
On the Scalability of an Automatically Parallelized

Irregular Application

Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

Center for Grid and Distributed Computing
Institute for Computational Engineering and Sciences

The University of Texas at Austin
Austin, TX 78712

{burtscher, milind}@ices.utexas.edu, {dprountz, pingali}@cs.utexas.edu

Abstract. Irregular applications, i.e., programs that manipulate pointer-based
data structures such as graphs and trees, constitute a challenging target for pa-
rallelization because the amount of parallelism is input dependent and changes
dynamically. Traditional dependence analysis techniques are too conservative to
expose this parallelism. Even manual parallelization is difficult, time consum-
ing, and error prone. The Galois system parallelizes such applications using an
optimistic approach that exploits higher-level semantics of abstract data types.
 In this paper, we study the performance and scalability of a Galoised, that is,
automatically parallelized, version of Delaunay mesh refinement (DR) on a
shared-memory system with 128 CPUs. DR is an important irregular application
that is used, e.g., in graphics and finite-element codes. The parallelized program
scales to 64 threads, where it reaches a speedup of 25.8. For large numbers of
threads, the performance is hampered by the load imbalance and the nonuniform
memory latency, both of which grow as the number of threads increases. While
these two issues will have to be addressed in future work, we believe our results
already show the Galois approach to be very promising.

Keywords: parallel programming, multicore processors, sparse graph algo-
rithm, amorphous data-parallelism, optimistic execution, mesh refinement

1. Introduction

Over the last three decades, the problem of automatic parallelization, i.e., the mechan-

ical transformation of sequential code into parallel code by identifying program re-

gions that can execute concurrently, has been studied extensively. As a result, modern

compilers are able to achieve very good parallel performance in certain application

domains virtually without programmer guidance.

In particular, for applications that process arrays and matrices, which we refer to as

“regular” applications, a multitude of techniques have been developed to prove inde-

pendence between array accesses and to uncover, package, and schedule parallelism at

various levels [6]. In this class of programs, data parallelism mainly manifests itself as

FOR-ALL loops over integer intervals for which the iterations can be statically prov-

en to be independent. We call this crystalline data-parallelism.

2 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

However, there exist a large number of important “irregular” applications that ma-

nipulate sparse graphs, which are much harder to parallelize. A characteristic example

of this class of programs is Delaunay mesh refinement, a widely used computational

geometry algorithm. For these applications, static parallelization techniques based on

pointer [4] and shape analysis [5], [11], [16] are often insufficient because they must

be correct for all possible inputs. However, the amount of parallelism in irregular

applications is almost always data dependent and changes dynamically. We call this

amorphous data-parallelism. For example, in Delaunay refinement, the parallelism is

highly dependent on the shape of the input mesh. Thus, statically produced parallel

schedules tend to be overly conservative for most inputs and unnecessarily serialize

program execution.

In semi-static approaches, the computation is split into an inspector phase, which

determines the dependences between units of work, and an executor phase, which

uses this schedule to perform the computations concurrently [14]. Since the inspector

is also executed at runtime, the input of the program is taken into account when pro-

ducing the schedule. For Delaunay refinement, the usefulness of this approach is,

however, limited because the mesh changes as the algorithm progresses. Hence, the

inspector would have to be executed repeatedly, which is expensive because it in-

volves expanding the cavities (i.e., a substantial part of the work of a single iteration).

The most promising way to automatically parallelize irregular programs is employ-

ing dynamic approaches that speculatively parallelize the code at runtime. In this

approach, portions of the application are executed in parallel assuming that depen-

dences are not violated. The runtime system is responsible for detecting any such

violations and for restoring the program to the correct state by aborting one of the

conflicting computations and executing it later. If no dependence violation is detected,

the speculative state is committed, thus becoming visible to the rest of the program.

In previous work, we introduced the Galois system [10], which we discuss in more

detail below, to automatically and speculatively parallelize irregular code. While we

believe our system to be practical, our previous studies [8], [9], [10] have not investi-

gated the scalability beyond small multicore systems. The goal of this paper is to

study the performance of an application that has been automatically parallelized by

the Galois system on a large-scale shared-memory multiprocessor. This study not only

provides insight into the effectiveness of our approach but also brings out important

issues pertaining to the parallelization of irregular applications in a real-world setting.

The rest of the paper is organized as follows. Section 2 discusses the Delaunay

mesh refinement algorithm in detail. Section 3 illustrates the Galois system. Section 4

presents the experimental methodology. Section 5 shows the results. Section 6 sum-

marizes related work. Section 7 concludes the paper with a summary and future work.

2. Delaunay Mesh Refinement

Mesh generation is a vital component of many applications in graphics and the nu-

merical solution of partial differential equations. The goal of mesh generation is to

represent a surface or a volume as a tessellation composed of simple shapes like trian-

gles or tetrahedra.

 On the Scalability of an Automatically Parallelized Irregular Application 3

Although many types of meshes are used in practice, Delaunay meshes are particu-

larly important since they have a number of desirable mathematical properties [3].

The Delaunay triangulation of a set of points in the plane is the triangulation such that

no point is inside the circumcircle of any triangle. This property is called the empty

circle property. An example of such a mesh is given in Fig. 1.

Fig. 1. Delaunay mesh (the circumcircles of the triangles contain no mesh points).

In practice, the Delaunay property alone is not sufficient, and it is necessary to im-

pose quality constraints governing the shape and size of the triangles. For a given

Delaunay mesh, this is accomplished by iterative mesh refinement, which successive-

ly fixes “bad” triangles (triangles that do not satisfy the quality constraints) by adding

new points to the mesh and re-triangulating it. Fig. 2 illustrates this process.

Fig. 2. Delaunay mesh refinement steps.

The shaded triangle in Fig. 2(a) is assumed to be bad. To fix it, a new point is add-

ed at the center of this triangle’s circumcircle. Adding this point may invalidate the

empty circle property of some neighboring triangles. Hence, all affected triangles

need to be determined. This region is called the cavity of the bad triangle and is

shaded in Fig. 2(b). In this example, all triangles belong to the cavity, but in larger

meshes, a cavity usually only covers a small fraction of the mesh. In the final step, the

cavity is re-triangulated as shown in Fig. 2(c). Re-triangulating a cavity may generate

new bad triangles, but it can be proven that this iterative refinement process will ulti-

mately terminate and produce a guaranteed-quality mesh [3]. Different orders of

processing bad triangles may lead to different meshes, but all such meshes satisfy the

quality constraints.

4 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

Fig. 3 provides pseudocode for mesh refinement. The input is a Delaunay mesh in

which some triangles may be bad, and the output is a refined mesh in which all trian-

gles satisfy the quality constraints. There are two key data structures used in this algo-

rithm. One is a worklist containing the bad triangles in the mesh. The other is a graph

representing the mesh structure where the nodes correspond to the triangles and the

edges denote triangle adjacencies. The two-dimensional algorithm works as follows.

1. Find all the bad triangles in the mesh and put them into the worklist [line 3]. Then

repeat the following steps until the list of bad triangles is empty [line 4].

2. Pick a triangle from the list [line 5]. The processing of other bad triangles may

have removed this triangle from the mesh. If so, there is nothing to do [line 6].

3. Compute the cavity of the bad triangle as follows. Find the circumcenter of the

triangle, add this new point to the mesh and determine the triangles that no longer

satisfy the empty circle property because of this new point [lines 7 and 8].

4. Re-triangulate the cavity [line 9].

5. Replace the triangles in the cavity with the new triangles (i.e., remove the old tri-

angles from the mesh and add in the newly calculated triangles) [line 10].

6. Because the newly created triangles are not guaranteed to meet the quality con-

straints, any newly created bad triangles must be added to the worklist [line 11].

 1: Mesh mesh = ...; // read in initial mesh
 2: WorkList wl;
 3: wl.add(mesh.badTriangles());
 4: while (wl.size() != 0) {
 5: Triangle t = wl.get(); // get bad triangle
 6: if (t no longer in mesh) continue;
 7: Cavity c = new Cavity(t);
 8: c.expand();
 9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12: }

Fig. 3. Pseudocode of the 2D mesh refinement algorithm.

2.1. Opportunities for Exploiting Amorphous Data-Parallelism

The natural unit of work for parallel execution in Delaunay mesh refinement is the

processing of a bad triangle. Because a cavity is typically a small neighborhood of a

bad triangle, the cavities of two bad triangles that are far apart in the mesh often do

not overlap and can therefore be processed concurrently.

An example of processing several triangles in parallel is given in Fig. 4. The left

mesh is the original mesh, and the right mesh represents its refinement. In the left

mesh, the black triangles are the bad triangles while the dark grey triangles are the

other triangles in the cavities. In the right mesh, the black points mark the newly add-

ed points and the light grey triangles denote the newly created triangles. Clearly, all

the cavities in Fig. 4 can be refined in parallel without conflicts. Thus, Delaunay mesh

refinement is an example of a worklist algorithm where the units of work may be

independent.

 On the Scalability of an Automatically Parallelized Irregular Application 5

Fig. 4. Processing triangles in parallel.

3. The Galois Model

The Galois programming model [10] is a concurrent, object-based, shared-memory

model that is designed to be implemented as an extension to an object-oriented lan-

guage. An application parallelized under this model consists of two components: the

client code, which is written by the user of the system and has easily-understood se-

quential semantics, and the library and runtime code, which encapsulates all the com-

plexity of parallel execution.

3.1. Client Code

The programming model provides two language constructs, called optimistic set itera-

tors, that allow the user to implicitly express amorphous data-parallelism. The well-

defined sequential semantics of these set iterators makes it easier to understand, write,

and debug client code.

• Set iterator: for each e in Set S do B(e)

The loop body B(e) is executed for each element e of set S. Since the elements of a

set are not ordered, this construct denotes that, in a serial execution of the loop, the

iterations can be executed in any order. There may be dependences between the ite-

rations, as is the case with Delaunay mesh refinement, but any serial order of ex-

ecuting iterations is permitted. Iterations may dynamically add elements to S.

• Ordered-set iterator: for each e in OrderedSet S do B(e)

This construct denotes a partially-ordered iterator over S. Contrary to the Set itera-

tor, the execution order must respect the partial order imposed by the OrderedSet S.

3.2. The Galois Runtime and Class Libraries

The runtime system speculatively executes iterations of set iterators in parallel, there-

by taking advantage of potential amorphous data-parallelism in the application. To

guarantee that the parallel execution preserves the sequential semantics of the itera-

6 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

tors, the system must ensure that concurrent accesses of and method invocations on

shared objects are properly coordinated.

One way to detect conflicts in the Galois system is through commutativity checks.

Intuitively, two iterations that concurrently access a shared object do not conflict if

they call commuting methods on the object. Note that commutativity conditions are a

property of the abstract data type of the object and are therefore only dependent on the

public interface of the type and not on the concrete implementation of that interface.

Thus, the implementation can be changed without affecting the commutativity condi-

tions. These conditions are specified as annotations in the class definition [10].

Alternatively, conflict detection can be performed on partitioned data structures

[9]. For example, a Delaunay mesh can easily be partitioned. Whenever two iterations

touch the same partition of a shared data structure, a conflict is raised. Even though

this scheme is less precise than commutativity checking, it is simpler and has a lower

overhead, which is why we use it in this study.

The Galois system also supports overdecomposition. The basic idea of overdecom-

position is to partition the data into more partitions than there are cores in the machine

so that multiple partitions are mapped to each core. When a thread accesses a partition

of a data structure, it owns all elements in that partition, and the other threads are not

allowed to access them. Assigning multiple partitions to a core increases the probabil-

ity that a thread can continue to perform useful work even if other threads have tem-

porarily locked some of its partitions [9].

Whenever a conflict is detected, one or more iterations must be rolled back, i.e., a

series of undo actions are executed by the runtime system. For each method of a

shared object type, the class implementor must provide another method that performs

a “semantic undo”. For example, the undo of add(x) in a set is remove(x). As each

iteration executes, the system records the undo actions corresponding to the methods

that get called and uses them to perform a rollback if a conflict occurs.

4. Methodology

To study the scalability and other performance aspects of our Galoised version of

Delaunay mesh refinement, we performed experiments on a Sun E25K server running

SunOS 5.9. The system contains sixteen CPU boards with four dual-core 1.05 GHz

UltraSPARC IV processors. The 128 CPUs share 512 GB of main memory. Each core

has a 64 kB four-way set-associative L1 data cache and a unified 8 MB L2 cache.

We use Sun’s Java compiler version 1.6.0_02 and the HotSpot 64-bit server virtual

machine version 1.6.0-b105. Because HotSpot dynamically compiles frequently ex-

ecuted bytecode into native machine code, we repeat each experiment nine times in

the same VM and report results for the median as well as the fastest run. To prevent

other jobs from interfering with our measurements, we always reserve all 128 CPUs

regardless of how many threads we create. Furthermore, to minimize the interference

by the garbage collector, we use a 400 GB heap and force a garbage collection by

calling System.gc() five times before executing the measured code section.

All measurements are obtained through source code instrumentation; that is, we

read the timer and the CPU performance counters before and after the measured code

 On the Scalability of an Automatically Parallelized Irregular Application 7

section, compute the difference, and write the result to the standard output. We use

the Java Native Interface and C code we wrote to access the performance counters.

We evaluate Delaunay mesh refinement on three random inputs. The small input

contains 100,770 triangles of which 47,768 are initially bad. The middle input has

219,998 triangles of which 104,229 are initially bad. The large input consists of

549,998 triangles of which 261,100 are initially bad.

All measurements in this study refer to the refinement algorithm only. In particular,

reading the input, building the initial graph, and partitioning the initial graph are ex-

cluded as we have not yet Galoised these components of the code.

5. Results

5.1. Speedup

Fig. 5 shows the speedup of the parallel code on the three inputs for various thread

counts relative to the fastest run of our sequential implementation. The solid lines

display the best and the dashed lines the median speedups. The overdecomposition

factor is 32. There was no garbage collection during the execution of the timed code.

The sequential refinement code takes 31.96, 76.16, and 195.1 seconds, respectively,

for the small, medium, and large input.

Fig. 5. Speedup over the fastest sequential run.

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

� � � � �� �� �� ���

�
�
�
�
�
�
�
��
�
�
	�
�
�

�
�
�
�

�
�

��������	�
����
�

�	
���
�������
����������

	
�����
�������
����������

�
����
�������
����������

�	
���
������	��

�� ����

	
�����
������	��

�� ����

�
����
������	��

�� ����

8 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

The automatically parallelized code scales to 64 or 128 threads, depending on the

input. Scaling is good (over 50% efficiency) up to 32 threads, where the speedup is

roughly 20 for all three inputs. The large input scales to 128 threads, where it reaches

a speedup of a 26.5, the highest we observed. The performance drop with 64 threads

is due to a high CPI (cf. Section 5.2), which we believe is caused by unfortunate parti-

tioning that results in a large amount of communication.

The median runtimes start to diverge from the fastest runtimes at eight threads be-

cause of slow communication between CPU boards. Recall that our machine compris-

es sixteen boards with eight processors each. Thus, experiments with eight or fewer

threads may incur only intra-board communication whereas experiments with sixteen

or more threads necessarily incur inter-board communication, which is slow. Hence,

as long as the operating system executes all threads on CPUs of the same board, the

runtimes of the nine experiments vary only slightly and the median is very close to the

fastest runtime. However, as soon as multiple boards are involved, which may already

happen with eight worker threads because of other JVM threads, it greatly matters

whether threads that exchange data are assigned to the same board or not. Because

some assignments result in better locality than others, the random allocation of

threads to cores by the operating system yields different runtimes for each experi-

ment, as is reflected by the discrepancy of up to a factor of 2.7 between the median

and the best speedups. Due to this high variability, we believe the results reported in

this paper for large numbers of threads show the correct trends but the absolute values

might be unreliable.

The parallel code with one thread is 13% slower than our sequential implementa-

tion. This result reflects the overhead introduced by Galois, which includes the time it

takes to start and terminate worker threads, the cost of checking for runtime conflicts

(even though no conflicts can occur with just one thread), and the expense of record-

ing the undo information.

In summary, the scaling is surprisingly good for an automatically parallelized irre-

gular application. The efficiency is better than 66.6% up to 16 threads for the fastest

runs. Above 16 threads, it drops quickly due to load imbalance and memory latency.

5.2. Memory Access Latency

To confirm the negative impact of the inter-board communication, we measured the

average number of cycles it takes to execute an instruction. Fig. 6 shows the results.

Because the same code is executed and because most instructions that do not access

the memory have a fixed latency, we attribute any increase in the number of cycles

per instruction (CPI) to slower memory accesses. Direct measurements of the L2

cache stall cycles corroborate our results but only capture part of the memory latency.

The CPI (and therefore the memory latency) starts to greatly increase above 16

threads, exposing the nonuniformity in the memory access time. With large numbers

of threads, the CPI is up to 2.44 times as high as the CPI with a single thread. Since

instructions that touch the memory represent only a fraction of the executed instruc-

tions, the average slowdown per memory access is, of course, even higher. Thus, the

slow inter-board communication speed is one of the primary performance hurdles in

the Galoised refinement code for large numbers of threads on our system.

 On the Scalability of an Automatically Parallelized Irregular Application 9

Fig. 6.Average cycles per instruction (CPI).

5.3. Load Balance

Fig. 7 illustrates the fraction of time that the concurrent threads have to wait, on aver-

age, for the slowest thread to finish. For example, in the 128-thread run with the small

input, the threads idle 75.5% of the time, on average. Note that there is no task steal-

ing and new work generated by a thread is always handled by that same thread.

We observe very little load imbalance (under six percent idle time) up to eight

threads. Above eight threads, the imbalance starts to become significant and for 128

threads, on average over half of the time the threads are idling for all three inputs. The

load imbalance grows with the number of threads because larger thread counts result

in less work per thread, which increases the likelihood of imbalance problems. Thus,

load imbalance is the second main reason preventing the automatically parallelized

code from scaling well to 128 CPUs. Note that, on the one hand, our random inputs

are quite homogenous and thus probably more balanced than real inputs, meaning that

load imbalance may be an even bigger problem in practice. On the other hand, we use

a somewhat naive work partitioner based on recursive subdivision, and employing a

more sophisticated partitioner may improve the load balance.

���

���

���

���

���

���

���

���

� � � � �	 �� 	� ���

�
�
�
��
�
�
��
	

��������	�
����
�

��

����������
��
������

����
�� ���������
��
������

��������������
��
������

��

��������������� ����

����
�� �������������� ����

������������������� ����

10 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

Fig. 7. Average thread waiting time as a percentage of the total runtime.

5.4. Aborted Speculations

Some of the speculative refinements fail because their cavity extends to a partition of

the graph that is locked by another thread. Fig. 8 depicts the fraction of the attempted

refinements that had to be aborted (and retried later). The overdecomposition factor is

32. In the median run with the large input, 18.8% of the refinements were aborted.

There are relatively few aborts, as one might expect with a large overdecomposi-

tion factor. With the fastest runs, we see almost no aborts up to four threads. Larger

numbers of threads cause more aborts for two reasons. First, the higher latency of the

aforementioned inter-board communications slows down some of the refinements,

meaning that they take longer and are therefore more likely to conflict with other

concurrent refinements. This is probably also the reason why the (slower) median

runs sometimes have much higher abort ratios than the fastest runs. Second, increas-

ing the thread count increases the number of partitions but makes them smaller.

Hence, the chance of a cavity overlapping multiple partitions increases.

Nevertheless, the observed abort ratios are too low to severely impact the scalabili-

ty. In fact, aborts are detected quite early, namely during the cavity expansion and

before the actual refinement work. As a result, they only have a small effect on the

runtime (cf. Section 5.6).

�

��

��

��

��

��

	�

��

��

��

���

� � � � �	 �� 	� ���

�
�
�
��
�
�
��
�
��
�

�

��
��
��

�
��
�
�

��������	�
����
�

��

����������
��
������

����
�����������
��
������

��������������
��
������

��

��������������� ����

����
���������������� ����

������������������� ����

 On the Scalability of an Automatically Parallelized Irregular Application 11

Fig. 8. Percentage of attempted refinements that were aborted due to speculation conflicts.

5.5. Overdecomposition

Fig. 9 illustrates the impact of the overdecomposition factor on the speedup over the

sequential code. For improved readability, we only show results for the fastest runs

with the middle input.

As one might expect, one partition per thread results in poor performance. Two

partitions per thread are necessary and sufficient for good performance up to eight

threads. For larger numbers of threads, higher overdecomposition factors tend to help

because they lower the misspeculation rate of the optimistic execution. However,

beyond a certain level of overdecomposition, there is little benefit in using smaller

partitions. In fact, the locking overhead increases as the partitions become smaller

because the cavities are more likely to span multiple partitions, which necessitates the

acquisition of multiple locks. The odd behavior with one partition per thread and 128

threads may be an artifact of the aforementioned high variability in our measurements

with large thread counts.

�

�

�

�

�

�

�

�

	

� � � 	 �� �� �� ��	

�
�
�
��
��
�	

��������	�
����
�

��
�����������
����������

���������������
����������

�
������������
����������

��
��������������
�� ����

������������������
�� ����

�
���������������
�� ����

12 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

Fig. 9. Speedup of the fastest runs and middle input for different overdecomposition factors.

5.6. Result Summary

Fig. 10 summarizes the results from the previous subsections by accumulating the

runtime of all threads. The figure shows numbers for the fastest run with the middle

input. The results for the other two inputs are qualitatively similar. The runtimes are

relative to the sequential runtime. Each bar is broken down into five categories. They

are, from bottom to top, 1) the runtime of the sequential code, 2) the single-thread

overhead, i.e., the runtime of the parallel code with just one thread, 3) the aborted

work due to misspeculations, 4) the memory latency as computed in Section 5.2, and

5) the time the threads idle while waiting for the slowest thread to finish.

Because Fig. 10 sums up the runtime across all threads, the total runtime would be

the same regardless of the number of threads if the parallel implementation scaled

perfectly. However, as we noted in the previous subsections, there are factors that

hamper the scalability of Delaunay mesh refinement. Up to four threads, the over-

heads of the Galois system remain low, and hence the total runtime stays roughly

constant. However, beyond four threads we see that the load imbalance and the mem-

ory latency begin to increase rapidly. Both of these overheads are the result of proces-

sors being unable to perform useful work (either because of waiting for memory or for

slower threads). For large numbers of threads, the load imbalance represents the big-

gest performance bottleneck followed by the memory latency. The aborted work and

the parallelization (single-thread) overhead are minor in comparison.

�

�

��

��

��

��

� � � 	 �� �� �� ��	

�
�

�
�
�
��
�

��
�

�
�

�
��
�
�

��������	�
����
�

���
����������������
�

���
�����������������
�

���
�����������������
�

	��
�����������������
�

����
�����������������
�

����
�����������������
�

 On the Scalability of an Automatically Parallelized Irregular Application 13

Fig. 10. Accumulative runtime breakdown for the fastest run with the middle input.

6. Related Work

Hand-written parallel implementations of Delaunay mesh refinement exist for 2D [1]

and 3D [2] meshes. While both implementations eschew optimistic parallelization,

they are not amenable to automatic parallelization (an automatic approach could not

generate these particular parallel implementations from the sequential algorithm) for

several reasons. In the 2D code, the mesh is partitioned among multiple processors,

and each partition is processed relatively independently. However, the standard De-

launay algorithm is augmented with special handling for the boundaries between

partitions. Thus, this approach is effectively a new algorithm for parallel Delaunay

refinement rather than a straightforward parallelization of the sequential algorithm. In

the 3D code, the mathematical properties of the Delaunay algorithm were examined

and the authors developed a distance metric establishing the greatest possible size of a

cavity in the mesh. Thus, regions sufficiently far apart can be processed in parallel.

This approach to parallelization requires specific algorithmic knowledge and, again, is

therefore not a straightforward parallelization of the sequential algorithm.

Other approaches to automatic parallelization of irregular programs include Thread

Level Speculation (TLS) [7], [15]. This technique automatically parallelizes FOR

loops in sequential programs using optimistic parallelization. However, because TLS

focuses on parallelizing standard sequential programs, it cannot leverage key algo-

�

�

�

�

�

�

�

�

	

� � � 	 �� �� �� ��	

�

��
��
�

��
�
�
�
��
��
�

��
�
�
��
�

��������	�
����
�

����
�����������

��������
�����

 ������!��"

������#����
���$����
�

��%�����
���������

14 Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and Keshav Pingali

rithmic semantics in the parallelization. Thus, the generated parallel programs must

exactly match the sequential program, preventing TLS from, e.g., reordering parallel

computation to better exploit locality.

Another approach that has been studied extensively is Transactional Memory [12]

(TM). One key distinction between the Galois approach and TM is that the latter is

mainly concerned with optimistic synchronization as opposed to optimistic paralleli-

zation. In other words, the input program for a TM system has already been paralle-

lized and the goal is to find an efficient and less error-prone way to synchronize the

parallel tasks. In contrast, the main concern of the Galois model is to present the user

with the right abstractions to express the amorphous data-parallelism in irregular

codes as well as to provide an efficient implementation of those abstractions.

TLS and TM both detect speculative conflicts based on memory-level consistency.

As we discuss elsewhere [10], tracking conflicts at such a low level may trigger false

conflicts and thus disallow parallel execution that is actually safe. One way to over-

come this problem in the case of Transactional Memory is to use open nested transac-

tions [13]. This approach, however, complicates the semantics of the program and, as

a result, increases the effort required by the programmer.

7. Conclusions and Future Work

This paper studies the scalability of an important “irregular” sparse graph application,

Delaunay mesh refinement, which has been automatically parallelized using the Ga-

lois system. Our measurements on a 128-CPU shared-memory computer identified the

load imbalance and the long nonuniform memory latency (due to inter-board commu-

nication) to be the primary bottlenecks to scaling for large numbers of threads. Specu-

lation aborts and the overdecomposition factor have a relatively minor impact on the

performance. Overall, the automatically parallelized code scales to 64 or 128 threads,

depending on the input, and achieves a speedup of 26.5 over the sequential code.

While this work only investigates a single application, it raises several issues that

are known to be problematic in parallelization. Thus, we believe Delaunay mesh re-

finement to be a representative amorphous data-parallel program worth studying and

our findings to be more generally applicable. For instance, future multicore systems

will likely also have nonuniform memory latency.

Addressing this issue is our primary target for future work. To minimize the inter-

board communication, i.e., the slowest memory accesses, we will hierarchically parti-

tion the work and pin it to CPUs such that the memory hierarchy (including the inter-

connection network) matches the hierarchy of the work partitions. To address the load

imbalance, we will modify the work scheduler and add support for work or partition

stealing. Other future work includes Galoising the sequential mesh partitioner, which

currently takes longer to run than the parallel refinement code.

Acknowledgments

This work is supported in part by NSF grants 0833162, 0719966, 0702353, 0615240,

0541193, 0509324, 0509307, 0426787 and 0406380, as well as grants from IBM and

Intel Corporation. Milind Kulkarni is supported by a DOE HPCS Fellowship.

 On the Scalability of an Automatically Parallelized Irregular Application 15

References

1. Chernikov, A., Chrisochoides, N.: Parallel 2D Constrained Delaunay Mesh Genera-

tion.�ACM Transactions on Mathematical Software, vol. 34, no. 1 (2008)

2. Chernikov, A., Chrisochoides, N.: Three-dimensional Delaunay Refinement for Multi-core

Processors.� In: 22nd International Conference on Supercomputing, 214-224 (2008)

3. Chew, L.P.: Guaranteed-quality Mesh Generation for Curved Surfaces. In: Ninth Annual
Symposium on Computational Geometry (1993)

4. Ghiya, R., Hendren, L.J.: Putting pointer analysis to work. In: 25th Symposium on Prin-
ciples of Programming Languages, 121-133 (1998)

5. Hendren, L.J., Nicolau, A.: Parallelizing Programs with Recursive Data Structures. IEEE
Transactions on Parallel and Distributed Systems, vol. 1, no. 1, 35-47 (1990)

6. Allen, R.J., Kennedy, K.: Optimizing Compilers for Modern Architectures: a Dependence-
based Approach. Morgan Kaufmann Publishers Inc. (2002)

7. Krishnan, V., Torrellas, J.: A Chip-multiprocessor Architecture with Speculative Multith-
reading. IEEE Transactions on Computers, vol 48, no. 9 (1999)

8. Kulkarni, M., Carribault, P., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., Chew,
L.P.: Scheduling Strategies for Optimistic Parallel Execution of Irregular Programs. In:
Symposium on Parallelism in Algorithms and Architectures, 217-228 (2008)

9. Kulkarni, M., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., Chew, L.P.: Optimistic
Parallelism Benefits from Data Partitioning. In: International Conference on Architectural
Support for Programming Languages and Operating Systems, vol. 36, no. 1, 233-243 (2008)

10. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic
Parallelism Requires Abstractions. In: Conference on Programming Language Design and
Implementation, vol. 42, no. 6, 211-222 (2007)

11. Larus, J.R., Hilfinger, P.N.: Detecting Conflicts between Structure Accesses. In: Conference
on Programming Language Design and Implementation (1988)

12. Larus, J., Rajwar, R.: Transactional Memory (Synthesis Lectures on Computer Architec-
ture). Morgan & Claypool Publishers (2007)

13. Ni, Y., Menon, V.S., Adl-Tabatabai, A.R., Hosking, A.L., Hudson, R.L., Moss, J.E.B.,
Saha, B., Shpeisman, T.: Open Nesting in Software Transactional Memory. In: 12th Sym-
posium on Principles and Practice of Parallel Programming, 68-78 (2007)

14. Ponnusamy, R., Saltz, J., Choudhary, A.: Runtime Compilation Techniques for Data Parti-
tioning and Communication Schedule Reuse. In: Conference on Supercomputing, 361-370
(1993)

15. Rauchwerger, L., Padua, D.: The LRPD Test: Speculative Runtime Parallelization of Loops
with Privatization and Reduction Parallelization. IEEE Transactions on Parallel Distributed
Systems, vol. 10, no. 2, 160-180 (1999)

16. Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic. In: 26th
Symposium on Principles of Programming Languages, 105-118 (1999)

