

Automatic Synthesis of High-Speed Processor Simulators

Martin Burtscher and Ilya Ganusov
Computer Systems Laboratory, Cornell University

{burtscher, ilya}@csl.cornell.edu

Abstract

Microprocessor simulators are very popular in re-

search and teaching environments. For example, func-
tional simulators are often used to perform architectural

studies, to fast-forward over uninteresting code, to gener-

ate program traces, and to warm up tables before switch-

ing to a more detailed but slower simulator. Unfortu-

nately, most portable functional simulators are on the

order of 100 times slower than native execution. This
paper describes a set of novel techniques and optimiza-

tions to synthesize portable functional simulators that are

only 6.6 times slower on average (16 times in the worst

case) than native execution and 19 times faster than Sim-

pleScalar’s sim-fast on the SPECcpu2000 programs.

When simulating a memory hierarchy, the synthesized
code is 2.6 times faster than the equivalent ATOM code.

Our fully automated synthesis approach works without

access to source/assembly code or debug information. It

generates C code, integrates optional user-provided code,

performs unwanted-code removal, preserves basic blocks,

generates low-overhead profiles, employs a simple
heuristic to determine potential jump targets, only com-

piles important instructions, and utilizes mixed-mode

execution, i.e., it interleaves compiled and interpreted

simulation to maximize performance.

1. Introduction and Motivation

Neither industry nor academia can afford the time and

money to fabricate a new processor every time they want

to test a new idea. Instead, they resort to simulators,

which can relatively easily be modified to model novel

architectural features. For example, functional simulators
are frequently used to generate traces, to prototype and

test ideas, and to fast-forward over uninteresting code

while optionally warming up various structures before

switching to a cycle-accurate simulation mode. Interpre-

tation-based functional simulators are relatively simple to

port but can be slow. The faster translation-based func-
tional simulators either work only on machines of a spe-

cific instruction set architecture (ISA), require access to

source or assembly code, or perturb the original binary,

which can change memory addresses and pointer values.

SyntSim, the functional-simulator synthesizer pre-
sented in this paper, combines the portability and non-

perturbation of true interpreting simulators with the speed

of translators while only needing access to the executable.

In fact, it can run executables devoid of any symbol or

debug information, which is not even possible with bi-
nary-translation tools like ATOM [11, 38] and Spike [18].

Because SyntSim is written in C and generates C code, it

can run programs on most target architectures for which a

C compiler exists. Moreover, it is straightforward to in-

corporate user-provided code into SyntSim, for example,

to simulate a cache or a branch predictor.
SyntSim simulators execute the SPECcpu2000 pro-

grams with the reference inputs only 6.6 times (geometric

mean) slower than native execution, even when account-

ing for the synthesis and compilation time. The slowest

program (gcc) experiences a slowdown of 16.0 while the

fastest program (mcf) is simulated at half its native speed.
These high speeds are the result of a set of optimizations

that are the topic of this paper.

Due to its speed, SyntSim is a great choice wherever

functional simulators are needed. For example, many
researchers use statistical [9, 15, 26, 29, 41] or profile-

driven [25, 35, 37] sampling whenever the entire program

execution cannot be simulated, both of which require fast-

forwarding. SyntSim is ideal for this purpose. Even with

early SimPoints [35], it takes SimpleScalar’s sim-fast [6]

an average of 1.9 hours to fast-forward and then another
75 minutes for the detailed cycle-accurate simulation per

SPECcpu2000 program on our system (Section 4.1).

With SyntSim, the fast-forwarding time is reduced to 16

minutes, doubling the overall simulation throughput.

Note that SyntSim can warm up caches and other CPU
components while fast-forwarding. In fact, it can warm

up a memory hierarchy 2.6 times faster than ATOM. Of

course, SyntSim can also be used for all other purposes

for which functional simulators are utilized, for example,

to rapidly generate the execution traces needed to drive

certain cycle-accurate simulators [5, 24].
SyntSim’s fast execution is the result of a judicious

combination of compiled and interpreted simulation

modes as well as several optimizations, including un-

wanted-code elimination, NOP removal, label minimiza-

tion (preservation of basic blocks), inlining, PC update

minimization, and the hardcoding of constants, register

specifiers, and displacement/immediate values. Some of

these optimizations directly speed up the simulator. Oth-

ers do so indirectly by enabling the C compiler to perform
aggressive optimizations. Before each simulation, Synt-

Sim automatically synthesizes a customized simulator.

The generated C code is then compiled and thus can run

all or part of the simulation in compiled mode rather than

in the slower interpreted mode. The time required to gen-

erate and compile the simulator is usually amortized
within minutes of running the simulation.

Since SyntSim needs to amortize the synthesis and

compilation time, its overall performance depends not

only on the length of the simulation but also on the

amount of code that needs to be synthesized and com-

piled. Our results show that it is typically best to aim for
running about 99.9% of the dynamic instructions in com-

piled mode and the remaining 0.1% in interpreted mode.

This means that only about 15% to 37% of the static in-

structions need to be compiled. Running more instruc-

tions in compiled mode worsen the overall turnaround

time because they essentially do not make the simulation
faster but do increase the compilation time significantly.

Short simulations prefer lower ratios of compiled to inter-

preted execution because the resulting shorter compilation

times can be amortized more quickly. Note that the deci-

sion about which instructions to run in which mode are
made statically at synthesis time. SyntSim is not a JIT

compiler and does not need dynamic compilation support.

SyntSim allows the user to specify the approximate

fraction of the instructions to be simulated in compiled

mode. This makes it possible to trade off compilation

time for simulation time and to adapt to the capabilities of
the compiler and the expected length of the simulation

run, all of which we found to impact performance.

Also, we found that a “-O1” compiler optimization

level provides the best trade-off between compilation time

and simulation speed and that unwanted-code elimination

and NOP removal can be performed much more quickly
by the synthesizer than by the compiler.

Compiled mode is much faster than interpreted mode

because the overhead of decoding instructions (typically

multiple nested switch statements in interpreters) and ex-

tracting fields from the instruction words is removed. No
code is generated for NOPs and unreachable instructions.

NOPs can safely be skipped in functional simulations.

Since SyntSim only emits labels in the generated C code

for actual branch and jump targets, the original basic

blocks are preserved, allowing the compiler to optimize

and schedule the code more effectively than would be
possible if every instruction were a potential branch/jump

target. We found that minimizing the emitted labels re-

sults in a 43% speedup. In addition, all register specifiers,

immediate values, and zero constants for the zero regis-

ters are hardcoded to simplify the task of the compiler. In

fact, because of the hardcoded register specifiers, the

compiler is able to perform constant and copy propagation

as well as scalar replacement of each (simulated) register

even though the register file is specified as an array.
Inlining ensures that there is no call overhead and exposes

more potential for compiler optimizations. Since most

instructions do not need to know the value of the PC ex-

plicitly, SyntSim only updates the PC register where nec-

essary. Furthermore, it exposes user-supplied simulation

code to the same kind of optimizations and inlines it,
which tools like ATOM cannot do.

The remainder of this paper is organized as follows.

Section 2 summarizes related work. Section 3 explains

the operation of SyntSim in detail. Section 4 describes

the evaluation methods. Section 5 presents performance

results and comparisons with other simulators and tools.
Section 6 concludes the paper.

2. Related Work

Quite a number of CPU simulators are currently in use.

Some are functional simulators, that is, simulators that

execute programs correctly but do not model any timing
behavior or speculation. Simulators belonging to this

class include SimpleScalar’s sim-safe and sim-fast [6],

AINT [34], as well as the simulators generated by Synt-

Sim. The former are representatives of interpretation-

based simulators, which are typically quite portable. In

such simulators, every instruction is decoded using a
switch statement, each case of which contains code to

interpret a particular instruction.

Cycle-accurate simulators, on the other hand, are

much slower but accurately model the CPU’s internals.

This class of simulators includes Rsim [22], Asim [10],

and SimpleScalar’s sim-outorder, sim-alpha, and sim-
mase [3, 27]. There are also full-system simulators, which

are not restricted to running one program at a time but

rather emulate an interactive multi-tasking operating sys-

tem, including device drivers, interrupt handlers, and

privileged instructions. Nevertheless, full-system simula-

tors, including SimICS [31] and SimOS [36], are usually
based on an underlying cycle-accurate or functional simu-

lator (or both). Cycle-accurate as well as full-system

simulators utilize functional simulators for fast-forward-

ing purposes, i.e., to quickly execute uninteresting code.

Finally, binary translation has been studied exten-
sively in the context of just-in-time compilation [1, 42],

FX!32 [17], HP’s Aries translator [43], and the BOA ar-

chitecture [14]. FX!32 [17] is a pure binary translator that

converts programs from one ISA to a different ISA while

Shade [8] and Embra (used in SimOS) [40] represent

simulators that are based on dynamic binary translation.
Shade cross-compiles portions of source executables and

runs them directly on the host machine, saving transla-

tions for reuse to amortize the cost of the compilation.

Embra extends Shade’s approach to support full OS simu-

lation. It does so by inserting special, highly optimized

code sequences into the translated code. Since such simu-

lators are restricted to run on a machine of a predeter-
mined ISA, binary translation-based simulators generally

lack the portability of interpretation-based simulators. On

the upside, translated code often runs within an order of

magnitude in speed relative to native execution and is

thus much faster than interpreted simulation. SyntSim

provides comparable simulation speeds without restricting
the simulation platform to a particular ISA.

Functional simulators that are based on binary transla-

tion/instrumentation include ATOM [11, 38], Dyninst

[16] and the Augmint multiprocessor simulation toolkit

[33]. These simulators insert special code into the origi-

nal binary to track events of interest (e.g., memory refer-
ences). The instrumented binary is then executed natively,

which provides fast simulation speeds but limits the use

of such tools to a specific ISA. Another potential down-

side of (binary) instrumentation is the perturbation of the

original program, in particular the moving of instructions

and data to different memory locations, which can change
pointer values. Tango [13] is similar to ATOM and

Augmint except it instruments code at the source instead

of the binary level. SyntSim combines the non-

perturbation of interpreting simulators with the speed of

binary translation-based simulators.
The MINT simulator [39] was developed as a front-

end interpreter for a multiprocessor simulator. It uses a

hybrid approach of software interpretation and native

execution. Much like interpreters, it operates on a copy of

the simulated processor’s state in memory. However, it

employs a form of code synthesis [32] to speed up
instruction execution. When the executable is loaded into

the simulator, MINT creates a function for each sequence

of code that generates no architectural event of interest.

This function is called and natively executed whenever

the original sequence of code needs to be executed. Even

creating one such function for every individual instruction
was found to result in better performance than using

switch statements to decode and interpret programs.

While MINT avoids the interpretation costs of the instruc-

tions captured in the functions, the calling overhead can

still be significant. SyntSim does not suffer from this
overhead as it inlines all code, which also allows more

effective optimization of the code. Moreover, SyntSim’s

granularity of compilation is not restricted by architec-

tural events.

Krishnan et al. [24] extend the direct execution ap-

proach used in MINT to cycle-accurate simulation of su-
perscalar microprocessors. They propose to map the

original binary into a simulation ISA that retains the tim-

ing information but is lossy in other aspects. They then

run an instrumented version of the original binary through

MINT to generate a trace of events, which is subsequently

passed on to the processor simulator. The simulator needs

the event trace to fill in the missing information when

executing the simplified ISA instructions. This consid-

erably speeds up cycle-accurate simulations.
Fujimoto and Campbell proposed to use purely static

translation for modeling microprocessor behavior [12].

They decompile the original assembly program into a

high-level language, instrument it, recompile it, and run it

on the host computer. While both Fujimoto’s simulator

and SyntSim use a decompilation process, SyntSim is
different in two key aspects. First, it directly operates on

executables while Fujimoto’s simulator requires assembly

code and cannot deal with executables directly. Second,

SyntSim utilizes a combination of static translation and

interpretation instead of only static translation.

Other static translation tools that decompile assembly
programs into a high-level language include AsToC [19]

and XTRAN [20]. However, these two toolsets are pri-

marily designed for software migration and maintenance

and, unlike SyntSim, do not support user-provided code.

The University of Queensland Binary Translator

(UQBT) [7] uses a similar approach as Fujimoto’s simula-
tor. UQBT exploits static translation to inexpensively

migrate existing software from one processor to another.

UBQT translates the original binary into a special high-

level register-transfer language, which is then recompiled

into a binary for the target ISA. UBQT inserts special
static hooks into the translated binary to interpret untrans-

lated code discovered at runtime. Hence, UQBT shares

the idea of mixed-mode simulation with SyntSim. How-

ever, it is tailored towards software migration and is not

suitable for architectural simulation. Moreover, SyntSim

does not require special hooks and allows the user to
choose and thus optimize the ratio of compiled versus

interpreted simulation. Finally, SyntSim uses C as its

intermediate representation, making it more portable.

Similar to SyntSim, Zivonjovic and Meyr’s SuperSim

[44] uses static decompilation into high-level C code and

subsequent recompilation to produce a simulator. How-
ever, their approach assumes that every instruction can be

a branch target, i.e., is preceded by a label, which we

found to substantially decrease the simulation speed and

increase the compilation overhead. SyntSim only emits

labels for true branch and jump targets.
SimICS is a fast system-level instruction-set simulator

[30, 31]. It achieves its high performance by translating

code into an intermediate representation to speed up the

interpretation. SyntSim eliminates most of the need for

interpretation by emitting simulators in a high-level lan-

guage that are compiled and natively executed. SimICS
does not use compiled-mode simulation. Also, SimICS’s

interpretation routines incur a calling overhead. SyntSim

inlines all code to avoid this overhead and to expose the

code to more compiler optimizations.

Larus’ QPT [4] and EEL [28] tools allow the creation

of efficient simulators by rewriting executables and in-

serting instrumentation code. SyntSim differs in that it

combines interpreted and compiled mode while QPT/EEL

only use compiled mode. Furthermore, in QPT/EEL the
simulation and the simulated machine’s ISAs have to be

the same. While QPT/EEL’s algorithm to handle indirect

branches is more precise, it sometimes requires dynamic

code translation, which makes the system more complex.

SyntSim is much simpler and requires no dynamic trans-

lation support. EEL can only encapsulate additional code
that has been compiled into assembly. SyntSim directly

injects the code at the source level, thus exposing it to

more compiler optimizations.

3. Synthesis Procedure

This section describes how SyntSim generates a high-

speed functional simulator for a given program. It starts

out by parsing the executable and computing a checksum.

Depending on the command-line parameters, SyntSim
reads in optional profile information. Then it selects code

for compiled mode, loads the translation table containing

the C definitions of each instruction, synthesizes, com-

piles and runs the customized simulator. The following

subsections explain each step in detail. Figure 1 gives an
overview over SyntSim’s operation.

instruction high-speed

definitions simulator

(C code) (C code)

add:

D=A+B;

sub: SyntSim

D=A-B;

bne: code generator and optimizer compiled-

if (A) goto B; mode

… simulator

user options

interpreter

program

executable

optional

profile

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��

��
��

��

Figure 1: SyntSim’s operation.

3.1 Selecting code sequences for compiled mode

Throughout this paper, we adhere to the Alpha conven-

tion of calling indirect control-transferring instructions
jumps and direct control-transferring instructions

branches. In other words, jump targets are dynamically

computed while branch targets are hardcoded in the in-

structions and are statically known.

Our benchmark programs contain three types of jump

instructions, namely jump (JMP), jump subroutine (JSR),
and return (RET). All three instructions perform identical

operations, that is, they load the PC from a general-

purpose register and store the old PC into a general-

purpose register (the link register). The only difference

between the three instructions is the action performed by

the return address stack [2].

In SyntSim, the instructions that can be jump targets

represent the entry points for compiled mode. Hence,

identifying these instructions plays an important role.
SyntSim supports three alternatives: (1) to use no com-

piled mode, (2) to use built-in heuristics to guess which

instructions to include in compiled mode, and (3) to use

profile information to determine which instructions to

execute in compiled mode.

The first choice, i.e., using no compiled mode, is al-
ways available and basically means the built-in interpreter

will be used exclusively to simulate a program’s execu-

tion. This is the slowest mode.

The choice of guessing which instructions to execute

in compiled mode is also always available. In this case,

SyntSim utilizes the following approach to determine the
jump targets and thus the starting points for compiled-

mode code sequences. It scans all instructions in the text

segment (ignoring other content such as constants) and

applies the following heuristics. For each branch-

subroutine instruction (BSR) whose target is a valid in-

struction, it marks the sequentially next instruction as a
jump target, but only if the specified link register is not

the hardwired zero register. The same heuristic is applied

to jump-subroutine instructions (JSR), i.e., the sequen-

tially next instruction is marked as a jump target if the

link register is not the zero register. Moreover, for jump
(JMP) and jump-subroutine (JSR) instructions, the target

is computed based on the hint field in those instructions

[2]. If the computed target is a valid instruction, that in-

struction is marked as a jump target. Together, these heu-

ristics prove quite effective and perform only 32% worse

than perfect profile information (see Section 5).
The third choice, i.e., selecting which instructions to

execute in compiled mode based on a profile, is only

possible if a profile exists for the executable in question,

as is determined by the name and the checksum of the

executable. Note that every simulation run with SyntSim

automatically generates such a profile. Since researchers
tend to perform many simulations (with different

parameters) on the same executable, a suitable profile

should be available for all but the first run. In fact, even

the first run can be performed quickly using SyntSim’s

heuristics. Alternatively, SyntSim can run the program in
question with a short input to produce a profile for a

following longer simulation run.

If a profile is present, the user can select all targets as

compiled-mode entry points or specify a ratio. Since

SyntSim profiles also contain the cumulative total number

of instructions executed after each jump instruction dur-
ing the profile run, SyntSim can select the top n targets

such that the expected number of instructions executed in

compiled mode over the expected number of instructions

executed in interpreted mode is approximately equal to

the user-selected ratio. Using a profile together with a

ratio produces the most effective simulators because it

allows the user to minimize the overall time required for

the synthesis, compilation, and simulation. For example,

if the simulation time is expected to only be a few min-
utes, it does not make sense to spend tens of minutes to

compile the simulator. Rather, in such a case a relatively

low ratio should be specified, which will reduce the size

of the synthesized C code and therefore the compilation

time. Conversely, for long-running simulations a higher

ratio should be specified because the longer compilation
time can be amortized by the faster simulation speed.

3.2 Determining wanted code

Once the compiled mode entry points have been identi-

fied with any of the above methods, SyntSim continues

the code discovery by determining the instructions that

are reachable from these entry points. It visits all instruc-

tions sequentially and recursively follows branch targets

until a jump, an illegal, or an invalid instruction is en-
countered. The visited instructions are marked for inclu-

sion in compiled mode. The remaining instructions are

deemed unwanted and will be handled by the interpreter if

they need to be executed. No code is synthesized for the

unwanted instructions.

3.3 Loading the translations

SyntSim includes a file that contains C code snippets
(definitions) for all supported instruction. Currently, we

have code for 194 instructions, including all instructions

required to run the SPECcpu2000 programs with all pro-

vided inputs (test, train, and reference). It is straightfor-

ward to add code snippets for additional instructions.

Each code snippet starts and ends with a special symbol.
The start symbol includes an instruction number for iden-

tification purposes. Except for the delimiter symbols, the

snippets comprise regular C code in which the reserved

variables A, B, C, and D represent place holders for up to

three source registers or immediates and a target register

(see Section 3.4).

3.4 Simulator source-code synthesis

At this point, SyntSim is ready to generate the source
code of the customized simulator. It starts out by emitting

a fixed piece of startup code, which includes the system-

call handler, memory access functions, emulators for

three floating-point instructions with a special rounding

mode, the interpreter, and predecode functions. The emu-
lators for the three instructions are included because these

instructions are rarely executed and require many lines of

C code to simulate, making them bad candidates for inlin-

ing in compiled mode. The predecode functions deter-

mine the identification number and format for each in-

struction. The identification number is the same as the

code-snippet number mentioned above. The eighteen

possible instruction formats specify the number of sources

and destinations as well as which sources are registers and
which ones are immediates. The interpreter is a func-

tional simulator that takes advantage of the pre-decode

information. Moreover, it keeps track of the number of

executed instructions and associates them with jump tar-

gets for later profile generation (see below). It transfers

control to compiled mode whenever it encounters a jump.
The emitted code also comprises the beginning of com-

piled mode, which is simply the first line of a switch

statement used to jump to one of the compiled-mode code

sections or the interpreter. This switch statement begins

at line 5 in the following example, which shows true

SyntSim output that has been reformatted for better read-
ability. The comments were added by hand.

1: static void RunCompiled()
2: {
3: ... // local variable declarations
4: while (1) {
5: switch (pc/4) {
6: case 0x4800372c:
7: r[1] = r[29]+(8192<<16); // 12000dcb0: ldah r1, 8192(r29)
8: r[4] = r[29]+(8192<<16); // 12000dcb4: ldah r4, 8192(r29)
9: r[2] = RdMem8(r[1]-30768); // 12000dcb8: ldq r2, -30768(r1)
10: r[4] = r[4]-23232; // 12000dcbc: lda r4, -23232(r4)
11: r[0] = r[2]+1; // 12000dcc0: lda r0, 1(r2)
12: r[2] = (r[2]<<3)+r[4]; // 12000dcc4: s8addq r2, r4, r2
13: r[4] = 0+8192; // 12000dcc8: lda r4, 8192(r31)
14: WrtMem8(r[0], r[1]-30768); // 12000dccc: stq r0, -30768(r1)
15: s1 = r[0]; // 12000dcd0: cmplt r0, r4, r0
16: s2 = r[4];
17: r[0] = 0;
18: if (s1 < s2) r[0] = 1;
19: WrtMem8(r[16], r[2]+0); // 12000dcd4: stq r16, 0(r2)
20: r[16] = r[29]+(8191<<16); // 12000dcd8: ldah r16, 8191(r29)
21: ic += 12;
22: if (0 != r[0]) goto L12000dcf0; // 12000dcdc: bne r0, 12000dcf0
23: r[16] = r[16]-6456; // 12000dce0: lda r16, -6456(r16)
24: // 12000dce4: unop
25: // 12000dce8: unop
26: ic += 4;
27: goto L12000c970; // 12000dcec: br r31, 12000c970
28: L12000dcf0:
29: ic += 1;
30: pc = r[26] & (~3ULL); // 12000dcf0: ret r31, (r26), 1
31: icnt[fnc(lasttarget)] += ic;
32: ic = 0;
33: lasttarget = pc;
34: break;
35: default:
36: RunInterpreted();
37: } // switch
38: } // while
39:} // RunCompiled

Next, SyntSim sequentially emits translated code for

each instruction that has been flagged for inclusion in
compiled mode. No code is generated for NOPs (lines 24

and 25). Before each compiled-mode entry point (i.e.,

before each jump target), a case label is emitted (line 6) so

that the switch statement can transfer control to it. The

case “number” is the PC divided by four to reduce the

size of the case-label table. Similarly, a normal label is

emitted before each branch target (line 28) so it can be

reached using goto statements (line 22). A label’s name

is the target PC preceded by an “L”. If the current in-
struction is the last instruction of a basic block, i.e., the

instruction transfers control (line 22) or the next sequen-

tial machine instruction is a jump or branch target (line

30), a line of C code is emitted to increment the instruc-

tion counter by the number of instructions in the basic

block (lines 21, 26, and 29). In case of a jump or system
call, code is included to update the PC register (line 30).

The PC is not needed in any other case and is therefore

not updated elsewhere. At this point, SyntSim emits the

code snippet for the current instruction. While doing so,

it replaces all occurrences of the reserved variable D with

the destination register of the instruction. The reserved

variables A, B, and C are replaced with the first, second,

and third source operand of the instruction, respectively.

A source operand can either be a register (e.g., line 12) or

an immediate from a literal or displacement field in the

instruction word (e.g., line 11). For better performance,

all uses of the hardwired zero registers are replaced by
zeros (e.g., line 13).

In case of a jump instruction or a system call, SyntSim

includes code to tally the number of executed instructions

since the last jump for later inclusion in the profile (lines

31 through 33), assigns the new target to the PC register
(line 30), and emits a break statement to leave (line 34)

and subsequently loop back (line 38) to the switch state-

ment. Then SyntSim proceeds with the next instruction

until code for all wanted instructions has been generated.

In the example above, we only show the synthesized code

for one compiled-mode entry point (line 6). Typically,
hundreds of entry points along with the code reachable

from them are included in the switch statement.

Finally, SyntSim emits another fixed block of C code

that includes the end of the switch statement (lines 35

onward), the function main (not shown), and the check-

sum of the original executable. The switch statement
terminates with a default handler (line 35) that transfers

control to the interpreter (line 36). Thus, whenever the

simulator jumps to a target for which no compiled code

exists, the interpreter is automatically invoked. Control is

returned from the interpreter when the next jump instruc-

tion is executed. The main function contains code to set

up and initialize the simulated stack, text (code), data, bss,

and heap segments. The environment variables can op-

tionally be included. Finally, main contains code to ini-

tialize the registers and to call the compiled-mode simula-

tor with the program entry point in the PC register.

3.5 Compiling and running the simulator

Once the C code for the simulator has been generated,

it is compiled. The resulting binary simulates the execu-

tion of the original program at high speed. To invoke the

simulator, the user simply has to add the name of the bi-

nary before the normal command line used to launch the

program, including any input and output redirections,

parameters, etc. For example, instead of typing mypro-

gram myflags myinput, one would simply enter

syntsim myprogram myflags myinput.

4. Evaluation Methods

4.1 System

We performed all measurements presented in this pa-

per on a 64-bit UP2000+ system with two 750MHz

21264A Alpha CPUs [23]. The second processor was not
used. The CPUs have separate, 2-way associative, 64kB

L1 caches and an off-chip, unified, direct-mapped 8MB

L2 cache. The system is equipped with 2GB of main

memory. The operating system is Tru64 UNIX V5.1.

4.2 Benchmark information

We used most of the programs from the SPECcpu2000

benchmark suite [21] for this study. We excluded

perlbmk because it executes a fork, which is not yet sup-

ported. We also excluded eon because we were unable to
finish the simulations in time for this paper. We further

excluded the four Fortran 90 programs due to the lack of a

compiler. For large amounts of compiled-mode code, the

synthesized simulator for gcc cannot be compiled be-

cause the compiler runs out of memory. Hence, gcc re-
sults are only partially provided. To make all the aver-

ages in this paper consistent and comparable, we always

exclude gcc when computing any mean, even for the
cases where results are available.

Table 1: Information about the benchmark programs.

program typ lang static test train reference

gzip C 61,616 3,054.0 M 51,179.0 M 72,002.6 M

vpr C 107,828 1,477.6 M 13,241.5 M 106,074.8 M

gcc C 446,320 1,712.9 M 4,353.0 M 40,897.1 M

mcf C 66,212 224.1 M 7,344.4 M 50,017.7 M

crafty C 119,508 4,407.5 M 27,594.6 M 195,275.2 M

parser C 108,744 3,318.8 M 11,371.8 M 464,206.5 M

gap C 200,384 1,046.4 M 8,472.8 M 242,319.7 M

vortex C 223,856 10,382.2 M 18,856.5 M 122,811.7 M

bzip2 C 59,456 7,536.1 M 50,809.5 M 102,713.3 M

twolf C 132,044 251.1 M 12,670.6 M 342,984.1 M

mesa C 213,776 2,506.1 M 68,019.2 M 279,515.7 M

art C 68,076 2,862.5 M 7,218.9 M 76,878.9 M

equake C 70,584 1,360.6 M 27,495.4 M 158,385.2 M

ammp C 92,176 6,102.5 M 53,360.1 M 390,911.8 M

wupwise F77 67,804 11,422.8 M 54,958.2 M 369,380.5 M

swim F77 63,508 587.9 M 9,855.4 M 263,576.5 M

mgrid F77 62,604 23,353.2 M 29,594.1 M 583,828.0 M

applu F77 72,352 427.4 M 21,539.3 M 555,591.6 M

sixtrack F77 303,328 14,269.7 M 172,680.2 M 809,506.4 M
apsi F77 94,496 6,865.7 M 13,512.8 M 546,082.4 M

average 115,176 5,339.8 M 34,725.0 M 301,687.5 M

fl
o

a
ti
n

g
 p

o
in

t
in

te
g

e
r

Note that averages in this paper refer to the arithmetic

mean except for execution speed ratios, which we aver-

aged using the geometric mean to de-emphasize outliers.
The C programs in the benchmark suite were compiled

with Compaq’s C compiler V6.3-025 using “-O3 -arch

host -non_shared” plus feedback optimization. The C++

and Fortran 77 programs were compiled with g++/g77

V3.3 using “-O3 -static”. SyntSim currently only sup-

ports statically linked Alpha binaries.
We run all programs to completion with the SPEC-

provided test, train, and reference inputs. However, to

save time, we limited the simulations to the first run for

the programs for which multiple runs are specified.

Table 1 shows the program name, the type (integer or

floating point), the programming language (C++, C, or
Fortran 77), the number of static instructions in the execu-

tables, and the number of dynamically executed instruc-

tions (in millions) for the test, train, and reference inputs.

5. Results

Section 5.1 studies the speed of the synthesized simu-

lators, Section 5.2 evaluates the impact of simulating
caches and a branch predictor and provides a comparison

with ATOM, Section 5.3 studies the effectiveness of

SyntSim’s built-in interpreter and compares it with Sim-

pleScalar’s sim-fast, Section 5.4 investigates compiler

optimization levels, Section 5.5 discusses the performance

of SyntSim’s optimization features, and Section 5.6 takes
a closer look at the synthesized C code.

5.1 Simulation speed

Figure 2 shows the speed of the simulators generated

by SyntSim relative to native execution for each bench-

mark program when running the reference inputs (lower
numbers are better). The results include the time to

synthesize and compile the simulators. The left bars show

the performance with a reference profile and a ratio of

1000:1, meaning that approximately 99.9% of the instruc-

tions are executed in compiled mode. The right bars

show the performance with our heuristic-based approach,
i.e., without the aid of profile information. No right bars

are shown for gcc and sixtrack because the compiler runs
out of memory when compiling those two simulators

without a profile.

Our synthesized simulators are very fast. They exe-

cute all SPECcpu2000 programs with the reference inputs

within a factor of 16 relative to native speed when a refer-

ence profile is available. The geometric mean slowdown

is a mere 6.6. Surprisingly, in the best case (mcf), native

execution is only twice as fast as the simulator. The
slowdown on the integer programs is a little higher (7.3)

than on the floating-point programs (6.0), which is ex-

pected because of the shorter basic blocks and the higher

native IPC of the integer programs.

0

2

4

6

8

10

12

14

16

18

20

22

24

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

m
e
s
a

a
rt

e
q
u
a
k
e

a
m

m
p

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

s
ix

tr
a
c
k

a
p
s
i

g
e
o
_
m

e
a
n

s
lo

w
d
o
w

n
 r

e
la

ti
v
e
 t

o
 n

a
ti
v
e
 e

x
e
c
u
ti
o
n.

..

ref runs with ref profiles

ref runs with heuristics

32.8 66.3

Figure 2: SyntSim’s performance on the reference inputs.

Using heuristics instead of profile information results

in somewhat slower simulators with a geometric mean

slowdown of 8.7. Three programs, eon, gap, and mesa,
are over a factor of two slower when using heuristics

rather than profile information. In the other cases, our

heuristics are very effective.
Figure 3 shows how much faster native execution is on

average than SyntSim’s simulators (lower numbers are

better) for different program inputs, profiles, and user-

selected ratios. Again, the results include the time to syn-

thesize and compile the simulators.

5

6

7

8

9

10

11

12

13

infinite:1 100000:1 10000:1 1000:1 100:1 10:1

selected ratio

s
lo

w
d
o
w

n
 r

e
la

ti
v
e
 t
o
 n

a
ti
v
e
 e

x
e
c
u
ti
o
n

..
.

train runs with test profiles

ref runs with test profiles

train runs with train profiles

ref runs with train profiles

ref runs with ref profiles

ref runs with heuristics

Figure 3: Performance with different ratios and profiles.

As Figure 3 shows, the simulators are only about seven

to eleven times slower than native execution, regardless

of the profile source and the ratio as long as the ratio is at

least 100:1. The interpreter, on the other hand, incurs a
slowdown of between fifty and sixty (Section 5.3) and is

thus about eight times slower than mixed-mode execution.

SyntSim’s performance on the reference inputs ex-

ceeds its performance on the train inputs. This is ex-

pected as the train runs are much shorter, making it harder

to amortize the compilation overhead. Similarly, the per-

formance on the train runs is better than on the test runs
(results are off scale). SyntSim incurs a slowdown of

17.2 on the test inputs relative to native execution, which

is still 3.7 times faster than interpretation, showing that

out approach is also useful for short simulation runs.

Note that we saw no case where mixed mode was slower

than interpreted mode.
On the train runs with train profiles, using compiled

mode exclusively is 24% slower than mixed mode with a

ratio of 100:1, which is the best ratio for the these runs.

For the reference runs, the best ratio is 1000:1 and for the

train runs it is 100:1.

Interestingly, with imperfect profile information, the
preferred ratios are higher. A ratio of 10,000:1 results in

the fastest reference runs with profile information from

the train inputs. With information from the test runs, it is

best to include all code that was executed during the pro-

file run (corresponding to an infinite ratio). The train runs

prefer a ratio of 10,000:1 when only test input information
is available. Evidently, the less accurate the profile in-

formation is, the higher a ratio should be chosen.

Figure 4 compares the performance of SyntSim’s

mixed mode with SyntSim’s interpreter and SimpleSca-

lar’s sim-fast (lower numbers are better). Sim-fast does
not execute all our binaries correctly, which is why some

programs have been omitted from the figure. The mixed-

mode results were obtained with a ratio of 1000:1 and a

reference profile.

0

25

50

75

100

125

150

175

200

225

250

g
z
ip

g
c
c

m
c
f

p
a
rs

e
r

v
o
rt

e
x

b
z
ip

2

tw
o
lf

m
e
s
a

a
rt

e
q
u
a
k
e

a
m

m
p

m
g
ri
d

a
p
p
lu

g
e
o
_
m

e
a
n

s
lo

w
d
o
w

n
 r

e
la

ti
v
e
 t

o
 n

a
ti
v
e
 e

x
e
c
u
ti
o
n.

.

ref runs using mixed mode

ref runs using interpreter

ref runs using sim-fast

282

Figure 4: Performance of SyntSim and sim-fast.

SyntSim’s mixed-mode simulation speed is 18.9 times

faster than sim-fast on average (geometric mean). The

performance benefit ranges from twelve times faster on

gcc to 32 times faster on gzip. SyntSim’s mixed mode
outperforms its own interpreter roughly by a factor of

eight, ranging from 3.6 times faster on gcc to fourteen

times faster on gzip.

5.2 Performance of user-provided code

In this section, we evaluate the performance of our sys-

tem when including user-provided C code and compare it
with ATOM [11, 38] simulations that run the same code.

We experimented with three pieces of code. The first one

(ic) simply counts the number of executed instructions.

The second one (ic+memh) also counts the dynamic in-

structions, but at the same time models a memory hierar-

chy with separate, two-way associative, 64kB first-level
caches with a least-recently-used replacement policy and

a unified, direct mapped, 4MB second-level cache. All

three caches are write allocate and have 64-byte blocks.

The third piece of user code is the same as the second one

but also includes a 1024-entry gshare branch predictor
(ic+memh+bp). We chose these experiments because

counting instructions and warming up caches and branch-

predictor tables is useful when fast-forwarding before

switching to a cycle-accurate simulation mode.

Table 2 shows the average slowdown relative to native

execution when running the three experiments on ATOM
and SyntSim using the reference inputs (lower numbers

are better).

Table 2: Performance of ATOM and SyntSim.

ATOM SyntSim

ic 3.4 6.6

ic+memh 30.2 11.5

ic+memh+bp 34.4 13.2

slowdown with

ATOM is almost twice as fast as SyntSim at counting

the number of executed instructions. However, when we
add the code for the memory hierarchy, SyntSim becomes

over 2.6 times faster than the essentially identical ATOM

code. The performance benefit remains about the same

when further adding a branch predictor to the simulations.

We believe that SyntSim is superior to ATOM in these

cases because of its ability to inline the user code, which
allows the code to be optimized in the context of the indi-

vidual call sites and removes the call overhead.

Running the memory hierarchy and the branch predic-

tor in addition to simulating and counting instructions

slows down the SyntSim simulations by about a factor of
two. In other words, SyntSim can perform these simula-

tions at about one thirteenth of native speed.

5.3 Interpreter performance

In this section, we study the speed of SyntSim’s inter-

preter (i.e., the performance when compiled mode is not

used) relative to native execution. We also compare the
interpreter’s speed with that of sim-fast, the fastest func-

tional simulators included with SimpleScalar [6].

Table 3 shows how much faster native execution is

than interpreted execution for the three provided program

inputs (higher numbers are worse).

Table 3: Interpretation time over native execution time.

program test train ref

gzip 101.6 97.3 82.8

vpr 85.2 73.3 58.5

gcc 70.8 71.8 57.7

mcf 16.2 12.2 10.0

crafty 85.4 89.2 87.6

parser 77.6 73.7 71.4

gap 49.3 57.8 63.5

vortex 96.3 104.4 93.1

bzip2 105.5 105.2 86.6

twolf 72.1 61.1 54.1

mesa 105.4 110.7 111.9

art 37.3 38.7 40.6

equake 75.7 43.9 22.8

ammp 35.8 46.8 52.4

wupwise 66.6 62.6 62.3

swim 29.2 21.8 20.4

mgrid 44.8 69.8 45.3

applu 91.9 68.6 55.8

sixtrack 82.2 83.2 83.5

apsi 62.7 60.5 46.8

geo mean 62.9 60.2 53.0

maximum 105.5 110.7 111.9

minimum 16.2 12.2 10.0

While the average slowdown lies between about a fac-

tor of fifty to sixty, the individual slowdowns range from

only ten to over 110 times. Surprisingly, mcf can be in-
terpreted at one-tenth its native speed with the reference

input. This is possible because mcf has by far the lowest

native IPC (instructions per cycle) of only 0.14. swim’s

IPC of 0.32 is the second lowest and swim also incurs the

second lowest slowdown when interpreted. mesa exhib-
its the highest IPC (1.69) and also incurs the highest

slowdown when interpreted. However, for many of the

remaining programs the native IPC does not correlate

strongly with the interpreter’s performance.

While the majority of the programs can be interpreted
more efficiently with the longer inputs, there are several

programs for which this is not true, most notably ammp.

For mgrid, the train input incurs a much larger slowdown

than the other two inputs.

On average, the integer programs experience a larger
slowdown (58.8 to 68.6) than the floating-point programs

(48.2 to 58.1). This may again be due to the native IPC,

which is lower for floating-point programs.

Table 4 shows the interpreter performance of SyntSim

relative to SimpleScalar’s sim-fast (higher numbers are
better). The baseline interpreter in SyntSim is faster than

sim-fast on every program we tested. In fact, it is over 2.2

times faster even in the worst case and the performance

advantage is quite consistent.

Table 4: Interpreter speed of SyntSim relative to sim-fast.

program test train ref

gzip 2.44 2.37 2.27

gcc 2.56 2.76 3.31

mcf 3.07 2.52 2.51

parser 2.41 2.33 2.29

vortex 2.65 2.65 2.54

bzip2 2.62 2.58 2.44

twolf 2.38 2.32 2.31

mesa 2.58 2.46 2.52

art 2.30 2.32 2.28

equake 2.57 2.69 2.60

ammp 2.42 2.52 2.50

mgrid 2.78 2.80 2.77

applu 2.29 2.35 2.33

geo mean 2.53 2.49 2.44

maximum 3.07 2.80 3.31

minimum 2.29 2.32 2.27

5.4 Compiler optimization levels

Table 5 lists the average time in seconds (lower num-

bers are better) for the synthesis, the compilation, and the

simulation when using different compiler optimization

levels. The last column lists the total time, i.e., the sum of

the three times in each row. The bolded entries mark the
shortest total time for each input. The results for all in-

puts were obtained with perfect profile information and a

ratio of 1000:1. Note that we used the “-arch host” flag in

all cases to allow the compiler to take advantage of the

full instruction set of the underlying CPU.

Table 5: Average synthesis, compilation, and simulation
time with different optimization levels.

level synthesis compilation simulation total

O0 0.09 23.56 102.79 126.43

O1 0.09 44.92 53.05 98.07

O2 0.09 63.20 55.34 118.63

O3 0.09 63.42 55.37 118.88

O4 0.09 66.02 56.31 122.43

O0 0.08 16.45 663.05 679.58

O1 0.08 36.00 346.18 382.26

O2 0.08 45.03 354.55 399.66

O3 0.08 45.34 355.50 400.92

O4 0.08 47.50 349.75 397.33

O0 0.08 16.92 6386.44 6403.44

O1 0.08 33.06 3160.25 3193.38

O2 0.08 40.32 3337.93 3378.34

O3 0.08 40.13 3332.42 3372.63

O4 0.08 42.67 3325.71 3368.46

te
s
t

tr
a
in

re
f

The synthesis time is independent of the optimization

level and is insignificant since our algorithm’s complexity
is linear in the number of instructions. As we will see in

Section 5.6, more instructions are synthesized on average

for the shorter runs, which is why the corresponding syn-

thesis time is slightly longer. The difference in the num-

ber of synthesized instructions does, however, have a con-

siderable effect on the compilation time, which is longest

with the test and shortest with the reference profiles. Ex-

pectedly, the compilation time increases with the optimi-

zation level. It jumps substantially when going from O0
to O1 and from O1 to O2, but thereafter flattens out.

This, together with the fact that the simulation time for

the three highest optimization levels is quite similar,

means that O3 and O4 do not optimize much more than

O2. O3 adds inline expansion of global procedures, but

SyntSim always synthesizes a single C file in which all
functions are static (i.e., local). Hence, O3 should not add

anything over O2. Indeed, the corresponding simulation

times are within 0.3%, which is within the margin of error

of our timing measurements. O4 adds software pipelin-

ing, vectorization, and more aggressive scheduling, which

increases the compilation time a little bit. The resulting
simulation time is worse than O2/O3 for the test inputs

but better for the train and reference inputs. Nevertheless,

O1 results in the fastest simulation speed. O2 adds op-

timizations that improve speed at the cost of extra code

size (including inlining, loop unrolling, and code replica-

tion to eliminate branches). Apparently, this is a bad
tradeoff in our already large code. After all, the average

synthesized simulator (with train profiles and a ratio of

1000:1) comprises 53,700 lines of C code. We can only

surmise that the code-increasing optimizations cause

worse instruction-cache behavior and hence result in a
slowdown rather than a speedup of the simulator. Over-

all, O1 is 21% faster than the other optimization levels for

the test inputs, 4% for the train inputs, and 5% for the

reference inputs. The difference on the test runs is much

larger because the compilation time factors in more on

shorter simulations.
Since O1 not only produces the fastest simulators but

also results in the second lowest compilation time, it is the

optimization level of choice. All other sections in this

paper use O1 exclusively.

5.5 SyntSim’s optimization effectiveness

In this section, we investigate how SyntSim’s un-

wanted-code elimination, case-label minimization (to

preserve basic blocks), and instruction counting (for pro-

file purposes) impact the performance.

Table 6: Performance of some optimizations (train runs).

compiled goto case synt. comp. simul. total

instrs labels labels time time time time

no unwanted-code elim. 115176.4 7618.8 213.8 0.35 603.2 340.9 944.5

using heuristics 92278.1 6594.8 4707.3 0.31 489.6 373.1 863.1

case labels everywhere 20659.8 1701.4 20659.8 0.10 346.4 494.3 840.8

baseline 20659.8 1701.4 213.8 0.09 36.0 346.2 382.3

no profile generation 20659.8 1701.4 213.8 0.08 30.9 332.7 363.7

Table 6 shows the average number of synthesized in-
structions, goto labels, and case labels, as well as the av-

erage time in seconds to synthesize, compile, and run the

simulators, and the total time. We list results for train

runs with train profile information and a ratio of 1000:1

(where applicable), which represents the baseline.
The first row shows the effect of turning unwanted-

code elimination off. The second row replicates the heu-

ristic-based results from the previous section for compari-

son purposes. The third row lists numbers when emitting

a case label before every synthesized instruction. The

fourth row is the baseline case. The last row shows how
much faster the baseline would be without the overhead

of producing a profile.

Without unwanted-code elimination, SyntSim has to

generate code for every instruction in the executable, in-

cluding ones that will never be executed. Emitting all this

code makes the compilation slow, taking on average over
ten minutes per program. The actual simulation, how-

ever, is 1.5% faster than that of the baseline. We had ex-

pected it to be slower due to worse instruction-cache be-

havior. As it turns out, the compiler is also able to elimi-

nate all unwanted code (judging from the size of the ex-

ecutables) since unwanted code cannot be reached be-
cause the necessary case labels are not included. In the

process, the remaining code is probably moved around,

resulting in a different code layout. We believe this to be

the explanation for the 1.5% performance difference be-

cause looking at the results for each individual program,
we find that some of them have a slightly shorter and

some of them a slightly longer simulation time than their

baseline counterparts. Overall, SyntSim’s unwanted-code

elimination is extremely fast and well worth it because it

reduces the compilation time by a factor of 17.

By emitting case labels before every instruction, i.e.,
making every instruction a possible jump target, the con-

cept of a basic block is lost, which severely limits the

ability of the compiler to perform optimizations. In fact,

the resulting code is 43% slower than the baseline. To-

gether with the much longer compilation time, emitting

case labels everywhere results in over twice longer turn-
around times for the train runs.

Since SyntSim can make such good use of profile in-

formation, we felt it worthwhile to embed code to auto-

matically generate profiles during every run, whether

compiled, interpreted, or mixed mode is used. The last
row in Table 6 shows that while doing so comes at a

price, the overhead is not substantial. Emitting, compil-

ing, and executing an increment statement for every basic

block in compiled mode and every instruction in inter-

preted mode as well as some extra code before every indi-

rect jump instruction adds 12% to the synthesis time and
increases the compilation time by 17%, but only slows

down the simulations by 4%. Overall, the cost of always

generating profiles is a 5% slower turnaround time for the

train runs (and even less for the reference runs), which we

believe to be well worth the benefit SyntSim can derive

from having profile information available for the next run.

5.6 Compiled-mode instructions

Table 7 shows how many of the 115,176.4 average

static instructions in our benchmark programs are in-

cluded in compiled mode. The table gives results for dif-

ferent ratios and information sources (test profile, train
profile, reference profile, or heuristics). The table also

lists the number of emitted goto and case labels.

Table 7: Number of emitted instructions and labels.

selected ratio instructions labels cases

inf:1 42,860.8 3,282.6 934.8

100000:1 36,056.4 2,817.6 580.1

10000:1 28,218.7 2,257.7 372.6

1000:1 22,800.8 1,842.6 262.4

100:1 17,362.3 1,428.6 147.9

10:1 11,368.6 929.9 49.0

inf:1 43,166.7 3,310.6 944.9

100000:1 30,547.9 2,422.5 436.8

10000:1 26,137.7 2,107.5 315.1

1000:1 20,659.8 1,701.4 213.8

100:1 15,076.1 1,248.9 113.3

10:1 10,089.7 824.3 36.7

inf:1 43,250.9 3,307.4 946.4

100000:1 27,548.9 2,204.1 333.5

10000:1 23,413.9 1,893.3 236.7

1000:1 18,222.9 1,472.5 148.4

100:1 12,201.5 968.3 89.7

10:1 8,615.7 662.4 32.2

92,278.1 6,594.8 4,707.3

tr
a
in

re
fe
re
n
c
e

te
s
t

heuristics

Lower ratios always result in fewer instructions and

labels being emitted. Interestingly, the reference informa-
tion results in the smallest number of instructions and

labels for all ratios except infinity. Similarly, train infor-

mation results in fewer instructions and labels than test

information (except for an infinite ratio).

6. Summary and Conclusions

This paper presents and evaluates a technique to create

portable high-speed functional simulators without access

to source or assembly code. SyntSim, one possible im-
plementation of our technique, automatically generates

and compiles a simulator before every simulation that is

highly tuned for the given executable. The synthesized

simulators include special optimizations and make inter-

leaved use of compiled and interpreted simulation. Synt-

Sim only translates between 15% and 37% of the static
instructions into compiled mode, which suffices to exe-

cute about 99.9% of the dynamic instructions in compiled

mode. The slowdown incurred by interpreting the few

remaining instructions is much lower than the time it

would take to compile translations for them. In fact, our

mixed-mode simulations are eight times faster than pure
interpretation and 24% faster than pure compiled-mode

execution. To further accelerate the simulations, SyntSim

performs optimizations such as unwanted-code elimina-

tion and label minimization. We found that removing

unwanted code (a form of dead code) in the synthesizer

accelerates the compilation process by a factor of 17. The

label minimization ensures that the concept of a basic

block is retained, which allows the compiler to perform
much more aggressive optimizations and results in a 43%

simulation speedup. Finally, SyntSim includes code to

automatically generate a profile during every run. This

incurs a 5% overhead, but SyntSim generates 32% more

effective simulators with profile information than when

using heuristics to determine what code to include in
compiled mode. The final result is a portable simulator in

C source code that is on average only 6.6 times slower

than native execution and 19 times faster than SimpleSca-

lar’s sim-fast when running the SPECcpu2000 programs

with the reference inputs. SyntSim allows users to in-

clude additional code to extend the simulated ISA, to
simulate new ISAs, or to simulate caches, branch predic-

tors, etc. The user-provided code is automatically inlined

and undergoes the same optimizations as the remaining

code. For example, when simulating a memory hierarchy

in this way, the simulators generated by SyntSim are 2.6

times faster than ATOM.

References

[1] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. M. Parikh and

J. M. Stichnoth. “Fast, Effective Code Generation in a

Just-In-Time Java Compiler.” ACM SIGPLAN Conference

on Programming Language Design and Implementation,

pp. 280-290. May 1998.

[2] Alpha Architecture Handbook, Version 4. ftp://ftp.digital.-

com/pub/Digital/info/semiconductor/literature/alphaahb.pdf

[3] T. Austin, E. Larson and D. Ernst. “SimpleScalar: An In-

frastructure for Computer System Modeling.” IEEE Com-

puter, Volume 35, Issue 2, pp. 59-67. February 2002.

[4] T. Ball and J. R. Larus. “Optimally Profiling and Tracing

Programs.” ACM Transactions on Programming Lan-

guages and Systems, Vol. 16:4, pp. 1319-1360. July 1994.

[5] C. Bechem, J. Combs, N. Utamaphethai, B. Black, R. D. S.

Blanton and J. P. Shen. “An Integrated Functional Per-

formance Simulator.” IEEE Micro, pp. 26-35. May 1999.

[6] D. Burger and T. M. Austin. “The Simplescalar Tool Set

Version 2.0.” Technical Report 1342, Computer Sciences

Department, University of Wisconsin. June 1997.

[7] C. Cifuentes and M. V. Emmerik. “UQBT: Adaptable

Binary Translation at Low Cost.” IEEE Computer, 33(3),

pp. 60-66. March 2000.

[8] R.F. Cmelik and D. Keppel. “Shade: A Fast Instruction Set

Simulator for Execution Profiling.” ACM SIGMETRICS

International Conference on Measurement and Modeling of

Computer Systems, pp. 128-137. May 1994

[9] T. M. Conte, M. A. Hirsch and K. N. Menezes. “Reducing

State Loss for Effective Trace Sampling of Superscalar

Processors.” International Conference on Computer De-

sign, pp. 468-477. October 1996.

[10] J. Emer, P. Ahuja, E. Borch, A. Klauser, L. Chi-Keung, S.

Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,

R. Espasa and T. Juan. “Asim: A Performance Model

Framework.” IEEE Computer, Volume: 35, Issue: 2, pp.

68-76. February 2002.

[11] A. Eustace and A. Srivastava. “ATOM: A Flexible Inter-

face for Building High Performance Program Analysis

Tools.” WRL Technical Note TN-44, Digital Western Re-

search Laboratory, Palo Alto. July 1994.

[12] R. M. Fujimoto and W. B. Campbell. “Direct Execution

Models of Processor Behavior and Performance.” Winter

Simulation Conference, pp. 751-758. December 1987

[13] S. R. Goldschmidt and H. Davis. “Tango Introduction and

Tutorial.” Technical Report CSL-TR-90-410, Stanford

University. 1990.

[14] M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak and D.

Appenzeller. “Dynamic and Transparent Binary Transla-

tion”. IEEE Computer, 33(3), pp. 54-59. March 2000.

[15] J. W. Haskins and K. Skadron. “Minimal Subset Evalua-

tion: Rapid Warm-Up for Simulated Hardware State.” In-

ternational Conference on Computer Design, pp. 32-39.

September 2001.

[16] J. K. Hollingsworth, B. P. Miller and J. Cargille. “Dy-

namic Program Instrumentation for Scalable Performance

Tools.” Scalable High-performance Computing Confer-

ence, pp. 841-850. May 1994

[17] R. J. Hookway and M. A. Herdeg. “DIGITAL FX!32:

Combining Emulation and Binary Translation.” Digital

Technical Journal, 9(1). August 1997.

[18] http://h30097.www3.hp.com/dtk/spike_ov.html

[19] http://www.denkart.com/astoc/index.htm

[20] http://www.pennington.com/xtran.htm

[21] http://www.spec.org/osg/cpu2000/

[22] C.J. Hughes, V.S. Pai, P. Ranganathan and S.V. Adve.

“Rsim: Simulating Shared-Memory Multiprocessors with

ILP Processors.” IEEE Computer, Volume 35, Issue 2, pp.

40-49. February 2002.

[23] R. E. Kessler, E. J. McLellan and D. A. Webb. “The Alpha

21264 Microprocessor Architecture.” International Con-

ference on Computer Design, pp. 90-95. October 1998.

[24] V. Krishnan and J. Torrellas. “A Direct-Execution Frame-

work for Fast and Accurate Simulation of Superscalar

Processors.” International Conference on Parallel Archi-

tectures and Compilation Techniques, pp. 286-293. Octo-

ber 1998.

[25] T. Lafage and A. Seznec. “Choosing Representative Slices

of Program Execution for Microarchitecture Simulations: A

Preliminary Application to the Data Stream.” Kluwer In-

ternational Series in Engineering and Computer Science

Series, Workload Characterization of Emerging Computer

Applications, pp. 145-163. 2001.

[26] S. Laha, J. H. Patel and R. K. Iyer. “Accurate Low-Cost

Methods for Performance Evaluation of Cache Memory

Systems.” IEEE Transactions on Computers, Volume C-

37(11), pp. 1325-1336. February 1988.

[27] E. Larson, S. Chatterjee and T. Austin. “MASE: A Novel

Infrastructure for Detailed Microarchitectural Modeling.”

IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 1-9. November 2001.

[28] J. R. Larus and E. Schnarr. “EEL: Machine-Independent

Executable Editing.” ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pp. 291-

300. June 1995.

[29] G. Lauterbach. “Accelerating Architectural Simulation by

Parallel Execution of Trace Samples.” Hawaii Interna-

tional Conference on System Sciences, Volume 1: Architec-

ture, pp. 205-210. January 1994.

[30] P. S. Magnusson. “Efficient Instruction Cache Simulation

and Execution Profiling with a Threaded-Code Interpreter.”

Winter Simulation Conference, pp. 1093-1100. Dec. 1997.

[31] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-

gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt and

B. Werner. “SimICS: A Full System Simulation Platform.”

IEEE Computer, Volume 35:2, pp. 50-58. February 2002.

[32] H. Massalin. “Synthesis: An Efficient Implementation of

Fundamental Operating System Services.” PhD thesis, Co-

lumbia University. 1992.

[33] A. Nguyen, M. Michael, A. Sharma and J. Torrellas. “The

Augmint Multiprocessor Simulation Toolkit for Intel x86

Architectures.” International Conference on Computer

Design, pp. 486-490. 1996.

[34] A. Paithankar. “AINT: A Tool for Simulation of Shared-

Memory Multiprocessors.” Master’s Thesis, University of

Colorado at Boulder. 1996.

[35] E. Perelman, G. Hamerly and B. Calder. “Picking Statisti-

cally Valid and Early Simulation Points.” International

Conference on Parallel Architectures and Compilation

Techniques, pp. 244-255. September 2003.

[36] M. Rosenblum, E. Bugnion, S. Devine and S. A. Herrod.

“Using the SimOS Machine Simulator to Study Complex

Computer Systems.” ACM Transactions on Modeling and

Computer Simulation, pp. 78-103. January 1997.

[37] T. Sherwood, E. Perelman, G. Hamerly and B. Calder.

“Automatically Characterizing Large Scale Program Be-

havior.” International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,

pp. 45-57. October 2002.

[38] A. Srivastava and A. Eustace. “ATOM: A System for

Building Customized Program Analysis Tools.” Confer-

ence on Programming Language Design and Implementa-

tion, pp. 196-205. June 1994.

[39] J. E. Veenstra and R. J. Fowler. “MINT: A Front End for

Efficient Simulation of Shared-Memory Multiprocessors.”

Second International Workshop on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems

(MASCOTS), pp. 201-207. January 1994.

[40] E. Witchel and M. Rosenblum. “Embra: Fast and Flexible

Machine Simulation.” ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer

Systems, pp. 68-79. May 1996.

[41] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe.

“SMARTS: Accelerating Microarchitecture Simulation via

Rigorous Statistical Sampling.” International Symposium

on Computer Architecture, pp. 84-97. June 2003.

[42] B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C.

Chung, S. Kim, K. Ebcioglu and E. Altman. “LaTTe: A

Java VM Just-in-Time Compiler with Fast and Efficient

Register Allocation.” International Conference on Parallel

Architectures and Compilation Techniques. October 1999.

[43] C. Zheng and C. Thompson. “PA-RISC to IA-64: Trans-

parent Execution, No Recompilation.” IEEE Computer,

33(3), pp. 47-52. March 2000.

[44] V. Zivojnovic and H. Meyr. “Compiled HW/SW co-

simulation.” 33rd ACM IEEE Design Automation Confer-

ence, pp. 690-695. June 1996.

