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Abstract. Graph partitioning is a common and frequent preprocess-
ing step in many high-performance parallel applications on distributed-
and shared-memory architectures. It is used to distribute graphs across
memory and to improve spatial locality. There are several parallel imple-
mentations of graph partitioning for distributed-memory architectures.
In this paper, we present a parallel graph partitioner that implements
a variation of the Metis partitioner for shared-memory, multicore ar-
chitectures. We show that (1) the parallelism in this algorithm is an
instance of the general amorphous data-parallelism pattern, and (2) a
parallel implementation can be derived systematically from a sequential
specification of the algorithm. The resulting program can be executed in
parallel using the Galois system for optimistic parallelization. The scal-
ability of this parallel implementation compares favorably with that of a
publicly available, hand-parallelized C implementation of the algorithm,
ParMetis, but absolute performance is lower because of missing sequen-
tial optimizations in our system. On a set of 15 large, publicly available
graphs, we achieve an average scalability of 2.98X on 8 cores with our
implementation, compared with 1.77X for ParMetis, and we achieve an
average speedup of 2.80X over Metis, compared with 3.60X for ParMetis.
These results show that our systematic approach for parallelizing irreg-
ular algorithms on multicore architectures is promising.

1 Introduction

Graph partitioning is a common preprocessing step in many high-performance
parallel algorithms. It is used to find partitions of graph nodes such that each
partition has roughly the same number of nodes and the sum of the weights
of cross-partition edges is minimized. If the number of nodes in a partition is
proportional to the amount of work involved in processing that partition and the
edge weights are a measure of communication costs, such a partition attempts to
achieve load balance while minimizing the inter-processor communication cost.

Graph partitioning is useful in distributed architectures where partitioning
can reduce the amount of explicit communication between distributed processing
elements. In shared memory settings, partitioning is useful for reducing memory
contention and increasing spatial locality.



More formally, we define a weighted, undirected graph in the usual way:
G = (V,E), and w is a function assigning weights to each edge (u, v) ∈ E. For
any subset of vertices Vi ⊆ V , the cut set induced by Vi is Ci = {(u, v) ∈ E | u ∈
Vi, v ∈ V − Vi}. The value (or edge cut) of the cut set Ci is wi =

∑
e∈C w(e).

The subsets P = V1, V2, . . . , Vk are a k-way partitioning iff (1) ∪iVi = V and (2)
∀i, j : i 6= j → Vi ∩ Vj = ∅. The balance of P is

B(V1, V2, . . . , Vk) =
k ∗maxk

i=1 wi∑k
i=1 wi

The graph partitioning problem is, given k and G, to find a k-way partitioning
P such that the balance of P and the edge cut of P (i.e.,

∑
wi) are minimized.

The most widely used graph partitioner is the sequential partitioner Metis
from Karypis et al. [8]. There are several parallel graph partitioners: ParMetis [6]
from Karypis et al. as well as PT-Scotch [1] and JOSTLE [13]. All of these im-
plementations are explicitly parallel programs for distributed-memory architec-
tures. With the rise of multicore, we are interested in parallel implementations
that can take advantage of the lightweight synchronization and communication
available on multicore machines. Additionally, we prefer implementations that
hew as close as possible to their original sequential implementations as it is
usually easier to write and determine the correctness of sequential programs.

The approach that we adopt in this paper is as follows. First, we recog-
nize that the Metis algorithm exhibits a generalized form of data-parallelism
that we call amorphous data-parallelism [12]. Second, we implement a version of
Metis that exploits amorphous data-parallelism, and we show that it is possible
to achieve better scalability than existing parallelizations without resorting to
explicit parallel programming.

This paper is organized as follows. Section 2 describes the existing implemen-
tations of Metis, sequential and parallel, in detail. Section 3 introduces amor-
phous data-parallelism, and Section 4 describes the Galois system, a program-
ming model and runtime system designed to exploit amorphous data-parallelism.
In Section 5, we show how the Metis algorithm exhibits amorphous data-par-
allelism and how to implement it using the Galois system. Section 6 discusses
results, and Section 7 presents conclusions from this study.

2 Graph Partitioning Algorithms

Metis is one of the most widely used graph partitioners. Recent work has shown
that ParMetis is generally the best parallel graph partitioner for distributed-
memory systems [5]. In this section, we describe both of these partitioners in
more detail.

2.1 Metis

Metis is composed of a set of algorithms for graph and mesh partitioning. The key
algorithm is KMetis. It uses a multilevel scheme that coarsens input graphs until



they are small enough to employ more direct techniques and then interpolates
the results of the smaller graph back onto the input graph. It consists of three
phases: coarsening, initial partitioning, and refinement (see Figure 1).

Coarsening. The goal of coarsening is to construct a smaller graph from the
input graph that preserves most of the connectivity information. This is achieved
by constructing a sequence of graphs, each of which is obtained by contracting
edges in the previous graph (see Figure 3). When contracting an edge (a, b), a
new node is created in the coarse graph, and its weight is set to the sum of the
weights of nodes a and b. If nodes a and b are both connected to a node c in the
fine graph, a new edge with a weight equal to the sum of the weights of edges
(a, c) and (b, c) is created in the coarse graph.

To find edges to collapse, KMetis computes a maximal matching. A matching
is a set of edges in the graph that do not share any nodes. A matching is maximal
if it is not possible to add any edges into it. There are several heuristics for finding
the maximal matching. KMetis employs a heuristic called heavy edge matching.
Heavy edge matching finds maximal matchings whose edges have large weight
(Figure 2(b)). Collapsing such edges will greatly decrease the edge weights in the
coarse graph and improve the quality of the resulting partitioning. The nodes
in the graph are visited randomly, and each node is matched to the unmatched
neighbor with the maximal edge weight. If there is no such neighbor, the node
is matched to itself.

The coarsening phase ends when the number of nodes in the coarse graph is
less than some threshold or the reduction in the size of successive graphs is less
than some factor.

Initial partitioning. In this phase, a recursive bisection algorithm called PMetis
is used to partition the coarsest graph. Each bisection has the same phases as
KMetis except that PMetis (1) uses a breadth-first traversal to perform an initial
bisection and (2) employs the Kernighan-Lin heuristic [9] to improve the quality
of the bisection. Compared to KMetis, PMetis is slower when the desired number
of partitions is large because it coarsens the input graph multiple times. Usually,
this phase represents only a small fraction of the overall partitioning time.

Refinement. In this phase, the initial partitioning is projected back on the orig-
inal graph via the sequence of graphs created in the coarsening phase (Fig-
ure 2(c)). KMetis uses a simplified version of the Kernighan-Lin heuristic called
random k-way refinement. The nodes of the graph that are on the boundary
between partitions are visited randomly. A boundary node is moved to its neigh-
boring partition if doing so reduces the edge cut without leading to a significant
imbalance in the partitioning.

2.2 ParMetis

ParMetis is a parallelization of KMetis using MPI. In ParMetis, each process
owns a random portion of the input graph. Each of the phases of KMetis is
parallelized as follows.
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Fig. 1. The phases of a multilevel partitioning algorithm. Dashed lines illustrate the
partitioning projected from the coarse graph, and solid shaded lines illustrate the re-
fined partitioning.

1 Graph g = // Read in graph
2 int k = // Number of pa r t i t i on s
3 Graph o r i g i n a l = g ;
4 do {
5 heavyEdgeMatching ( g ) ;
6 Graph cg = coarsen ( g ) ;
7 cg . setFinerGraph ( g ) ;
8 g = cg ;
9 } while ( ! g . coarseEnough ( ) ) ;

10 PMetis . p a r t i t i o n (g , k ) ;
11 while ( g != o r i g i n a l ) {
12 Graph f g = g . f inerGraph ( ) ;
13 g . p r o j e c tPa r t i t i o n i n g ( fg ) ;
14 fg . makeInfoForRefinement ( ) ;
15 r e f i n e ( f g ) ;
16 g = fg ;
17 }

(a) Pseudocode for main Metis algo-
rithm.

1 void heavyEdgeMatching (Graph g ) {
2 // Randomly access
3 foreach (Node n : g ) {
4 i f (n . isMatched ( ) ) continue ;
5 Node match = n . findMatch ( ) ;
6 g . setMatch (n , match ) ;
7 }
8 }

(b) Pseudocode for heavy edge match-
ing.

1 void r e f i n e (Graph g ) {
2 Worklist wl = new Worklist ( ) ;
3 foreach (Node n : g . boundaryNodes ( ) ) {
4 i f ( . . . ) // Moving n to neighbor pa r t i t i on reduces edge cut
5 wl . add (n ) ;
6 }
7 foreach (Node n : wl ) {
8 part = // Neighbor pa r t i t i on with max edge cut gain ;
9 i f ( . . . ) // Balancing condi t ion i s not v i o l a t e d

10 moveNode(n , part ) ;
11 }
12 }

(c) Pseudocode for random k-way refinement.

Fig. 2. Pseudocode for Metis algorithm. Foreach loops indicate the presence of amor-
phous data-parallelism.



1 Graph coarsen (Graph graph ) {
2 Graph cg = new Graph ( ) ; // Coarse graph
3 for (Node n : graph ) {
4 i f (n . v i s i t e d ) continue ;
5 Node cn = cg . createNode (n . weight+n . getMatch ( ) . weight ) ;
6 n . s e tRepr e s en ta t i v e ( cn ) ;
7 n . getMatch ( ) . s e tRepr e s en ta t i v e ( cn ) ;
8 n . getMatch ( ) . s e tV i s i t e d ( true ) ;
9 }

10 . . . // Reset v i s i t e d f i e l d for each node in the graph
11 foreach (Node n : graph ) {
12 i f (n . v i s i t e d ) continue ;
13 // Add edges in cg according to n ’ s neighbors
14 for (Node nn : n . getNeighbors ( ) ) {
15 Edge e = graph . getNeighbor (n , nn ) ;
16 Node cn = n . ge tRepre s enta t ive ( ) ;
17 Node cnn = nn . ge tRepre s enta t ive ( ) ;
18 Edge ce = cg . getEdge ( cn , cnn ) ;
19 i f ( ce == null ) { cg . addEdge ( cn , cnn , e . getWeight ( ) ) ; }
20 else { ce . increaseWeight ( e . getWeight ( ) ) ; }
21 . . . // Add edges in cg according to n . getMatch () ’ s neighbors ,
22 . . . // and s im i l a r l y for n
23 n . getMatch ( ) . s e tV i s i t e d ( true ) ;
24 }
25 }
26 return cg ;
27 }

Fig. 3. Pseudocode for creating a coarse graph. Foreach loops indicate the presence of
amorphous data-parallelism.

Coarsening. The parallelization of heavy edge matching proceeds in alternating
even and odd rounds. There are two steps in each round. In the first step, each
process scans its local unmatched nodes, and for each node v, each process tries
to find a neighbor node u to match using the heavy edge matching heuristic.
There are three cases for u: (1) if u is stored locally, then the matching is com-
pleted immediately; (2) if the round is odd and v < u or the round is even and
v > u, the process sends a matching request to the process owning u; or (3)
otherwise, the match is deferred to the next round. In the second step, each pro-
cess responds to its matching requests. Processes break conflicts arbitrarily and
notify senders on whether their matching requests were successful. Heavy edge
matching terminates when some large fraction of the nodes has been matched.

Initial partitioning. ParMetis does not use PMetis for its initial partitioning
phase. Instead, it uses the following parallel algorithm: all the pieces of the
graph are scattered to all threads using an all-to-all broadcast operation. Then,
each process explores a single path of the recursive bisection tree. The recursive
bisection is based on nested dissection [4].

Refinement. The random k-way refinement algorithm is parallelized similarly to
heavy edge matching. The algorithm runs in rounds. Each round is divided into
two steps. In the first step, nodes can only be moved to higher partitions. During
the second step, nodes can only be moved to lower partitions. This alternation



pattern helps avoid situations where moves of nodes to new partitions, when
considered in isolation, would decrease the edge cut but, when considered en
masse, actually increase the overall edge cut.

ParMetis also implements optimizations specific to the message-passing pro-
gramming model. It coalesces small messages into larger messages, and it detects
situations where the graph can be redistributed to a smaller set of processes.

3 Amorphous Data-parallelism

Amorphous data-parallelism is a form of parallelism that arises in irregular algo-
rithms that operate on complex data structures like graphs [12]. At each point
during the execution of such an algorithm, there are certain nodes or edges in
the graph where computation might be performed. Performing a computation
may require reading or writing other nodes and edges in the graph. The node
or edge on which a computation is centered is called an active element, and the
computation itself is called an activity. It is convenient to think of an activity
as resulting from the application of an operator to the active node. We refer to
the set of nodes and edges that are read or written in performing the activity as
the neighborhood of that activity. Note that in general, the neighborhood of an
active node is distinct from the set of its neighbors in the graph. Activities may
modify the graph structure of the neighborhood by adding or removing graph
elements.

In general, there are many active nodes in a graph, so a sequential imple-
mentation must pick one of them and perform the appropriate computation. In
some algorithms such as Metis, the implementation is allowed to pick any active
node for execution. We call these algorithms unordered algorithms. In contrast,
other algorithms dictate an order in which active nodes must be processed. We
call these ordered algorithms.

A natural way to program these algorithms is to use the Galois programming
model [10], which is a sequential, object-oriented programming model (such as
Java) augmented with two Galois set iterators:

– Unordered-set iterator: foreach (e : Set S) { B(e) }
The loop body B(e) is executed for each element e of set S. The order in which
iterations execute is indeterminate and can be chosen by the implementa-
tion. There may be dependences between the iterations. When an iteration
executes, it may add elements to S.

– Ordered-set iterator: foreach (e : OrderedSet S) { B(e) }
This construct iterates over an ordered set S. It is similar to the unordered
set iterator above, except that a sequential implementation must choose a
minimal element from set S at every iteration. When an iteration executes,
it may add new elements to S.

Opportunities for exploiting parallelism arise if there are many active ele-
ments at some point in the computation, each one is a site where a processor can
perform computation. When active nodes are unordered, multiple active nodes



may be processed concurrently as long as their neighborhoods do not overlap.
For ordered active elements, there is an additional constraint that activities must
appear to commit in the same order as the ordering on the set elements.

Definition 1. Given a set of active nodes and an ordering on active nodes,
amorphous data-parallelism is the parallelism that arises from simultaneously
processing active nodes, subject to neighborhood and ordering constraints.

Amorphous data-parallelism is a generalization of conventional data-parallel-
ism in which (1) concurrent operations may conflict with each other, (2) activities
can be created dynamically, and (3) activities may modify the underlying data
structure.

4 The Galois System

The Galois system is a set of data structures and a runtime system for Java that
allows programs to exploit amorphous data-parallelism. The runtime system
uses an optimistic parallelization scheme, and the data structures implement
the necessary features for optimistic execution: conflict detection and rollback.

Data structure library. The system provides a library of concurrent implemen-
tations of data structures, such as graphs, maps, and sets, which are commonly
used in irregular algorithms. Programmers can either use one of the existing
implementations or provide new ones. For a data structure implementation to
be suitable for the Galois system it must satisfy three properties: (1) operations
on the data structure must appear to execute atomically, (2) it should enforce
the appropriate neighborhood constraints, and (3) it should enable rollback in
case of conflicts.

Execution Model. The data structures are stored in shared-memory, and ac-
tive nodes are processed by some number of threads. A free thread picks an
arbitrary active node and speculatively applies the operator to that node. Each
data structure ensures that its neighborhood constraints are respected. Note that
this is performed by the library code not the application code. If a neighborhood
constraint is violated, a conflict is reported to the runtime system, which rolls
back one of the conflicting activities. To enable rollback, each library method
that modifies a data structure makes a copy of the data before modification.
Like lock manipulation, rollbacks are a service implemented by the library and
runtime system.

Runtime System. The Galois runtime system coordinates the parallel execution
of the application. A foreach construct is executed by some number of threads.
Each thread works on an active node from the Galois iterator and executes
speculatively, rolling back the activity if needed. Library code registers with the
runtime to ensure that neighborhood conflicts and rollbacks are implemented
correctly.



5 GMetis

In this section, we show how the Galois system can be used to parallelize Metis.
Parallelization proceeds in three steps: (1) we identify instances of amorphous
data-parallelism, (2) we modify those instances to use a Galois set iterator, and
(3) we modify the algorithm to use the graph data structure from the Galois
library. Once we identify the amorphous data-parallelism loops, the subsequent
steps (2–3) are straightforward.

Coarsening. The heavy edge matching algorithm is amorphous data-parallel.
All the graph nodes are active nodes, and the neighborhood of an active node
consists of itself and its direct neighbors in the graph. Nodes can be processed
in any order, so this is an unordered algorithm.

Creating a coarser graph is also amorphous data-parallel. All the graph nodes
in the finer graph are the active elements, and nodes in the coarser graph can be
created in any order. When processing an active node n, an activity will access
the neighbors of n and the neighbors of the node with which n matches. Edges
are added between this set of nodes and the corresponding set in the coarser
graph. This entire set of elements is the neighborhood of an activity.

Initial Partitioning. This phase generally accounts for only a small fraction of
the overall runtime of Metis, so we did not investigate parallelizing it.

Refinement. Random k-way refinement is amorphous data-parallel. The bound-
ary nodes can be processed in any order. They are the active nodes. When
moving a node n to a neighbor partition, the partitioning information of the
direct neighbors of n has to be updated. Thus, the neighborhood of each active
node consists of these direct neighbors.

5.1 Optimizations

Graph Representation. The graphs in the Galois library are object-based adja-
cency lists. The graph keeps a list of node objects, and each node object keeps
a list of its neighbors. However, this implementation is very costly compared
to the compressed sparse row (CSR) format based on arrays used in Metis (see
Figure 4). For instance, a serial version of Metis using Galois and using object-
based adjacency lists is about an order of magnitude slower than the standard
implementation of Metis written in C (see Section 6). Note that this includes
the overhead of Java over C. This slowdown has nothing to do with parallelism
per se but rather is a sequential optimization that is difficult to perform starting
from the Galois library of graph implementations. The API of the CSR graph is
incompatible with the more general graph API used by the library.

We have developed a variant of the Galois parallelization of Metis, which
differs only in that it has been modified by hand to use a CSR graph. It is this
variant that will be our main point of comparison in Section 6.



One-shot. Each one of the instances of amorphous data-parallelism identified
above benefits from the one-shot optimization [11]. Briefly, if the neighborhood
of an activity can be determined before executing it, then the neighborhood
constraints of the activity can evaluated eagerly. This provides three benefits:
(1) no rollback information needs to be stored during the execution of the activity
because the activity is guaranteed to complete after the initial check, (2) the cost
of an aborted activity is less because conflicts are found earlier, and (3) there
are no redundant checks of neighborhood constraints because all the constraints
are checked at once.

0 2 3 5 6 7

1 2 3 0 2 3

8 9

0 1

adj

adjncy

0

1 2

3
0 1

The neighbors of node i:

              From index adj[2*i] to adj[2*i+1] in adjncy

Fig. 4. The graph data structure of GHMetis is a variation of the compressed sparse
row (CSR) format that allows creating the graph in parallel because the maximum
degree of a node is specified beforehand.

6 Evaluation

6.1 Methodology

To evaluate the impact of exploiting amorphous data-parallelism in graph par-
titioning, we implemented a version of Metis written in Java and using the
Galois system to exploit amorphous data-parallelism (GMetis) and a version of
GMetis that additionally implements the data structure optimization mentioned
in Section 5.1 by hand (GHMetis). We compared the performance of our imple-
mentations with two publicly available graph partitioners: the sequential Metis
program and ParMetis, a MPI parallelization of Metis by the same authors.

Figure 5 summarizes the graph partitioners that we evaluated. As we de-
scribed before, Metis and ParMetis have the same algorithm framework, but
they differ in (1) heuristics, for example, ParMetis gives priority to internal
nodes owned by a process; (2) parameter values, such as the coarsening thresh-
old; and (3) initial partitioning algorithm. We configured Metis to use the heavy
edge matching (HEM) and random k-way refinement (KWAYRANDOM) op-
tions. This makes the implementation similar to the algorithm described in [7].
GMetis is adapted directly from Metis (with the same heuristics and parameter
values) but (1) with a general-purpose graph implementation, (2) with a differ-
ent algorithm to randomize visiting nodes, and (3) written in Java. GHMetis is a



modification of GMetis that replaces the general-purpose graph implementation
with the CSR representation described in Section 5.1.

We conducted two sets of experiments. A small-scale experiment with all
four partitioners, and a large-scale experiment with only Metis, ParMetis, and
GHMetis. For all experiments, we partitioned the input graph into 64 partitions.
We transformed the input graphs or sparse matrices into suitable inputs to graph
partitioning by making them symmetric with unit edge weights and removing
all self edges.

For the small-scale experiment, we selected three graphs of road networks
from the University of Florida Sparse Matrix Collection [2] and from the DI-
MACS shortest path competition [3]. For the large-scale experiment, we chose
the 15 inputs from the University of Florida collection with the largest number
of edges (number of non-zeros) whose fraction of edges to nodes was less than
20 (to select sparse matrices). The choice of cutoff was arbitrary, but, generally,
more dense matrices would not benefit from exploiting amorphous data-paral-
lelism because the number of conflicts would be high. In cases where there were
multiple matrices from the same problem family, we selected only the largest
input of the family except for the wikipedia family of inputs where we selected
the smallest input because we had trouble running the largest input with Metis.
Figure 6 shows the matrices selected.

We ran all the implementations on the same test machine: a Sun Fire X2270
running Ubuntu Linux 8.04.4 LTS 64-bit. The machine contains two quad-core
2.93GHz Intel Xeon X5570 processors. The two CPUs share 24GB of main
memory. Each core has a 32 KB L1 cache and a unified 256 KB L2 cache. Each
processor has an 8 MB L3 cache that is shared among the cores.

We used Metis 5.0pre2 and ParMetis 3.1.1 compiled with gcc 4.2.4 and with
the default 64-bit build options. For both programs, we configured the graph
index data type to be a 64-bit integer as well. With ParMetis, we used Open-
MPI 1.4.2, and multiple MPI processes were launched on the same machine.
For GMetis and GHMetis, we used the Sun JDK 1.6.0 to compile and ran the
programs with a heap size of 20GB. To control for JIT compilation, we ran each
input 5 times within the same JVM instance and report the median run time.

Language Parallelization Graph Data Structure Adapted From

Metis C CSR -
ParMetis C MPI Distributed CSR -
GMetis Java Galois Object-based adjacency list Metis
GHMetis Java Galois CSR GMetis

Fig. 5. Summary of graph partitioning algorithms evaluated.



6.2 Results

Figures 7 and 8 show the results from the small-scale experiment. The results
are typical of many of the trends we see in the large-scale experiment as well.
We define scalability as the runtime relative to the single-threaded runtime of
the same program. Speedup is the runtime relative to the runtime of Metis.

For single-threaded runs, GMetis is about five times slower than GHMetis,
and GHMetis is about twice as slow as Metis and ParMetis. The scalability
of ParMetis, GMetis and GHMetis is similar for the smaller inputs, roadNet-
CA and roadNet-TX, but for USA-road-d.W, GMetis and GHMetis have better
scalability than ParMetis. In the large-scale experiments, the scalability gap
between GHMetis and ParMetis becomes more pronounced. For USA-road-d.W,
ParMetis produces worse partitions in terms of balance and edge cut than the
other three partitioners. We believe this is due to the different initial partitioning
phase. Also, ParMetis uses a different partitioning strategy when run with one
process than with more than one process. This may explain the much larger edge
cut in the one process case. ParMetis has better speedup than GHMetis largely
due to starting with a better single-threaded runtime. Recall that GHMetis is
implemented in Java whereas ParMetis and Metis are implemented in C.

Figures 9 and 10 show the results from the large-scale experiment. Instead
of showing results for each number of threads/processes, we only show the best
performing result for ParMetis and GHMetis and its corresponding edge cut and
balance. The trends from the small-scale experiment show up here as well. GH-
Metis achieves better scalability and produces better partitions than ParMetis,
but ParMetis is faster than GHMetis. In fact, it is often faster than Metis as
well. Observe that the speedup of ParMetis is greater than its scalability. Over a
large set of inputs, we see that GHMetis scales better than ParMetis, suggesting
that amorphous data-parallelism is a fruitful form of parallelism to exploit.

The missing runs for GHMetis are generally due to lack of memory. They
occur on larger inputs when GHMetis spends most of its time doing garbage
collection. For inputs as-Skitter, rel9 and Ruccil, Metis performs particularly
poorly compared to ParMetis or GHMetis. We believe that this is due to the
randomization strategy used in Metis, which causes the coarsening phase to stop
early and consequentially produces a very large input to the initial partitioning
phase. When we used the same randomization strategy in GHMetis, we observed
similarly poor performance.

7 Conclusion

Graph partitioning is an important problem in parallel computing, and we have
shown how one common graph partitioning application, Metis, naturally exhibits
a form of parallelism that we call amorphous data-parallelism. Using the Galois
system, we can exploit this parallelism to achieve reasonable parallel scalability
from a sequential specification, and this scalability is comparable to that of
an explicitly parallel implementation over a suite of large test matrices. An



|V | |E| |E|/|V | Description

roadNet-CA 1,965,206 2,766,607 1.41 Road network of California
roadNet-TX 1,379,917 1,921,660 1.39 Road network of Texas
USA-road-d.W 6,262,104 7,559,642 1.21 Road network of western USA

as-Skitter 1,696,415 11,095,298 6.54 Internet topology graph
cage15 5,154,859 47,022,346 9.12 DNA electrophoresis
circuit5M dc 3,523,315 8,562,474 2.43 Large circuit, DC analysis
cit-Patents 3,774,768 16,518,947 4.38 Citation network among US patents
Freescale1 3,428,754 8,472,832 2.47 Circuit problem
GL7d19 1,955,309 37,322,139 19.09 Differentials of Voronoi complex
kkt power 2,063,494 6,482,320 3.14 Nonlinear optimization
memchip 2,707,524 6,621,370 2.45 Memory chip
patents 3,750,822 14,970,766 3.99 NBER US patent citations
rajat31 4,690,002 7,813,751 1.67 Circuit simulation matrix
rel9 5,921,786 23,667,162 4.00 Relations
relat9 9,746,232 38,955,401 4.00 Relations
Rucci1 1,977,885 7,791,154 3.94 Ill-conditioned least-squares problem
soc-LiveJournal1 4,846,609 42,851,237 8.84 LiveJournal online social network
wikipedia-20051105 1,598,534 18,540,603 11.60 Link graph of Wikipedia pages

Fig. 6. Summary of inputs used in evaluation. The top portion lists the small-scale
inputs; the bottom portion lists the large-scale inputs. All inputs are from [2] except
USA-road-d.W, which is from [3].

advantage of the Galois version is that it is derived directly from the sequential
application.

Our näıve implementation still does not obtain consistent speedup over se-
quential Metis, but we have shown how changing the graph data structure bridges
the gap considerably. In addition, we have not parallelized the initial partition-
ing phase of the algorithm. We also believe that a significant overhead exists
because our implementation is in Java, whereas Metis is hand-tuned C.

The previous approaches to parallelizing graph partitioning [1, 6, 13] are com-
plementary to our approach. On a hybrid architecture consisting of multiple
multicore machines, amorphous data-parallelism can exploit intra-machine par-
allelism while message-passing can exploit inter-machine parallelism.
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Fig. 7. Scalability and speedup of ParMetis, GMetis and GHMetis. Scalability is run-
time relative to runtime with one thread/process. Speedup is runtime relative to run-
time of sequential Metis.



ParMetis GMetis GHMetis
T Time Cut Bal. Time Cut Bal. Time Cut Bal.

roadNet-CA 1 1,195 5,752 1.03 16885 9886 1.03 3785 5525 1.02
2 1,340 6,455 1.04 12982 9495 1.03 2307 5882 1.02
4 684 6,341 1.04 9226 9401 1.02 1686 5605 1.02
8 391 6,472 1.03 7540 9707 1.03 1367 5865 1.03

roadNet-TX 1 791 4,426 1.03 12067 4760 1.03 2570 4592 1.02
2 970 4,715 1.05 8114 4443 1.02 1706 4237 1.03
4 473 4,705 1.05 6517 4433 1.03 1185 4165 1.02
8 260 4,611 1.04 4901 4329 1.02 980 4232 1.02

USA-road-d.W 1 4,781 11,012 1.18 68151 3057 1.01 15384 2930 1.02
2 6,230 6,382 1.23 47598 3007 1.01 8457 2951 1.00
4 4,449 5,868 1.22 28064 2951 1.00 5754 2971 1.01
8 2,944 5,455 1.22 21691 3050 1.00 4394 3175 1.01

Fig. 8. Time, edge cut and balance of ParMetis, GMetis and GHMetis as a function
of input and number of threads. All times are in milliseconds. Metis results (Time,
Cut, Balance) for roadNet-CA, roadNet-TX and USA-road.d.W are (1644, 6010, 1.02),
(1128, 4493, 1.02), and (5704, 3113, 1.01) respectively.

Metis Best ParMetis Best GHMetis
Time m/t t1/t m/t t1/t

as-Skitter 273,581 14.86 2.50
cage15 23,677 2.86 2.31 1.04 3.16
circuit5M dc 3,164 1.63 1.38 1.26 3.20
cit-Patents 58,740 4.34 1.62 2.22 2.93
Freescale1 2,944 1.90 1.60 1.22 3.61
GL7d19 168,199 4.51 6.64 2.43 2.50
kkt power 10,445 3.80 1.34 1.22 2.91
memchip 2,368 2.14 1.84 1.35 3.27
patents 51,695 4.10 1.65 2.08 2.91
rajat31 4,044 4.27 3.49 1.35 3.37
rel9 1.13
relat9 1,106,377 2.63 1.06
Ruccil 1,065,551 20.26 1.03 48.45 3.15
soc-LiveJournal1 304.295
wikipedia-20051105 358,030 8.98 2.54

Geomean 3.60 1.77 2.80 2.98

Fig. 9. Performance of Metis, ParMetis and GHMetis. m/t is speedup, runtime relative
to sequential Metis (m). t/t1 is scalability, runtime relative to single-threaded runtime.
All times are in milliseconds. Blank entries correspond to runs that terminated abnor-
mally or exceeded the timeout of 30 minutes.



Metis Best ParMetis Best GHMetis
Cut Bal. Cut Bal. Cut Bal.

as-Skitter 3,054,856 1.03 1,991,020 1.03
cage15 4,536,885 1.03 4,697,417 1.05 4,629,593 1.03
circuit5M dc 13,187 1.03 14,764 1.05 14,133 1.02
cit-Patents 3,036,598 1.02 3,258,823 1.05 2,900,222 1.02
Freescale1 13,429 1.03 15,093 1.05 13,828 1.02
GL7d19 31,168,010 1.03 34,248,358 1.26 31,295,495 1.03
kkt power 453,357 1.02 578,264 1.04 392,115 1.01
memchip 16,235 1.02 18,524 1.05 16,534 1.02
patents 2,672,325 1.02 2,841,655 1.05 2,550,783 1.01
rajat31 27,391 1.01 27,907 1.04 26,851 1.00
rel9 12,774,163 1.05
relat9 22,417,154 1.03 21,532,960 1.05
Ruccil 1,890,352 1.03 1,928,212 1.01 1,074,278 1.00
soc-LiveJournal1 13,838,247 1.03
wikipedia-20051105 10,081,144 1.03 9,389,056 1.03

Geomean 1.02 1.06 1.02

Fig. 10. Balance and EdgeCut of Metis, ParMetis and GHMetis. Blank entries corre-
spond to runs that terminated abnormally or exceeded the timeout of 30 minutes.
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