
 Exploring Last n Value Prediction

Martin Burtscher Benjamin G. Zorn
Department of Computer Science Microsoft Corporation

University of Colorado 1 Microsoft Way
Boulder, Colorado 80309-0430 Redmond, WA 98052

burtsche@cs.colorado.edu zorn@microsoft.com

Abstract
Most load value predictors retain a large number of pre-
viously loaded values for making future predictions. In
this paper we evaluate the trade-off between tall and slim
versus short and wide predictors of the same total size,
i.e., between retaining a few values for a large number of
load instructions and many values for a proportionately
smaller number of loads. Our results show, for example,
that even modest predictors holding sixteen kilobytes of
values benefit from retaining four values per load in-
struction when running SPECint95.
A detailed comparison of eight load value predictors on a
cycle-accurate simulator of a superscalar out-of-order
microprocessor shows that our implementation of a last
four value predictor outperforms other predictors from
the literature, often significantly. With 21kB of state, it
yields a harmonic mean speedup of 12.5% with existing
re-fetch misprediction recovery hardware and 13.7% with
a not yet realized re-execution recovery mechanism.

1. Introduction

Due to their occasional long latency, load instructions
can have a significant impact on system performance. If
the gap between CPU and memory speed continues to
widen, this latency will become even more detrimental.
Since loads are not only among the slowest but also
among the most frequently executed instructions in cur-
rent high-performance microprocessors [8], improving
their execution speed should significantly improve the
overall performance of the processor.

Fortunately, load values are quite predictable. For in-
stance, about half of the executed load instructions of the
SPECint95 benchmark suite retrieve the same value that
they did the previous time they were executed. Such be-
havior, which has been observed explicitly on a number
of architectures, is referred to as value locality [3, 10].

Empirically, papers have shown that the results of
most instructions are predictable [3, 9, 15]. However, of
all the frequently occurring, result-generating instructions,

load instructions are the most predictable [9] and incur the
longest latencies. Since about every fifth executed in-
struction is a load, predicting only load values requires
significantly fewer predictions and leaves more time to
update the predictor. As a consequence, smaller and sim-
pler predictors can be used. We therefore believe that
predicting only load values may well be more cost effec-
tive than predicting the result of every instruction.

Load value predictors try to exploit the existing value
locality. To decrease the number of mispredictions, the
predictors usually consist not only of a value predictor
but also of a confidence estimator (CE) that decides
whether or not to make a prediction. The CE only allows
predictions to take place if the confidence that the predic-
tion will be correct is high. This is essential because
sometimes the value predictor does not contain the right
information for making a correct prediction. In such a
case, it is better not to attempt a prediction because incor-
rect predictions incur a cycle penalty (for undoing the
speculation and possibly blocking resources) whereas
making no prediction does not.

CEs are similar to branch predictors in the sense that
both make binary decisions (predictable or not-predict-
able and branch taken or not-taken, respectively). Hence,
we adopt the nomenclature from the branch prediction lit-
erature to describe the CEs.

Most of the proposed load value predictors include bi-
modal [11] confidence estimators, i.e., they use saturating
counters to “count” how frequently the predictor was cor-
rect in the recent past. The predictor is allowed to make
predictions as long as this count is above a given thresh-
old. Otherwise, predictions are inhibited.

In unpublished previous work [1] we adopted a differ-
ent idea from the branch prediction literature to build a
more accurate CE and hence a more accurate predictor.
This CE is in essence a SAg predictor [23] that keeps a
small history recording the most recent prediction out-
comes (success or failure) [19]. The different history
patterns each have a saturating counter associated with
them to measure the confidence of the individual patterns.
The confidence of the current pattern decides whether to

make a value prediction or not. In this paper we explore
possibilities to improve the coverage of a SAg-based load
value predictor, that is, we try to increase the number of
prediction attempts without decreasing the accuracy.

If load values are predicted quickly and correctly, the
CPU can start processing the dependent instructions with-
out having to wait for the memory access to complete,
which potentially results in a significant performance in-
crease. Of course, it is only known whether a prediction
was correct once the true value has been retrieved from
the memory, which can take many cycles. Speculative
execution allows the CPU to continue execution with a
predicted value before the prediction outcome is known
[18]. Because branch prediction requires a similar mecha-
nism, most modern microprocessors already contain the
required hardware to perform this kind of speculation [3].

Unfortunately, branch misprediction recovery hard-
ware causes all the instructions that follow a misspecu-
lated instruction to be purged and re-fetched. This opera-
tion is costly and makes a high prediction accuracy para-
mount. Unlike branches, which invalidate the entire exe-
cution path when mispredicted, mispredicted loads only
invalidate the instructions that depend on the loaded
value. In fact, even the dependent instructions per se are
correct, they just need to be re-executed with the correct
input value(s) [9]. Consequently, a better recovery
mechanism for load misspeculation only re-executes the
instructions that depend on the mispredicted load value.
Such a recovery policy is less susceptible to mispredic-
tions and favors a higher coverage, but may be prohibi-
tively hard to implement.

Our load value predictor’s re-fetch performance is not
only high but also close to its re-execute performance,
making the added benefit of a re-execution core small in
comparison. While other studies show larger perform-
ance differences, this is perhaps an indication that com-
plex re-execution hardware may not be needed.

Load value predictors normally consist of an array of
slots to store information about recently executed loads.
It is this information that is used for making a prediction
the next time a load is executed. Once a predictor con-
tains enough slots to hold information about all the fre-
quently executed loads, increasing the number of slots
does not improve the predictor’s performance much be-
cause the additional slots will at best be used for predict-
ing infrequently executed and therefore unimportant load
instructions. As an alternative, we suggest using the extra
real-estate to increase the amount of information in each
slot instead of the number of slots. This choice should
enable the predictor to make better and/or more predic-
tions and thus improve its performance.

Running SPECint95, quite small predictors already
benefit more from storing additional information in the
slots than from increasing the number of slots. For exam-
ple, among 16kB predictors, the predictor with 512 slots

each holding the last four loaded values performs better
than the same size predictor with 1024 slots holding the
last two values or with 256 slots holding the last eight
values. Section 5.2.2 provides more detail.

Based on these results, we designed a last four value
predictor that outperforms other predictors from the lit-
erature and reaches a harmonic mean speedup of 13.7%
over SPECint95 with a re-execute misprediction recovery
policy and 12.5% with a re-fetch recovery policy. Section
5.1.2 provides more results.

The remainder of this paper is organized as follows:
Section 2 introduces the architecture of our last four value
predictor. Section 3 presents related work. Section 4 ex-
plains the methods used. Section 5 presents the results.
Section 6 concludes the paper with a summary.

2. The SAg Last n Value Predictor

Figure 2.1 shows the architecture of our last four value
predictor. The predictor is composed of four identical
components that each consist of an array of 512 slots for
storing a 64-bit value and a ten-bit prediction outcome
history. Furthermore, each component has an array of
1024 four or five-bit saturating counters associated with
it. The prediction outcome histories together with the
saturating counters represent the SAg confidence estima-
tor. Each of the 512 lines of the predictor contains an
eight-bit partial tag that is shared between the four com-
ponents. In this configuration, our predictor requires
21kB of state.

Predictions are made in the following way: First, the
nine least significant bits from the load instruction’s pro-
gram counter are used to index one of the predictor’s lines
(direct mapping). If the partial tag of that line does not
match, no prediction is made. Otherwise, the four com-
ponents each predict (in parallel) the value stored in their
selected slot. At the same time, the components use their
selected history to index a counter in their array of satu-
rating counters. The four resulting counter values are
then compared with each other and whichever component
happens to report the highest counter value is selected to
make the actual load value prediction if its counter value
is also above a preset threshold.

If multiple components report the same maximum con-
fidence, the component holding the youngest value is se-
lected. Giving the component with the oldest value the
highest priority results in slightly worse performance.

Once the outcome of a prediction is known, the pre-
dictor needs to be updated. This process is similar to
making a prediction except that each component com-
pares its predicted value with the true load value. If the
two values are identical, the selected counter is incre-
mented (unless it has already reached its maximum) and a
one (indicating a success) is shifted into the selected pre-

diction outcome history. If the two values differ, the cor-
responding counter is decremented by a preset penalty
(but not below zero) and a zero (indicating a failure) is
shifted into the prediction outcome history. Finally, the
four values in the selected line are shifted over to the next
component, i.e., the oldest value is lost, component four
gets the value from component three etc. and component
one receives the just loaded value. Thus, the first compo-
nent always holds the most recently loaded value, the
second component the second most recently loaded value
and so on.

If accessing the two-level predictor in one cycle is not
feasible, the accesses can readily be pipelined over two
stages. During the first cycle, the values and histories are
read and latched (and updated). In the second cycle, the
counters are accessed (and updated) and the selection
process takes place. Note that this works for updates be-
cause updates are performed independent of the confi-
dence. The two-cycle access latency can be hidden if
there are at least two stages between the decode and the
execute stage in the processor’s instruction pipeline
(which is the case in most modern CPUs).

PC …yyxxx..xx00
tag hist last value hist 2nd last value hist 3rd last value hist 4th last value

· · · · · · · · ·
· · · · · · · · ·

 stage 1 · · · · · · · · ·

 latches
ctr ctr ctr ctr

 stage 2 · · · ·
· · · ·

match largest MUX predicted value

match & >thrshld yes/no predict

Figure 2.1: The architecture of our partially tagged SAg-based
last four value predictor.

3. Related work

In this section we present related work and introduce
the predictors that we later compare our predictor with.
To make this comparison as fair as possible, we scale all
predictors to a size of 16kB for retaining load values plus
whatever else they need to support this size, since we be-
lieve 16kB to be a reasonable size for first generation load
value predictors. We show the total predictor sizes (in-
cluding the confidence estimators, selectors, etc.) to give
an idea of the relative complexity. Note that the indicated
size is in most cases not the size originally used by the
authors of the individual predictors. We therefore show

simulation results for predictor sizes raging from four to
64 kilobytes in Section 5.1.2.

Early Work: Two independent research efforts [3, 10]
first recognized that load instructions exhibit value local-
ity and concluded that there is potential for prediction.

In his dissertation proposal [3], Gabbay suggests sev-
eral predictors and notes that there exists almost no (non-
zero) stride predictability in load value sequences.

Lipasti et al. [10] investigate how predictable various
kinds of load instructions are. In a follow-up paper, Li-
pasti and Shen [9] broaden their scope to predicting all re-
sult-generating instructions and show that a value predic-
tor delivers three to four times more speedup than dou-
bling the data-cache (same hardware increase). We found
that our load value predictor outperforms doubling the L1
data-cache eightfold.

Techniques: Several research groups [9, 22] have in-
vestigated last n value predictability and found that there
is potential for performance improvement. In this paper
we present an implementable last four value predictor
(Lipasti and Shen’s predictor [9] is not) that outperforms
Wang and Franklin’s more complex predictor that retains
the last four distinct values [22].

Rychlik et al. [14] and Reinman and Calder [13] pro-
pose reusing the confidence estimators in the components
of a hybrid load value predictor as selector, thus elimi-
nating the need for extra storage to guide the selection
process. We utilize the same approach in our predictor.

Gabbay and Mendelson [4] use profiling to insert op-
code directives that allow them to allocate only highly
predictable values in their predictor, which improves the
performance in most cases. We currently only investigate
transparent prediction schemes that do not require any
changes to the instruction set architecture.

Rychlik et al. [14] address the problem of useless pre-
dictions. They introduce a simple hardware mechanism
that inhibits predictions that were never used from up-
dating the predictor, which reduces predictor pollution
and hence improves performance. Since the prediction
outcome histories we use rely on seeing all updates, their
scheme hurts performance when added to our predictor.

In their next paper [5], Gabbay and Mendelson show
that general value prediction is more effective with high-
bandwidth instruction fetch mechanisms. They argue that
current processors can effectively exploit less than half of
the correct value predictions since the average true data-
dependence distance is greater than today’s fetch-band-
width (four). This is one of the reasons why we restrict
ourselves to predicting only load values, which requires
considerably smaller predictors while still reaping most of
the potential.

Gonzalez and Gonzalez [6] found that the benefit of
data value prediction increases as the size of the instruc-
tion window grows, indicating that value prediction will
likely play an important role in future processors.

A detailed study by Sazeides and Smith [17] illustrates
that most of the predictability originates in the program
control structure and immediate values. Another inter-
esting result of their work is that over half of the mispre-
dicted branches actually have predictable input values,
implying that a side effect of value prediction should be
improved branch prediction accuracy. Gonzalez and
Gonzalez [6] did indeed observe such an improvement.

Predictors: The predictor most closely related to our
own is Wang and Franklin’s last distinct four value pre-
dictor (LD4V) [22]. It retains only distinct values (ours
does not) and uses a least recently used replacement pol-
icy. Instead of prediction outcome histories, their pre-
dictor uses the pattern of the last six accesses as an index
into four arrays of saturating counters that correspond to
the four components. The maximum counter value de-
termines which component is selected to make a predic-
tion. Predictions only take place if the counter value is
above a preset threshold. A LD4V storing 16kB of load
values requires about 26kB of state.

To improve the performance of the LD4V predictor,
Wang and Franklin propose hybridizing their LD4V with
a stride predictor [22]. We call the resulting predictor
LD4V+Stride. A stride predictor predicts a value that is
the sum of the last value plus an offset (stride). This off-
set is computed as the difference between the last value
and the second to last value. Since the stride component
only stores 8-bit partial strides that are added to the values
from the LD4V component, the hybrid predictor is not
significantly larger than LD4V and requires 27kB of state.
Wang and Franklin did not perform cycle-accurate simu-
lations of their predictors.

In previous work we have developed a tagged SAg-
based last value predictor (Tag SAg LV) [1] with a size of
21kB. The last four value predictor presented in this pa-
per essentially consists of four Tag SAg LV components
one quarter as high that are operated in parallel. We
found that replicating the components and making them
shorter to maintain the overall predictor size results in
improved performance for predictors with more than
about eight kilobytes of state.

The predictor most closely related to our Tag SAg LV
is Lipasti and Shen’s bimodal last value predictor (Bim
LV) [9]. It is untagged and uses two-bit saturating count-
ers as a confidence estimator. The counters are located in
the place where our predictor keeps the histories. A value
prediction only takes place if the corresponding counter
value is above a given threshold. Bim LV is the smallest
predictor with a size of 17kB.

We expand on Bim LV by adding partial tags and per-
forming a detailed parameter space analysis to find the
optimal CE setting. As it turns out, three-bit counters
with a penalty (decrement) above one perform the best.
Because of the somewhat larger counters and the 8-bit
partial tags, the size of Tag Bim LV amounts to 19kB.

We performed another detailed analysis for the Tag
Bim St2d predictor, which is a tagged stride 2-delta [15]
predictor with a bimodal CE. A stride 2-delta predictor
retains two strides. The stride used to compute the next
prediction is only updated if a new stride has been seen at
least twice in a row. This results in significantly better
performance than a conventional stride predictor. The
size of the Tag Bim St2d predictor is 23kB due to the two
partial strides.

The last predictor we compare against is St2d+FCM,
which is similar to the one presented by Rychlik et al.
[14] except it is not set-associative. The predictor is a
hybrid between a stride 2-delta and a finite context
method (FCM) predictor [16]. FCM predictors store en-
tire sequences of load values. Upon prediction they try to
identify the current location in the sequence and use the
next value from the sequence to make a prediction. This
is particularly useful for repeated traversals of dynamic
data-structures. The configuration that yields the best re-
sult requires about 26kB of state with re-execute and
29kB with re-fetch, which makes it the largest predictor.

4. Methodology

All our measurements are performed on the DEC Al-
pha AXP architecture using the AINT simulator [12] with
its cycle-accurate superscalar back-end. We configured
the simulator to emulate a processor similar to the DEC
Alpha 21264 [7]. In particular, the simulated 4-way su-
perscalar out-of-order CPU has a 128-entry instruction
window, a 32-entry load/store buffer, four integer and two
floating point units, a 64kB 2-way set associative L1 in-
struction-cache, a 64kB 2-way set associative L1 data-
cache, a 4MB unified direct-mapped L2 cache, a 4096-
entry BTB, and a 2048-line gshare-bimodal hybrid branch
predictor. The three caches have a block size of 32 bytes.
The modeled latencies are shown in Table 4.1. The six
functional units are fully pipelined. Operating system
calls are executed but not simulated. Loads can only exe-
cute when all prior store addresses are known.

This configuration represents our baseline architecture.
All the speedups reported in this paper are relative to this
CPU, which does not contain a load value predictor.

We performed a detailed parameter space evaluation
comprising hundreds of simulation runs to obtain the
most effective configurations for the load value predictors
presented in this paper.

The best performing last n value predictor under 30kB
of state that we found is our SAg Last 4 Value Predictor
with a height of 512, a history length of ten bits, four bit
saturating counters for re-execute with a threshold of nine
and a penalty (decrement) of three, and 5-bit counters for
re-fetch with a threshold of sixteen and a penalty of six-
teen. The predictor uses 16kB of state for storing values

plus 5kB for the confidence estimator. Unless otherwise
noted, these are the parameters used with our predictor.

Since we believe that next-generation CPUs will only
contain moderately sized load value predictors, our study
focuses on predictors under about thirty kilobytes of state.
We do, however, also present results of larger and smaller
predictors in Section 5.1.2.

Instruction Type Latency
 integer multiply 8-14
 conditional move 2
 other int and logical 1
 floating point multiply 4
 floating point divide 16
 other floating point 4
 L1 load-to-use 1
 L2 load-to-use 12
 Memory load-to-use 80

Table 4.1: The functional unit and memory latencies (in cy-
cles) used for our simulations. The load-to-use latencies do
not include the effective address calculation.

Note that the predictors used in this paper are opti-
mized for speedup, which implies optimizing the predic-
tor performance at instruction commit. The interaction
between the CPU and the predictor, however, takes place
during prediction and then again during update, possibly
long before the time of commit. This discrepancy may be
an issue because, for example, the accuracy with which
wrong path instructions are predicted is most likely less
important than the accuracy of correct path instructions.
Consequently, a high overall accuracy measured at pre-
dict or update may not be representative of the predictor’s
performance since it makes no statement about the pre-
diction accuracy of the instructions that are actually re-
tired. We found the ratio of total predicted loads over
committed value-predicted loads to be just under 1.5, in-
dicating that there is a significant number of predictions
that most likely have little impact on the overall perform-
ance. To account for any effects this might have, we
model out-of-order and wrong-path updates of the pre-
dictor accurately in our simulator. Note that all the pre-
dictors used in this paper are updated as soon as the true
load value becomes available, that there are no specula-
tive updates, and that an out-of-date prediction will be
made as long as there are pending updates (that are going
to the same predictor line).

4.1 Benchmarks

We use the eight integer programs of the SPEC95
benchmark suite [20] for our measurements. These pro-
grams are well understood, non-synthetic, and compute-
intensive, which is ideal for processor performance meas-
urements. Despite the lack of desktop application code,
the suite is nevertheless quite representative thereof [8].

We use the reference input set and the more optimized
peak-versions of the programs (compiled on an Alpha
21164 using DEC GEM-CC with full optimization
-migrate -O5 -ifo). The binaries are statically linked,
which enables the linker to perform additional optimiza-
tions to further reduce the number of run-time constants
that are loaded during execution. These optimizations in-
clude most of the optimizations that OM [21] performs.
In spite of this high optimization level and good register
allocation, 22.9% of the instructions executed by the pro-
grams are loads.

Note that the few floating point load instructions con-
tained in the binaries are also predicted and that loads to
the zero-registers as well as load immediate instructions
are ignored.

We execute each of the benchmark programs for 300
million instructions on our simulator after having skipped
over the initialization code in “fast-execution” mode.
This fast-forwarding is very important if only part of the
execution is simulated because the initialization part of
programs is not usually representative of the general pro-
gram behavior [13]. Table 4.2 shows the number of in-
structions that were skipped (in billions) and gives other
relevant information about the simulated segment of each
of the eight SPECint95 programs. GCC is executed for
334 million instructions and no instructions are skipped
since this amounts to the complete compilation of the first
reference input file.

Information about the Simulated Segments of the SPECint95 Benchmark Suite
exec percent skipped base L1 load L2 load load sites that account for

program instrs loads instrs IPC missrate missrate Q100 Q99 Q90 Q50
compress 300 M 17.9% 6.0 G 1.35 24.4% 2.8% 62 56.5% 45.2% 14.5%
gcc 334 M 23.9% 0.0 G 1.51 2.4% 6.4% 34345 41.2% 15.7% 2.5%
go 300 M 24.1% 12.0 G 1.44 1.4% 15.3% 9619 40.2% 17.9% 2.7%
ijpeg 300 M 16.8% 1.0 G 1.44 1.4% 51.3% 2757 13.7% 6.7% 1.9%
li 300 M 25.5% 4.0 G 1.99 5.4% 0.6% 419 56.6% 28.6% 10.3%
m88ksim 300 M 20.7% 1.0 G 1.25 0.1% 11.2% 747 71.9% 26.6% 3.3%
perl 300 M 31.2% 1.0 G 1.57 0.0% 46.9% 1437 15.7% 11.6% 3.1%
vortex 300 M 23.6% 5.0 G 2.89 2.2% 10.2% 1973 48.6% 18.0% 2.8%
average 22.9% 1.68 4.7% 18.1% 6420 43.0% 21.3% 5.1%

Table 4.2: This table shows, from left to right, the number of
simulated instructions (in millions ‘M’), the percentage of in-
structions that are loads, the number of skipped instructions
(in billions ‘G’), the instructions per cycle of the baseline CPU,
the L1 data-cache load miss-rate, the L2 load miss-rate, and
some quantile information. The quantile columns show the
number of load sites that contribute the given percentage
(e.g., Q50 = 50%) of executed loads in absolute terms for
Q100 and percentages thereof for the remaining quantiles.

The results shown in Table 4.2 only take into account
load instructions within the simulated segments of the
benchmark programs. However, we found the eight seg-
ments to be very representative of the complete programs,
as full program executions revealed. For example, the
predictability over the entire programs is within five per-
cent of the numbers measured for the simulated segments.

Except for compress, all the programs have a quite low
L1 data-cache load miss-rate. However, some of the L2
load miss-rates are quite large. Since the corresponding

number of accesses is very small, the large L2 miss-rates
do not have a significant impact on the performance.

An interesting point is the relatively small number of
load sites that contribute most of the executed load in-
structions. For example, 5% of the load sites that are exe-
cuted at least once account for 50% of the dynamically
executed loads and only 43% of the executed load sites
account for 99% of the executed loads.

5. Results

The following subsections describe the results. In
Section 5.1 we evaluate the performance of our Tag SAg
L4V predictor by comparing it to oracles (Section 5.1.1)
and other predictors from the literature (Section 5.1.2).
Section 5.2 presents a sensitivity analysis of the predictor
parameters. Section 5.2.1 investigates the prediction po-
tential, Section 5.2.2 examines the predictor height versus
width trade-off for different sizes, Section 5.2.3 studies
the prediction outcome history length, and Section 5.2.4
explores the parameters of the saturating counters.

To better analyze the parameter space we only show
averages over the eight benchmarks and not the individual
programs. Note that all the averaged speedups presented
in this paper are harmonic mean speedups. Furthermore,
except for Sections 5.1.2 and 5.2.2, we restrict ourselves
to predictor sizes between 16kB and 29kB since predic-
tors of that size already perform well and are most likely
not too large to be included in next generation microproc-
essors.

5.1 Predictor Performance

In brief, our Tag SAg L4V predictor’s accuracy at
commit is 98.1% using a re-fetch misprediction recovery
policy. On average, 32.8% of the load instructions are
predicted with the correct value, 0.6% with an incorrect
value. This results in a harmonic mean speedup over
SPECint95 of 12.5% relative to an otherwise identical
CPU that does not include a load value predictor. With a
re-execution architecture, the accuracy of the predicted
load instructions that are committed/retired is 92.9%.
36.9% of the load instructions are correctly predicted and
0.8% are incorrectly predicted, resulting in a harmonic
mean speedup of 13.7%.

5.1.1 Comparison with oracles
To get a better understanding of the performance of

our predictor, we modified the simulator to provide vari-
ous degrees of perfect knowledge.

The first oracle (called perf-inh) inhibits all the incor-
rect predictions that the oracle-less predictor (normal)
would make (i.e., no incorrect predictions take place).
The next oracle (perf-ce) incorporates a perfect confi-

dence estimator. In addition to inhibiting all incorrect
predictions, the predictor is now forced to make a predic-
tion whenever the selected component contains the cor-
rect value. The last oracle (perf-ce/sel) includes both a
perfect confidence estimator and a perfect selector.
Hence, the oracle not only always makes a prediction if
the correct value is available and never makes a predic-
tion otherwise, but it also chooses the component that will
make a correct prediction if there is such a component. In
other words, if any component in the predictor can make a
correct prediction, it is selected and a prediction takes
place, otherwise no prediction is attempted.

Figure 5.1 shows the speedups of the oracle-less pre-
dictor and the three oracles for re-fetch and re-execute.

Tag SAg L4V Speedup with and without Various Oracles

12.5

14.1

20.1

25.1

13.7

15.7

20.2

25.1

0

5

10

15

20

25

normal perf-inh perf-ce perf-ce/sel

Configuration

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch

re-execute

Figure 5.1: Re-fetch and re-execute speedups of various pre-
dictors with different degrees of perfect knowledge (oracles).

Inhibiting incorrect predictions (perf-inh) improves the
speedup somewhat relative to the ordinary predictor
(normal). The improvement is not very large, though, in-
dicating that incorrect predictions either do not diminish
the performance much or that there is only a small num-
ber of incorrect predictions to begin with. Since the pre-
dictor’s accuracy is over ninety percent, the latter is the
more probable explanation.

Note that the re-fetch configuration we use attempts
fewer predictions than the re-execute configuration,
which is why the re-fetch performance of the oracle is
lower than its re-execution counterpart even though there
are no incorrect predictions.

Adding perfect confidence estimation (perf-ce) results
in a significant increase in speedup, suggesting that our
imperfect CE is rather conservative. Since our CE setting
is the result of a global optimization and hence yields one
of the highest speedups possible, we conclude that trading
off missing potentially correct predictions for reducing
the number of incorrect predictions is beneficial with the
CPU we are simulating. Apparently, incorrect predictions
are indeed very harmful and should therefore be avoided,
making a high prediction accuracy paramount.

Note that, because there is no difference in the CE set-
ting, the perf-ce speedups for re-fetch and re-execute
should be the same. The minor discrepancy in the two
speedups stems from different timing behavior within the
modeled CPU after a load value misprediction that affects
the predictor updates, which are non-speculative. The
reason for this is that perf-ce does not necessarily “cor-
rectly” predict wrong-path load instructions (that are exe-
cuted due to branch mispredictions) since a correct load
value is not always defined in such a case.

Adding a perfect confidence estimator and a perfect
selector (perf-ce/sel) results in yet another big boost in
speedup, implying that our selection mechanism could be
improved. Overall, the confidence estimator and selector
in our predictor are able to reap about half of the speedup
that is theoretically achievable with this predictor.

5.1.2 Comparison with other predictors
In this section we compare several predictors from the

literature with our own. The sole metric for this compari-
son is the harmonic mean speedup over SPECint95. To
make the comparisons as fair as possible, every predictor
is scaled to 16kB of state for storing values. Note that,
due to the different confidence estimators, the overall
predictor sizes vary between about 17kB and 29kB of
state. Our predictor with 21kB is among the smaller ones.

We performed a detailed parameter space evaluation
for our predictor to determine the setting that yields the
highest speedup. For the predictors from the literature we
use the best parameter setting indicated by the authors.
Observing that the threshold has a significant effect on
performance, we varied the threshold setting of all the
predictors to find an optimal value. Figure 5.2 and Figure
5.3 present the resulting best mean speedup of the pre-
dictors with a re-execute and a re-fetch misprediction re-
covery mechanism, respectively. The predictors are
sorted by size, with the smallest being on the left side.
On the far right we show the speedup achieved by dou-
bling the size of the 64kB L1 data-cache instead of adding
a load value predictor.

Our predictor (Tag SAg L4V) outperforms all the other
predictors, including larger and more complex ones.
LD4V+Stride comes close to the speedup of our predictor
when re-execution is utilized, but not with re-fetch.

While all the predictors perform quite well with the
more complex but more forgiving re-execution policy,
their performance suffers significantly when the currently
available re-fetch misprediction recovery hardware is
used. Our predictor sustains the least performance de-
crease. Surprisingly, its re-fetch speedup is higher than
any other predictor’s re-execute speedup with only one
exception; LD4V+Stride performs somewhat better with
re-execution than our Tag SAg L4V predictor using re-
fetch. However, LD4V+Stride actually slows programs
down with re-fetch.

Note how much better Tag Bim LV performs than Bim
LV. Most of the difference in speedup does not come
from the partial tags but from the more adequate choice of
CE parameters. In particular, changing the counter pen-
alty from one to seven for re-fetch made the biggest dif-
ference. Reinman and Calder performed a similar search
to find the best CE parameters [13] and also determined
that a large penalty is needed for a re-fetch architecture.

We suspect that other proposed predictors can also be
improved upon by imposing a heavier penalty on their
counters. However, we do not believe that they will reach
the performance of our predictor unless they switch to a
SAg-based CE, since in all our measurements with other-
wise identical components, bimodal predictors always
turn out to be inferior.

Mean Speedup of Several Predictors over SPECint95 using Re-execute

10.3
11.0

13.7

12.4
11.6

13.5

11.2

1.4

0

2

4

6

8

10

12

14

16

Bim
 L

V

Tag
 B

im
 L

V

Tag
 S

Ag
L4

V

Tag
 B

im
 S

t2
d

LD
4V

LD
4V

+S
tri

de

St2
d+

FCM

Dou
ble

 L
1

DCac
he

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Figure 5.2: The best harmonic mean speedup of several pre-
dictors with sizes between 17kB and 27kB using a re-execu-
tion misprediction recovery mechanism.

Mean Speedup of Several Predictors over SPECint95 using Re-fetch

3.2

9.1

12.5

9.5

4.0

-0.4

8.0

1.4

-2

0

2

4

6

8

10

12

14

16

Bim
 L

V

Tag
 B

im
 L

V

Tag
 S

Ag
L4

V

Tag
 B

im
 S

t2
d

LD
4V

LD
4V

+S
tri

de

St2
d+

FCM

Dou
ble

 L
1

DCac
he

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Figure 5.3: The best harmonic mean speedup of several pre-
dictors with sizes between 17kB and 29kB using a re-fetch
misprediction recovery mechanism.

Since our predictor performs well with re-fetch, it is
possible that no re-execution core is necessary. This re-
sult is encouraging, in particular for the near future be-

cause it means that microprocessor designers can simply
use the already existing branch misprediction hardware to
recover from value mispredictions.

All the predictors (except LD4V+Stride using re-fetch)
outperform the doubled L1 data-cache. This is surprising
because doubling the cache requires over 64kB of addi-
tional state, which is almost four times as much as the
predictors require when all the cache hardware is ac-
counted for. Clearly, there is a point beyond which add-
ing a load value predictor is likely to yield more benefit
than using the same number of transistors to increase the
cache size.

Re-execute Speedup of Several Predictors for Different Sizes

0

2

4

6

8

10

12

14

16

4kB 8kB 16kB 32kB 64kB
Predictor Size

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Tag Bim LV

Tag SAg LV

Tag SAg L4V

Tag Bim St2d

LD4V

LD4V+Stride

St2d+FCM

Figure 5.4: The re-execute speedup of several predictors for
different sizes. The sizes refer to the amount of state used to
store values and do not include the state required by the con-
fidence estimators.

Re-fetch Speedup of Several Predictors for Different Sizes

-2

0

2

4

6

8

10

12

14

16

4kB 8kB 16kB 32kB 64kB

Predictor Size

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

Tag Bim LV Tag SAg LV

Tag SAg L4V Tag Bim St2d

LD4V LD4V+Stride

St2d+FCM

Figure 5.5: The re-fetch speedup of several predictors for
different sizes. The sizes refer to the amount of state used to
store values and do not include the state required by the con-
fidence estimators.

To get a broader perspective on the performance of the
various predictors, we present Figure 5.4 and Figure 5.5,
which show the speedups of the predictors for different
sizes. The figures no longer include Bim LV since Tag

Bim LV outperforms it. We added a Tag SAg LV predic-
tor in its place, which is identical to Tag Bim LV except it
uses our SAg-based CE instead of the bimodal one.

As expected, with re-execution all the predictors per-
form quite well across the entire range of sizes. With
16kB and above, our last four value predictor outperforms
the other predictors and the speedup gap to the second
best predictor (LD4V+Stride) increases as the predictors
become larger. Note how Tag SAg LV consistently deliv-
ers an additional percent of speedup over Tag Bim LV.

For small predictor sizes, the last four value predictor
is no longer tall enough to hold all the frequently exe-
cuted load instructions. As a result, its performance suf-
fers significantly. However, with 4kB and 8kB, Tag SAg
LV performs about as well as the best predictors for these
two sizes.

With re-fetch, the performance of most predictors is
significantly lower. Again, our last four value predictor
outperforms the other predictors starting at 16kB.

Tag SAg LV is superior to Tag Bim LV also with re-
fetch. We take this as strong evidence that SAg CEs are
better suited for load value prediction than bimodal CEs.
Note, however, that SAg CEs require more state and are
more complex than their bimodal counterparts.

For the smallest two predictor sizes (4kB and 8kB), the
last four value predictor is again too short and its per-
formance is accordingly low. However, Tag SAg LV out-
performs all the other predictors for these sizes. Appar-
ently, a SAg-based CE with a last n value predictor (LV is
a last one value predictor) represents a strong combina-
tion for both re-fetch and re-execute.

Note that the performance of some of the predictors
from the literature actually decreases with re-fetch when
increasing the predictor size due to a high percentage of
mispredictions.

5.2 Sensitivity analysis

5.2.1 Using distinct last values
Load value predictors to exploit last value [3, 10],

stride [3, 15], and finite context predictability [15] have
been studied at length in the current literature. Last n
value predictability, on the other hand, has been less ex-
plored despite its simplicity and considerable potential.
The only proposed predictor to take advantage of last n
value locality is Wang and Franklin’s last distinct four
value predictor [22]. Lipasti and Shen [9] study last n
value predictability in combination with an oracle that
always selects the correct value (if possible) but they do
not propose an implementable predictor.

Retaining the last n fetched values of a given load in-
struction is straight forward. To make the most of the re-
tained values, Wang and Franklin [22] suggest storing
only values that are not already stored (i.e., only distinct
values). Unfortunately, this approach requires content

addressable memory. Storing the last n values regardless
of whether any of them are identical is much simpler.
Our results from Section 5.1.2 suggest that this lower
complexity approach is not only more cost effective but
also yields superior performance because it makes the
selection process more accurate.

Figure 5.6 shows the prediction potential for different
n when storing every loaded value versus only storing
distinct values. The potential is given as the percentage
of the fetched load values that are identical to at least one
of the last n (distinct) fetched values. The results only
take into account load instructions within the approxi-
mately 300 million simulated instructions of each of the
eight benchmarks. However, the numbers in Figure 5.6
are very representative of the generally observed predict-
ability. Complete executions of the programs revealed
prediction potentials within five percent of the values
shown in the figure.

Last n Load Value Predictability

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n

P
re

di
ct

ab
ili

ty
 (

%
)

last n values

last n distinct values

Figure 5.6: The average last n value predictability (duplicate
values are allowed) and the average last n distinct value pre-
dictability (no duplicates) of the load values within the simu-
lated segment of each of the eight SPECint95 programs.

Figure 5.6 shows that larger n result in higher predict-
ability potential. This result is intuitive since the chance
of finding the correct value increases as the number of
stored values becomes larger. The increase is consider-
able for small n up to about four. Then the “curve” starts
flattening out and reaches saturation at approximately n =
11, at which point almost no additional potential is gained
by further increasing n.

One very interesting observation is that for n larger
than four, the potential difference between distinct and
non-distinct is virtually constant (3.3%). This means that
the relative advantage of storing distinct values becomes
smaller as n gets larger.

For n = 4, which is the predictor width Wang and
Franklin chose [22], the difference of 3.6% represents one
eighteenth of the total potential of 64%, indicating that
the simpler approach of retaining not necessarily distinct

values is in theory able to perform almost as well as its
more complex counterpart.

5.2.2 Predictor size and width
It is important that a load value predictor’s height be

large enough to accommodate the (load instruction)
working set size (Section 4.1). If the predictor is too
short, multiple frequently executed load instructions will
have to share a predictor slot, which almost always results
in detrimental aliasing. Predictors that are too tall, on the
other hand, underutilize many of their slots. Conse-
quently, once a predictor is large enough to accommodate
the working set size, further increases in the predictor
height will not increase the performance because the ad-
ditional slots will not be utilized effectively. Instead, ad-
ditional real-estate could be used to increase the amount
of information stored in each slot, which should enable
the predictor to make better and/or more predictions and
thus improve its performance. Hence, the optimal pre-
dictor width depends on the working set size of the pro-
grams and the available real-estate for the predictor.

Re-execute Speedup for Different Predictor Sizes and Widths

0

2

4

6

8

10

12

14

16

1 2 4 8 16

Predictor Width

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

4kB

16kB

64kB

Figure 5.7: Maximum mean speedup for three predictor sizes
and five predictor widths with a re-execution recovery policy.

Re-fetch Speedup for Different Predictor Sizes and Widths

0

2

4

6

8

10

12

14

16

1 2 4 8 16
Predictor Width

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

4kB

16kB

64kB

Figure 5.8: Maximum mean speedup for three predictor sizes
and five predictor widths with a re-fetch recovery policy.

To better evaluate the tradeoff between predictor width
and size, we present Figure 5.7 and Figure 5.8. They
show the best mean speedup we were able to obtain for
various predictor sizes and widths.

Figure 5.7 shows that for very small predictors (4kB of
state for storing values), a width of one results in the
highest speedup (see also Section 5.1.2). Storing two
values per slot and halving the number of slots yields less
speedup because there are not enough slots to hold the
SPECint95 working set, which results in more aliasing
and lower performance. This effect is even more pro-
nounced for larger widths, hence the continuous decrease
in speedup as the predictor becomes wider and shorter.

With 16kB of state a width of four yields the best
speedup. Detrimental aliasing only sets in above four en-
tries per slot. When we increase the predictor size to
64kB, the best width turns out to be eight. Only at a
width of 16 does the performance start to decrease again.

Figure 5.8 is identical to Figure 5.7 except that the
misprediction recovery mechanism used is re-fetch in-
stead of re-execution. The resulting optimal predictor
widths are the same with the exception that a width of
four (instead of eight) now yields the best speedup in the
64kB case. This change is due to the high misprediction
sensitivity of the re-fetch mechanism. It appears that in
the 64kB case, n = 8 results in both more correct predic-
tions and more incorrect predictions, which is advanta-
geous with re-execution but harmful with a re-fetch ar-
chitecture.

5.2.3 History length

Speedup for Different History Lengths

9.1

10.3

11.4
12.1 12.5 12.8 12.9

11.6
12.4

12.9
13.3 13.7 13.9 14.2

0

2

4

6

8

10

12

14

16

6 7 8 9 10 11 12
History Length (bits)

S
pe

ed
up

 o
ve

r
B

as
el

in
e

(%
)

re-fetch

re-execute

Figure 5.9: Mean speedup with varying history lengths.

We already found history lengths of ten bits to work
well for a predictor width of one [1, 2]. Figure 5.9 shows
that ten bits also mark the beginning of the saturation
point for the last four value predictor, both for re-fetch
and re-execute. Note that it is important not to choose the
history length too large since every additional bit doubles
the number of required saturating counters.

5.2.4 Counter parameters
For space reasons, we cannot present all the results

pertaining to counter parameters and will only give a
summary in this subsection.

With a re-execute misprediction recovery mechanism,
we found four-bit saturating up/down counters to work
best with our last four value predictor. Counters both
smaller and larger than four bits yield less performance.
Hence, we use a counter top of sixteen. We found a
threshold of nine with a penalty (counter decrement) of
three to work quite well for this counter size, but the exact
values are not crucial. Only penalties of one or two result
in significantly lower performance.

For re-fetch, thresholds and penalties of about half the
counter top value work very well with the last four value
predictor. Five, six, and seven bit counters yield the best
speedup. We use the smallest of the three, which has a
counter top of 32, with a threshold and a penalty of 16.
Again, numbers near the ones we picked all result in ap-
proximately the same speedup.

6. Summary and conclusions

Once a load value predictor is tall enough to hold all
the frequently executed load instructions, increasing its
height further does not result in much better performance
because the additional slots cannot be used effectively.
As an alternative, we propose making predictors wider in-
stead of taller, i.e., using the extra real-estate to increase
the amount of information stored in each slot rather than
to increase the number of slots. Doing so should enable
the predictor to make better and/or more predictions and
thus improve its performance.

One way to make a last value predictor “wider” is by
having it retain the last n and not just the load value in
each of its slots. In this paper we study a load value pre-
dictor that benefits from such an increase in width and
present an effective implementation thereof.

Our measurements show that very small predictors
(retaining 4kB or 8kB of values) perform the best in the
conventional last value configuration. However, 16kB or
larger predictors benefit from having a width of more than
one. For instance, the best 16kB configuration for run-
ning SPECint95 has a width of four. In other words, a
last four value predictor outperforms a last two value pre-
dictor with twice as many lines as well as a last eight
value predictor with half as many lines (same total size).

Interestingly, our last four value predictor also outper-
forms its more complex counterpart from the literature
that retains the last four distinct load values, even though
there is slightly more potential for predictability in last n
distinct value locality than there is in last n value locality.

We performed hundreds of cycle-accurate, pipeline-
level simulations of a superscalar high-performance mi-

croprocessor to evaluate the performance of various pre-
dictors, including several from the literature. The results
show that our last four value predictor outperforms the
other predictors (that are all scaled to about the same
size), including ones that are more complex. More im-
portantly, our predictor performs well enough with the
existing re-fetch misprediction recovery mechanism that
the added benefit of a more complex and not yet realized
re-execution core is small in comparison.

In spite of its good performance, a comparison of our
predictor with some oracles revealed that there is still sig-
nificant opportunity for improvement left.

We are currently trying to improve our predictor’s per-
formance by hybridizing it with other predictors, and we
are investigating ways to shrink the predictor size. In fu-
ture work we intend to study whether profiling can be
used to further improve the performance, how prefetching
affects the predictor, and whether other predictors can
benefit from the confidence estimator we use in our pre-
dictors.

Acknowledgments

This work was supported in part by the Hewlett Pack-
ard University Grants Program (including Gift No.
31041.1). We would like to especially thank Tom Chris-
tian for his support of this project, the anonymous re-
viewers for their helpful comments, and Dirk Grunwald
and Abhijit Paithankar for providing and helping with the
simulator.

References

[1] M. Burtscher, B. G. Zorn. Load Value Prediction Using Pre-
diction Outcome Histories. Unpublished Technical Report CU-
CS-873-98, University of Colorado at Boulder. October 1998.

[2] M. Burtscher, B. G. Zorn. “Profile-Supported Confidence Es-
timation for Load Value Prediction”. Submitted to the Journal
of Instruction Level Parallelism (JILP). 1999.

[3] F. Gabbay. Speculative Execution Based on Value Prediction.
EE Department Technical Report #1080, Technion - Israel In-
stitute of Technology. November 1996.

[4] F. Gabbay, A. Mendelson. “Can Program Profiling Support
Value Prediction?” 30th Annual ACM/IEEE International Sym-
posium on Microarchitecture. December 1997.

[5] F. Gabbay, A. Mendelson. “The Effect of Instruction Fetch
Bandwidth on Value Prediction”. 25th International Sympo-
sium on Computer Architecture. June 1998.

[6] J. Gonzalez, A. Gonzalez. “The Potential of Data Value
Speculation to Boost ILP”. 12th International Conference on
Supercomputing. July 1998.

[7] R. E. Kessler, E. J. McLellan, D. A. Webb. “The Alpha 21264
Microprocessor Architecture”. 1998 International Conference
on Computer Design. October 1998.

[8] D. C. Lee, P. J. Crowley, J. J. Baer, T. E. Anderson, B. N. Ber-
shad. “Execution Characteristics of Desktop Applications on
Windows NT”. 25th International Symposium on Computer
Architecture. June 1998.

[9] M. H. Lipasti, J. P. Shen. “Exceeding the Dataflow Limit via
Value Prediction”. 29th International Symposium on Microar-
chitecture. December 1996.

[10] M. H. Lipasti, C. B. Wilkerson, J. P. Shen. “Value Locality
and Load Value Prediction”. Seventh International Conference
on Architectural Support for Programming Languages and
Operating Systems. October 1996.

[11] S. McFarling. Combining Branch Predictors. TN 36, DEC-
WRL. June 1993.

[12] A. Paithankar. AINT: A Tool for Simulation of Shared-Memory
Multiprocessors. Master’s Thesis, University of Colorado at
Boulder. 1996.

[13] G. Reinman, B. Calder. “Predictive Techniques for Aggressive
Load Speculation”. 31st Annual ACM/IEEE International Sym-
posium on Microarchitecture. December 1998.

[14] B. Rychlik, J. Faistl, B. Krug, J. P. Shen. “Efficacy and Per-
formance Impact of Value Prediction”. 1998 International
Conference on Parallel Architectures and Compiler Technol-
ogy. October 1998.

[15] Y. Sazeides, J. E. Smith. “The Predictability of Data Values”.
30th Annual ACM/IEEE International Symposium on Microar-
chitecture. December 1997.

[16] Y. Sazeides, J. E. Smith. Implementations of Context Based
Value Predictors. Technical Report ECE-97-8, University of
Wisconsin-Madison. December 1997.

[17] Y. Sazeides, J. E. Smith. “Modeling Program Predictability”.
25th International Symposium on Computer Architecture. June
1998.

[18] J. E. Smith, G. S. Sohi. “The Microarchitecture of Superscalar
Processors”. Proceedings of the IEEE. 1995.

[19] E. Sprangle, R. Chappell, M. Alsup, Y. Patt. “The Agree Pre-
dictor: A Mechanism for Reducing Negative Branch History
Interference”. 24th Annual International Symposium of Com-
puter Architecture. June 1997.

[20] SPEC CPU’95. August 1995.

[21] A. Srivastava, D. Wall. “A Practical System for Intermodule
Code Optimization at Linktime”. Journal of Programming
Languages 1(1). March 1993.

[22] K. Wang, M. Franklin. “Highly Accurate Data Value Predic-
tion using Hybrid Predictors”. 30th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture. December 1997.

[23] T. Y. Yeh, Y. N. Patt. “A Comparison of Dynamic Branch
Predictors that use Two Levels of Branch History”. 20th An-
nual International Symposium of Computer Architecture. May
1993.

