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Abstract - Automated source-code performance optimiza-

tion has four stages: measurement, diagnosis of bottlenecks, 

determination of optimizations, and rewriting of the source 

code. Each stage must be successfully implemented to ena-

ble the next stage. The PerfExpert tool supports automatic 

performance measurement and bottleneck diagnosis for 

multicore and multichip compute nodes, i.e., it implements 

the first two stages. This paper presents AutoSCOPE, a new 

system that extends PerfExpert by implementing the third 

stage. Based on PerfExpert’s output, AutoSCOPE automati-

cally determines appropriate source-code optimizations and 

compiler flags. We describe the process for selecting opti-

mizations and evaluate the effectiveness of AutoSCOPE by 

applying it to three HPC production codes. Each of these 

codes is available in unoptimized and manually optimized 

versions. AutoSCOPE succeeds in selecting the same 

source-code transformations as were chosen by human ex-

perts in most cases. AutoSCOPE is an extensible framework 

to which additional optimizations and further rules for se-

lecting optimizations can be added. 

Keywords: optimization recommendation, filtering, rank-

ing, automatic performance assessment  

 

1. Introduction 

The performance of a program often varies considerably 

when it is run on multicore chips with different architec-

tures. Structuring source code to obtain optimal perfor-

mance on a given multicore chip (or a compute node com-

prised of multiple multicore chips) requires detailed know-

ledge of the CPU, the memory subsystem, the compiler, and 

the operating system, i.e., the entire system architecture. 

Few application developers possess all of this knowledge 

and, indeed, it would be wasteful of time and effort for eve-

ryone to be forced to acquire such knowledge. Performance 

tools can help, but executing the measurement process is 

tedious, and the results of the measurement may be difficult 

to interpret. To make things worse, the necessary source-

code transformation to remedy a given performance bottle-

neck is often not obvious. As a result, it is frequently the 

case that the performance obtained on multicore chips and 

compute nodes comprised of multiple multicore chips is far 

from optimal. 

This paper presents an extensible method for automati-

cally selecting source-code transformations and compiler 

flags to optimize program performance. The selection 

process follows a set of rules and is guided by the results of 

a performance measurement and analysis tool. This tool, 

called PerfExpert [4], [21], assesses the performance of the 

program executing on the chip/node on which improved 

performance is desired. PerfExpert combines knowledge of 

performance measurement, chip architectures, compilers 

and runtime systems to generate actionable interpretations 

of performance measurements. The AutoSCOPE framework 

described in this paper, i.e., the selection process for choos-

ing good source-code transformations for a given perfor-

mance bottleneck and code section, currently represents the 

final stage of the performance optimization process imple-

mented by PerfExpert. 

 Loop in function main() at mmm.c:25 (100% of the total runtime) 

 ============================================================================== 

 performance assessment    LCPI good......okay......fair......poor......bad.... 

 * overall               :  9.2 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+ 

 upper bound estimates 

 * data accesses         : 14.6 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+ 

    - L1d hits           :  1.7 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

    - L2d hits           :  0.9 >>>>>>>>>>>>>>>>>> 

    - L2d misses         : 11.9 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+ 

 * instruction accesses  :  0.6 >>>>>>>>>>> 

    - L1i hits           :  0.6 >>>>>>>>>>> 

    - L2i hits           :  0.0 > 

    - L2i misses         :  0.0 > 

 * data TLB              :  9.9 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+ 

 * instruction TLB       :  0.0 > 

 * branch instructions   :  0.1 >> 

    - correctly predicted:  0.1 >> 

    - mispredicted       :  0.0 > 

 * floating-point instr  :  3.0 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+ 

    - fast FP instr      :  3.0 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+ 

    - slow FP instr      :  0.0 > 

Figure 1: Sample PerfExpert output for a poorly performing 

loop nest 

PerfExpert presents a simple user interface for perfor-

mance assessment of programs. It combines the data col-

lected by a performance monitoring unit with system cha-

racteristics to compute a readily interpretable performance 

metric. In particular, PerfExpert combines hardware per-

formance counter measurements with architectural parame-

ters such as cache latencies at different levels, the branch 

misprediction penalty, etc. to compute upper bounds on Lo-

cal Cycles-Per-Instruction (LCPI) contributions of various 

categories at the granularity of loops and procedures. The 



 

 

LCPI values allow PerfExpert not only to determine which 

code sections suffer from performance bottlenecks but also 

to narrow down the cause of the poor performance to specif-

ic categories such as data accesses or branch instructions. 

Figure 1 shows how PerfExpert presents the results of its 

analysis of a triply-nested loop that performs a matrix-

matrix multiplication. Longer bars represent higher fractions 

of runtime spent in executing the corresponding class of 

operations. Figure 2 lists the source code of the assessed 

loop nest. For illustration purposes, we used a poor loop 

order and no optimizations so that executing the code will 

result in bad memory access patterns. Indeed, PerfExpert 

detects these weaknesses and correctly identifies data ac-

cesses and TLB accesses as the primary culprits. 

  for (i = 0; i < n; i++) 

    for (j = 0; j < n; j++) 

      for (k = 0; k < n; k++) 

        c[i][j] += a[i][k] * b[k][j]; 

Figure 2: Simple triply-nested loop for matrix multiplication 

There is, however, often a substantial gap between iden-

tification of a problem and its resolution. For example, how 

should one resolve the problem of poor performance due to 

the TLB? Many application programmers do not know, nor 

should they have to know, what exactly a TLB is. Which 

source-code statements can cause data TLB problems and 

how can they be rewritten to yield better performance? The 

difficulty of such questions is compounded when multiple 

categories are reported to be a problem at the same time. 

Loop in function main() at mmm.c:25 (100% of total runtime) 

change the order of loops 

loop i { loop j {...} } → loop j { loop i {...} } 

employ loop blocking and interchange 

loop i {loop k {loop j { 

   c[i][j] = c[i][j] + a[i][k] * b[k][j];}}} → 

loop k step s {loop j step s {loop i {for (kk = k; kk < k + s; kk++) 

   {for (jj = j; jj < j + s; jj++) {c[i][jj] = c[i][jj] + a[i][kk] * b[kk][jj];}}}}} 

componentize loops by factoring them into their own subroutines 

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ... 

apply loop fission so every loop accesses just two different arrays 

loop i {a[i] = a[i] * b[i] - c[i];} → loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];} 

Figure 3: Abridged AutoSCOPE output with code examples 

To make it easier and quicker to resolve such perfor-

mance problems, we designed AutoSCOPE, which is ac-

cessible through a simple web interface [21]. It analyzes the 

output of PerfExpert and determines which categories are in 

need of optimization. Then, it retrieves and ranks relevant 

suggestions for those categories from an annotated optimi-

zation database and selects the most relevant recommenda-

tions based on their ranks. The final set of suggestions is 

presented to the user. For example, AutoSCOPE “knows” 

that the probable cause of the TLB access bottleneck is a 

very long data access stride to an array. Thus, the PerfEx-

pert output from Figure 1 results in the optimization rec-

ommendations shown in Figure 3, which include reordering 

of the loops in the loop nest. The recommendation for loop 

blocking arises due to the high rate of L2 misses. Section 2 

provides more detail and shows how the complete selection 

and optimization process is applied to this triply-nested 

loop. As we shall see later in the examination of real appli-

cation codes, the appropriate optimizations are sometimes 

much less straightforward to identify. 

Some of the suggestions include compiler flags (Figure 

7). Since compiler flags depend on the compiler used, Au-

toSCOPE allows the user to choose among different compi-

lers. It further allows turning on and off the inclusion of the 

code examples and compiler flags in the output. 

We evaluated AutoSCOPE on three large-scale HPC ap-

plication programs, including one that is used as a standard 

performance benchmark, on a supercomputing cluster at 

TACC. It was, almost without exception, successful in iden-

tifying and recommending the optimizations that were 

thought to be most appropriate by human performance ex-

perts that had tuned these codes before AutoSCOPE existed. 

AutoSCOPE and PerfExpert are freely available at 

http://www.tacc.utexas.edu/perfexpert/. 

2. Filtering and ranking approach 

This section explains how AutoSCOPE makes its rec-

ommendations. It uses the same process for each code sec-

tion in PerfExpert’s output. The purpose of filtering is to 

eliminate inapplicable suggestions. The purpose of ranking 

is to order the suggestions so that the most relevant recom-

mendations can be identified and outputted. The ultimate 

goal is to make the final list neither too long nor too short 

and, of course, to include the most appropriate optimization 

suggestions for each code section. Additionally, we want 

AutoSCOPE and its database to be easily extensible. 

1. recommendation: use smaller types (e.g., float instead of double, short instead of int) 

 categories: data-TLB, data-L2+memory-accesses attributes: - 

2. recommendation: move loop invariant memory accesses out of loop 

 categories: data-L1-accesses    attributes: loop 

3. recommendation: change the order of loops 

 categories: data-TLB, data-L2+memory-accesses attributes: loop 

4. recommendation: employ loop blocking and interchange 

 categories: data-TLB, data-L2+memory-accesses attributes: loop 

5. recommendation: fuse multiple loops that access the same data 

 categories: data-L2+memory-accesses   attributes: loop, multiple_loops 

6. recommendation: componentize loops by factoring them into their own subroutines 

 categories: data-L2+memory-accesses   attributes: loop 

7. recommendation: apply loop fission so every loop accesses just two different arrays 

 categories: data-memory-accesses   attributes: loop 

8. recommendation: move loop invariant computations out of loop 

 categories: FP-instructions    attributes: loop 

Figure 4: Simplified excerpt from AutoSCOPE’s recom-

mendation database 

To support ranking and filtering, each entry in the opti-

mization database is annotated with a set of attributes and a 

non-empty set of categories. The attributes specify condi-

tions that must be met for the corresponding entry to be use-

ful. For example, an attribute might state that this is a loop 



 

 

optimization and therefore only applies to loops. In contrast, 

the categories are used to compute weighted averages of 

LCPI values for the ranking. Figure 4 shows a small excerpt 

from the current optimization database, excluding code ex-

amples and compiler flags. We use this sample database 

throughout this section, along with the PerfExpert output 

from Figure 1, to illustrate the filtering and ranking process 

of AutoSCOPE, which entails the following steps. 

Function versus loop filtering: AutoSCOPE uses a dis-

joint set of recommendations for code sections that 

represent loops and code sections that represent functions. 

This separation is a consequence of how HPCToolkit [24], 

upon which PerfExpert is build, treats functions and loops. 

Whereas functions and loops are assessed individually and 

do not include measurements from other functions they call, 

a function’s assessment always includes the loops executed 

by this function. Hence, for any loop that is listed by Perf-

Expert, the enclosing function is necessarily also listed, and 

all suggested optimizations for the loop also apply to the 

function, leading to unnecessary duplication of suggestions. 

If, however, a function is listed but a contained loop is not, 

then that loop is not important and therefore loop optimiza-

tions should not be suggested for this function. Combining 

these two cases, we find that there is never a good reason to 

suggest loop optimizations for functions or function optimi-

zations for loops. Consequently, AutoSCOPE only emits 

suggestions with the loop attribute for loops and suggestions 

without the loop attribute for functions. For example, entry 

1 in the above database does not have the loop attribute and 

is therefore not recommended for our example loop nest. 

Multiple function or loop filtering: Several of the opti-

mizations in the database only apply if there are multiple 

important functions or loops. For instance, recommenda-

tions that require the reordering of functions or loops as well 

as recommendations to fuse multiple loops belong to this 

category. AutoSCOPE only makes such recommendations if 

multiple functions or multiple loops are included in PerfEx-

pert’s output. This is why it excludes entry 5. 

Weighted LCPI ranking: Once the database entries with 

suitable attributes have been identified, they are ranked 

based on their category annotations. This is done by taking 

the LCPI values of the listed categories of each entry and 

adding them up. For instance, if a code section has a data 

access LCPI of 14.6 and a data TLB LCPI of 9.9, optimiza-

tions that help with data access bottlenecks will be ranked 

higher than optimizations that alleviate data TLB issues, but 

optimizations that help with both problems are ranked high-

est. In our example, AutoSCOPE computes the following 

weights: entry 3 = 22.7, entry 4 = 22.7, entry 6 = 12.8, entry 

7 = 11.9, entry 8 = 3.0, and entry 2 = 1.7. 

Ranking-based filtering: Because the ranking not only 

orders the suggestions but also assigns a metric of relevance 

to them, AutoSCOPE is able to filter out recommendations 

that are unlikely to be relevant. It currently uses a 30% thre-

shold for this purpose, i.e., suggestions whose relevance is 

less than 30% of the most relevant recommendation are dis-

carded. 30% of 22.7 is 6.81, so entries 8 and 2 are consi-

dered not relevant enough and are filtered out. 

Attribute-based tie breaking: Because there are over an 

order of magnitude more recommendations in our (growing) 

database than there are categories, the weighted LCPI rank-

ing often yields multiple suggestions with the same rank. To 

break these ties, recommendations with more attributes (that 

must all match) are given priority. The intuition behind this 

approach is that an entry with more attributes is more spe-

cific and therefore more likely to be a good match for the 

given code section. 

Order-based tie breaking: If there are still ties left, Au-

toSCOPE uses the order in which the suggestions are listed 

in the database as the final tie breaker. This allows the data-

base writer to indicate which optimizations should be listed 

first in case of a tie without having to resort to additional 

annotations. In our example, entry 3 will be listed before 

entry 4 even though both of them have the same ranking 

(see below for why this is a good order). 

Number-based filtering: This last step is optional and 

not enabled in the current version of AutoSCOPE. If too 

many suggestions are left, only the top k will be outputted, 

where k is a user selectable threshold. The purpose of this 

step is simply to curtail the list to no more than k sugges-

tions so as not to clutter the output. 

Using the above ranking and filtering approach for the 

loop nest assessed in Figure 1 results in the recommenda-

tions shown in Figure 3, both for the full database as well as 

for the database shown in Figure 4. Even without knowing 

what this loop nest does, it makes sense to exclude entry 1 

because it is not restricted to loops and will therefore be 

recommended for the function containing the loop nest, en-

try 2 because the L1 data cache does not represent the major 

performance bottleneck, entry 5 because we only have a 

single loop nest, and entry 8 because floating-point opera-

tions are not the major performance bottleneck. It also 

makes sense to recommend entry 3 over entry 4 because 

entry 3 requires only two nested loops whereas entry 4 re-

quires three nested loops, making entry 3 more likely to 

apply in general (PerfExpert does not report the nesting 

depth to AutoSCOPE). Entry 6 only helps with L2 data 

cache and data memory access problems whereas entries 3 

and 4 additionally help with data TLB problems. Thus, en-

tries 3 and 4 should be listed before entry 6. Finally, entry 7 

addresses DRAM page conflicts and thus primarily helps 

with memory issues, which is why it is listed last. 

 

2.1 Suggestion relevance 

Applying the first transformation suggested by Auto-

SCOPE in Figure 3 results in the code shown in Figure 5. 

This optimization is simple. It improves the performance by 

a factor of 2.5 and eliminates all TLB problems. 



 

 

  for (i = 0; i < n; i++) 

    for (k = 0; k < n; k++) 

      for (j = 0; j < n; j++) 

        c[i][j] += a[i][k] * b[k][j]; 

Figure 5: Matrix-matrix multiplication code after exchang-

ing the j and k loops 

Applying the second transformation from Figure 3 yields 

the code shown in Figure 6. As this example illustrates, ap-

plying some optimizations is quite complex and the code 

examples are essential to show the programmer what needs 

to be done. In this case, all the user has to do after modify-

ing the code appropriately is find a good value for the para-

meter s, which can be done using manual trials or autotun-

ing. Applying this optimization eliminates the remaining 

data-access bottlenecks and improves performance by a 

factor of 5.2. At this point, the performance is very good 

and no further optimizations are needed. Hence, Auto-

SCOPE not only correctly identified useful code optimiza-

tions but also eliminated a large number of irrelevant or 

inapplicable recommendations from consideration, thus 

helping the user by focusing his or her attention on just a 

few optimizations that are targeted for this code section. 

  for (k = 0; k < n; k += s) 

    for (j = 0; j < n; j += s) 

      for (i = 0; i < n; i++) 

        for (kk = k; kk < k + s; kk++) 

          for (jj = j; jj < j + s; jj++) 

            c[i][jj] += a[i][kk] * b[kk][jj]; 

Figure 6: Matrix-matrix multiplication code after applying 

loop blocking 

2.2 Extensibility 

Adding database entries is simple. The database is stored 

in plain text format. New entries can be added using any 

text editor. Of course, the new entries need to include proper 

category and attribute annotations. Using plain text also 

makes it easy to update existing entries, such as modifying a 

code example, adding compiler flags, or altering attributes. 

Adding extra categories is more involved. The database 

entries that correspond to the new category need to be anno-

tated accordingly and the parser in AutoSCOPE has to be 

extended to recognize the new category. However, the rest 

of AutoSCOPE’s functionality, such as computing the 

weighted average of the LCPI values and displaying the 

results on a web page, can be reused. 

Adding new attributes requires the affected database en-

tries’ annotations to be updated and AutoSCOPE to include 

a new function to recognize or compute the new attribute. 

For example, future versions of PerfExpert might output the 

loop nesting depth, which is currently not available. This 

would allow us, for instance, to annotate entry 3 in our sam-

ple database to require at least a doubly-nested loop. Such 

an annotation would prevent AutoSCOPE from recommend-

ing entry 3 for any non-nested loops. 

3. Related work 

There are many performance evaluation tools with a 

wide range of approaches and functionalities. Performance 

tools may implement four functions: measurement, analysis 

based on the measurements, recommendation of source-

code optimizations, and automation of source-code optimi-

zations. The tools can be further classified by the basis for 

measurement and analysis: performance-counter-based ver-

sus event-trace-based and by whether the tool requires the 

source code to be annotated to generate measurements. 

Since the subject of this paper is derivation of recommenda-

tions for source-code optimizations for bottlenecks that are 

identified and characterized through performance-counter 

measurements and analyses, we only briefly mention papers 

that do not, in our best judgment, consider source-code op-

timizations or where the analyses are based on event traces. 

Tau [20], [25], PerfSuite [16], [22], HPCToolkit [12], 

[24], IPM [14], and Open|SpeedShop [19] are among the 

most powerful and widely used tools that provide perfor-

mance-counter-based measurement and analysis. Each of 

these tools provides flexible and in-depth measurement and 

association of performance bottlenecks with source-code 

segments. Each tool provides the measurements and at least 

some of the analyses upon which optimization can be based 

but do not extend to recommendation of or automation of 

source-code optimizations. 

PerfExplorer [13] extends Tau with additional analysis 

and diagnostic capabilities. However, PerfExplorer/Tau uses 

code instrumentation and event tracing, which can perturb 

the execution behavior, and does not recommend source-

code optimizations. In contrast, PerfExpert bases its analysis 

and optimization recommendations upon data provided by 

HPCToolkit, which requires no code instrumentation and 

uses CPU performance counters to minimize perturbation. 

There are several tools that provide source-code optimi-

zations for some types of bottlenecks. ThreadSpotter [26] 

captures information about data access patterns from a 

cache simulator and offers advice on related losses, specifi-

cally latency exposed due to poor locality, competition for 

bandwidth, and false sharing. It recommends possible opti-

mizations for bottlenecks resulting from data accesses. Perf-

Expert attempts a more comprehensive diagnosis of bottle-

necks, targeting not only data locality but also instruction 

locality, floating-point performance, etc. and recommends 

optimizations across this spectrum. ThreadSpotter does not 

attempt automated optimizations. 

SLO [2] uses cache profiling to measure data reuse dis-

tances and other locality metrics. It associates these meas-

ures with code segments, particularly loops, and suggests 

optimizations such as loop tiling or loop interchange. 

Paradyn [17], based on Dyninst [3], is a performance 

measurement tool for parallel and distributed programs. 

Performance instrumentation is inserted into the application 

and modified during execution. It associates bottlenecks 



 

 

with specific causes and program parts but does not extend 

to recommending application optimizations. 

Periscope [11] collects and aggregates performance in-

formation through an agent-based approach. It provides 

identification of the source-code locations of performance 

bottlenecks and analyses of causes for the bottlenecks. 

MAQAO [9] is a performance analysis tool that com-

bines performance counter measurements with static infor-

mation to generate diagnoses. It derives the static informa-

tion from the assembly code. It contains a knowledge base 

of important assembly patterns, which can be associated 

with hints for possible code optimizations. 

The IBM Productive, Easy-to-use, Reliable Computing 

System (PERCS) project [5], [6], [27] is building an auto-

mated system that detects and analyzes performance bottle-

necks in application codes, identifies potential source-code 

optimizations, and includes automated optimization capabil-

ities. The Bottleneck Detection Engine (BDE), which is the 

core of the framework, utilizes a database of rules to detect 

bottlenecks in the given application. The BDE feeds the 

information on bottleneck locations, including metrics asso-

ciated with the bottlenecks, to the user. It may also suggest 

how much improvement could be obtained by the optimiza-

tion of a given bottleneck. In addition to suggestions to the 

user, IBM’s tool also supports directly modifying the source 

code and applying standard transformations through the 

compiler. The limitation of PERCS is that it requires the use 

of IBM’s proprietary software stack including its compilers. 

Systems that base their analyses on event traces include 

KOJAK [18], KappaPI [10] and the Parallel Performance 

Wizard [23]. KOJAK aims at the development of a generic 

automatic performance analysis environment for parallel 

programs. The Parallel Performance Wizard attempts auto-

matic diagnosis as well as automated optimization. It is, 

however, based on event trace analysis and requires pro-

gram instrumentation. Its primary applications have been 

problems associated with the partitioned global address 

space (PGAS) programming model, although it applies to 

other performance bottleneck issues as well. 

Cray’s ATExpert [15] graphically displays the perfor-

mance of parallel programs. It points the user to specific 

problem areas in the source code, tries to explain why the 

problems are occurring, and suggests steps to resolve them. 

It does not provide code templates or rank suggestions. 

The Performance Engineering Research Institute (PERI) 

Autotuning project [1] combines measurement and search-

directed auto-tuning in a multistep process to obtain auto-

mated optimization. It can be viewed as a special case of an 

expert system where one flexible solution method is applied 

to all types of bottlenecks. It is unclear whether autotuning 

by itself can effectively optimize the wide spectrum of bot-

tlenecks that arise when executing complex codes on multi-

core chips and multi-socket nodes. We hope to be able to 

incorporate methods from this project in the optimization 

capabilities of a future version of PerfExpert. 

4. Evaluation methodology 

4.1 System 

We used the PerfExpert installation on Ranger, the su-

percomputing Sun Constellation Linux Cluster at the Texas 

Advanced Computing Center. Ranger contains 3,936 16-

way SMP compute nodes made of 15,744 quad-core 2.3 

GHz AMD Opteron (Barcelona) processors, i.e., 62,976 

compute cores. It has 123 TB of main memory, 1.7 PB of 

global disk space, and a theoretical peak performance of 579 

TFLOPS. All compute nodes are interconnected using Infi-

niBand in a seven-stage full-CLOS fat-tree topology provid-

ing 1 GB/s point-to-point bandwidth. 

4.2 Applications 

We have tested AutoSCOPE on MANGLL/DGADVEC, 

HOMME, and LIBMESH/EX18. These large-scale HPC 

programs represent various application domains. They were 

all compiled with the Intel compiler v10.1. 

MANGLL is a scalable adaptive high-order discretiza-

tion library. It supports dynamic parallel adaptive mesh re-

finement and coarsening, which is essential for numerical 

solution of the partial differential equations (PDEs) arising 

in many multiscale physical problems. DGADVEC is an 

application built on top of MANGLL for the numerical so-

lution of the energy equation that is part of the coupled sys-

tem of PDEs arising in convection simulations, describing 

the viscous flow and temperature distribution in Earth’s 

mantle. MANGLL and DGADVEC are written in C. 

HOMME is an atmospheric general circulation model 

consisting of a dynamical core based on the hydrostatic equ-

ations, coupled to sub-grid scale models of physical 

processes. The HOMME code is designed to provide 3D 

global atmospheric simulation similar to the Community 

Atmospheric Model. The benchmark version of HOMME 

we are using was one of NSF’s acceptance benchmark pro-

grams for Ranger. It is written in Fortran 95. 

The LIBMESH library provides a framework for the 

numerical approximation of partial differential equations 

using continuous and discontinuous Galerkin methods on 

unstructured hybrid meshes. It supports parallel adaptive 

mesh refinement computations as well as 1D, 2D, and 3D 

steady and transient simulations on a variety of popular 

geometric and finite element types. EX18 uses LIBMESH 

to solve the transient nonlinear problem using the object-

oriented FEMSystem class framework. LIBMESH and 

EX18 are written in C++. 

5. Results 

This section compares the suggestions produced by Au-

toSCOPE with actual optimizations that performance ex-

perts implemented to accelerate large-scale HPC codes. Due 



 

 

to space reasons, we only show one key loop per program. 

Figure 7 shows the recommendations AutoSCOPE 

makes for the most important loop in LIBMESH/EX18. 

This loop performs a large number of memory accesses, 

most of which hit in the L1 data cache, and quite a few 

floating-point operations. Hence, AutoSCOPE focuses on 

suggestions that reduce the number of load instructions, 

boost the bandwidth to the L1 data cache, and reduce the 

number of floating-point instructions. 

Loop in function NavierSystem::element_time_derivative(…) (23.3% of runtime) 

move loop invariant memory accesses out of loop 

loop i {a[i] = b[i] * c[j]} → temp = c[j]; loop i {a[i] = b[i] * temp;} 

enable the use of vector instructions to transfer more data per access 

align arrays, use only stride-one accesses, make loop count even (pad arrays) 

struct {double a, b;} s[63]; for (i = 0; i < 63; i++) {s[i].a = 0; s[i].b = 0;} → 

__declspec(align(16)) double a[64], b[64]; for (i = 0; i < 64; i++) {a[i] = 0; b[i] = 0;} 

use the “-opt-streaming-stores always” compiler flag 

move loop invariant computations out of loop 

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];} 

Figure 7: Condensed AutoSCOPE recommendations for the 

most important loop in EX18 

When we manually optimized this code (before Auto-

SCOPE existed), we obtained a substantial speedup by ap-

plying the first and third recommendation, i.e., by factoring 

out common subexpressions involving memory accesses 

and by moving loop invariant code [4]. Based on simple 

tests, the author of EX18 had assumed that the compiler 

would do this automatically. However, several of the com-

mon subexpressions we found involve C++ templates and 

most of them use pointer indirections, which seem to make 

the code too complex for the compiler to optimize. These 

simple optimizations (for a human) made the loop 32% fast-

er, yielding an application-wide speedup of 5%. 

Figure 8 shows AutoSCOPE’s recommendations for one 

of the two key loops in DGADVEC. This loop’s perfor-

mance profile is quite similar to that of the EX18 loop dis-

cussed above except it performs significantly more floating-

point operations. Hence, the recommendations are similar 

but the order in which they are listed is different. 

Loop in function dgadvecRHS() at dgadvec.c:993 (19.4% of total runtime) 

move loop invariant computations out of loop 

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];} 

componentize loops by factoring them into their own subroutines 

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ... 

move loop invariant memory accesses out of loop 

loop i {a[i] = b[i] * c[j]} → temp = c[j]; loop i {a[i] = b[i] * temp;} 

enable the use of vector instructions to transfer more data per access 

align arrays, use only stride-one accesses, make loop count even (pad arrays) 

struct {double a, b;} s[63]; for (i = 0; i < 63; i++) {s[i].a = 0; s[i].b = 0;} → 

__declspec(align(16)) double a[64], b[64]; for (i = 0; i < 64; i++) {a[i] = 0; b[i] = 0;} 

use the “-opt-streaming-stores always” compiler flag 

Figure 8: Condensed AutoSCOPE recommendations for the 

most important loop in DGADVEC 

Together with the developers of DGADVEC, we have 

been able to accelerate this loop through vectorization. The 

primary performance problem is the L1 load-to-use hit la-

tency of three cycles, which cannot be hidden as there are 

not enough independent instructions available to execute. 

Since this latency is fixed in hardware, we can only reduce 

the average latency by increasing the bandwidth, i.e., ac-

cessing multiple data items per memory transaction through 

the use of SSE instructions. Hence, we rewrote the loop so 

that the compiler can vectorize it [8] (i.e., we applied the 

fourth recommendation). Comparing the old and new loop 

implementations, we found that the number of executed 

instructions is 44% lower and the number of L1 data-cache 

accesses is 33% lower due to the vectorization [4]. 

Figure 9 shows the optimization suggestions for an im-

portant loop in HOMME, which has also been manually 

tuned. This loop suffers primarily from bad memory access 

performance. Many of the accesses miss in all cache levels 

and go to main memory. As a consequence, AutoSCOPE 

recommends optimizations that aim at helping the compiler 

optimize the code better, enhance the memory access pat-

terns, and improve the main memory latency. 

Loop in function preq_robert() at prim_si_mod.F90:846 (8.9% of total runtime) 

componentize loops by factoring them into their own subroutines 

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ... 

change the order of loops 

loop i { loop j {...} } → loop j { loop i {...} } 

employ loop blocking and interchange 

loop i {loop k {loop j { 

   c[i][j] = c[i][j] + a[i][k] * b[k][j];}}} → 

loop k step s {loop j step s {loop i {for (kk = k; kk < k + s; kk++) 

   {for (jj = j; jj < j + s; jj++) {c[i][jj] = c[i][jj] + a[i][kk] * b[kk][jj];}}}}} 

apply loop fission so every loop accesses just two different arrays 

loop i {a[i] = a[i] * b[i] - c[i];} → loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];} 

move loop invariant computations out of loop 

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];} 

Figure 9: Condensed AutoSCOPE recommendations for an 

important loop in HOMME 

A performance expert has successfully sped up this loop 

by applying microfission (the fourth recommendation) to 

reduce DRAM page conflicts, which makes the main memo-

ry accesses substantially faster [4], [7]. On a Ranger node, 

only 32 DRAM pages can be open at once. With 16 threads 

running on the 16 cores of a node, each thread can access at 

most two different memory areas simultaneously without 

losing performance. Thus, applying microfission so that 

each loop only processes two arrays eliminates DRAM page 

conflicts. However, because the compiler automatically fus-

es the loops, it was necessary to also break out each loop 

into a separate procedure (the first recommendation), which 

results in a 62% speedup and much better core utilization. 

6. Conclusion and future work 

AutoSCOPE helps programmers by automatically re-

commending source-code optimizations and compiler flags 

for alleviating node-level performance bottlenecks that have 

been identified by the PerfExpert measurement and analysis 



 

 

tool. AutoSCOPE processes PerfExpert’s output using a set 

of rules to identify matching recommendations in its anno-

tated database. It then ranks these recommendations to se-

lect the most appropriate ones. AutoSCOPE is constructed 

as an extensible framework to which we can add annotations 

and rules to extend its capabilities or to adapt it to different 

execution environments. Our evaluation on real HPC appli-

cations has demonstrated almost 100% conformance to hu-

man expert optimization selections. While the output some-

times still includes inapplicable suggestions, AutoSCOPE 

correctly eliminates over 95% of the suggestions from the 

database that do not apply, thus helping the user a great deal 

by focusing his or her attention on just a few targeted opti-

mizations. In future work, we plan to add more rules and 

annotations to further improve the selection quality and to 

apply selected source-code optimizations automatically for 

straightforward cases. 
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