process for effectively measuring the performance metrics criti-
cal to multicore chip and multichip node performance, including
methods for interpreting these metrics to obtain an accurate def-
inition of the causes of multicore-related memory performance
bottlenecks.

Using this process, we have identified three key multicore
memory performance bottlenecks: shared L3 cache capacity,
shared off-chip bandwidth, and DRAM page conflicts. Driven
by these bottlenecks, we developed a source-code loop-level op-
timization called microfission that, when applied to HOMME,



reduces the L3 cache miss rate by almost 50%, more than dou-
bles the DRAM page hit rate, reduces compiler overhead in-
structions by a third, and increases intrachip scalability by up
to 42% and absolute performance by up to 35%. We anticipate
that microfission will be applicable to a wide range of multicore
applications and that our insights into multicore bottlenecks will
inspire additional optimizations specifically aimed at multicore
execution.
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