

AutoSCOPE: Automatic Suggestions for Code

Optimizations using PerfExpert

Olalekan A. Sopeju
1
, Martin Burtscher

1
, Ashay Rane

2
, and James Browne

3

1
Department of Computer Science, Texas State University, San Marcos, TX, USA

2
Texas Advanced Computing Center, University of Texas, Austin, TX, USA
3
Department of Computer Science, University of Texas, Austin, TX, USA

Abstract - Automated source-code performance optimiza-

tion has four stages: measurement, diagnosis of bottlenecks,

determination of optimizations, and rewriting of the source

code. Each stage must be successfully implemented to ena-

ble the next stage. The PerfExpert tool supports automatic

performance measurement and bottleneck diagnosis for

multicore and multichip compute nodes, i.e., it implements

the first two stages. This paper presents AutoSCOPE, a new

system that extends PerfExpert by implementing the third

stage. Based on PerfExpert’s output, AutoSCOPE automati-

cally determines appropriate source-code optimizations and

compiler flags. We describe the process for selecting opti-

mizations and evaluate the effectiveness of AutoSCOPE by

applying it to three HPC production codes. Each of these

codes is available in unoptimized and manually optimized

versions. AutoSCOPE succeeds in selecting the same

source-code transformations as were chosen by human ex-

perts in most cases. AutoSCOPE is an extensible framework

to which additional optimizations and further rules for se-

lecting optimizations can be added.

Keywords: optimization recommendation, filtering, rank-

ing, automatic performance assessment

1. Introduction

The performance of a program often varies considerably

when it is run on multicore chips with different architec-

tures. Structuring source code to obtain optimal perfor-

mance on a given multicore chip (or a compute node com-

prised of multiple multicore chips) requires detailed know-

ledge of the CPU, the memory subsystem, the compiler, and

the operating system, i.e., the entire system architecture.

Few application developers possess all of this knowledge

and, indeed, it would be wasteful of time and effort for eve-

ryone to be forced to acquire such knowledge. Performance

tools can help, but executing the measurement process is

tedious, and the results of the measurement may be difficult

to interpret. To make things worse, the necessary source-

code transformation to remedy a given performance bottle-

neck is often not obvious. As a result, it is frequently the

case that the performance obtained on multicore chips and

compute nodes comprised of multiple multicore chips is far

from optimal.

This paper presents an extensible method for automati-

cally selecting source-code transformations and compiler

flags to optimize program performance. The selection

process follows a set of rules and is guided by the results of

a performance measurement and analysis tool. This tool,

called PerfExpert [4], [21], assesses the performance of the

program executing on the chip/node on which improved

performance is desired. PerfExpert combines knowledge of

performance measurement, chip architectures, compilers

and runtime systems to generate actionable interpretations

of performance measurements. The AutoSCOPE framework

described in this paper, i.e., the selection process for choos-

ing good source-code transformations for a given perfor-

mance bottleneck and code section, currently represents the

final stage of the performance optimization process imple-

mented by PerfExpert.

 Loop in function main() at mmm.c:25 (100% of the total runtime)

 ==

 performance assessment LCPI good......okay......fair......poor......bad....

 * overall : 9.2 >>+

 upper bound estimates

 * data accesses : 14.6 >>+

 - L1d hits : 1.7 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

 - L2d hits : 0.9 >>>>>>>>>>>>>>>>>>

 - L2d misses : 11.9 >>+

 * instruction accesses : 0.6 >>>>>>>>>>>

 - L1i hits : 0.6 >>>>>>>>>>>

 - L2i hits : 0.0 >

 - L2i misses : 0.0 >

 * data TLB : 9.9 >>+

 * instruction TLB : 0.0 >

 * branch instructions : 0.1 >>

 - correctly predicted: 0.1 >>

 - mispredicted : 0.0 >

 * floating-point instr : 3.0 >>+

 - fast FP instr : 3.0 >>+

 - slow FP instr : 0.0 >

Figure 1: Sample PerfExpert output for a poorly performing

loop nest

PerfExpert presents a simple user interface for perfor-

mance assessment of programs. It combines the data col-

lected by a performance monitoring unit with system cha-

racteristics to compute a readily interpretable performance

metric. In particular, PerfExpert combines hardware per-

formance counter measurements with architectural parame-

ters such as cache latencies at different levels, the branch

misprediction penalty, etc. to compute upper bounds on Lo-

cal Cycles-Per-Instruction (LCPI) contributions of various

categories at the granularity of loops and procedures. The

LCPI values allow PerfExpert not only to determine which

code sections suffer from performance bottlenecks but also

to narrow down the cause of the poor performance to specif-

ic categories such as data accesses or branch instructions.

Figure 1 shows how PerfExpert presents the results of its

analysis of a triply-nested loop that performs a matrix-

matrix multiplication. Longer bars represent higher fractions

of runtime spent in executing the corresponding class of

operations. Figure 2 lists the source code of the assessed

loop nest. For illustration purposes, we used a poor loop

order and no optimizations so that executing the code will

result in bad memory access patterns. Indeed, PerfExpert

detects these weaknesses and correctly identifies data ac-

cesses and TLB accesses as the primary culprits.

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i][j] += a[i][k] * b[k][j];

Figure 2: Simple triply-nested loop for matrix multiplication

There is, however, often a substantial gap between iden-

tification of a problem and its resolution. For example, how

should one resolve the problem of poor performance due to

the TLB? Many application programmers do not know, nor

should they have to know, what exactly a TLB is. Which

source-code statements can cause data TLB problems and

how can they be rewritten to yield better performance? The

difficulty of such questions is compounded when multiple

categories are reported to be a problem at the same time.

Loop in function main() at mmm.c:25 (100% of total runtime)

change the order of loops

loop i { loop j {...} } → loop j { loop i {...} }

employ loop blocking and interchange

loop i {loop k {loop j {

 c[i][j] = c[i][j] + a[i][k] * b[k][j];}}} →

loop k step s {loop j step s {loop i {for (kk = k; kk < k + s; kk++)

 {for (jj = j; jj < j + s; jj++) {c[i][jj] = c[i][jj] + a[i][kk] * b[kk][jj];}}}}}

componentize loops by factoring them into their own subroutines

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ...

apply loop fission so every loop accesses just two different arrays

loop i {a[i] = a[i] * b[i] - c[i];} → loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];}

Figure 3: Abridged AutoSCOPE output with code examples

To make it easier and quicker to resolve such perfor-

mance problems, we designed AutoSCOPE, which is ac-

cessible through a simple web interface [21]. It analyzes the

output of PerfExpert and determines which categories are in

need of optimization. Then, it retrieves and ranks relevant

suggestions for those categories from an annotated optimi-

zation database and selects the most relevant recommenda-

tions based on their ranks. The final set of suggestions is

presented to the user. For example, AutoSCOPE “knows”

that the probable cause of the TLB access bottleneck is a

very long data access stride to an array. Thus, the PerfEx-

pert output from Figure 1 results in the optimization rec-

ommendations shown in Figure 3, which include reordering

of the loops in the loop nest. The recommendation for loop

blocking arises due to the high rate of L2 misses. Section 2

provides more detail and shows how the complete selection

and optimization process is applied to this triply-nested

loop. As we shall see later in the examination of real appli-

cation codes, the appropriate optimizations are sometimes

much less straightforward to identify.

Some of the suggestions include compiler flags (Figure

7). Since compiler flags depend on the compiler used, Au-

toSCOPE allows the user to choose among different compi-

lers. It further allows turning on and off the inclusion of the

code examples and compiler flags in the output.

We evaluated AutoSCOPE on three large-scale HPC ap-

plication programs, including one that is used as a standard

performance benchmark, on a supercomputing cluster at

TACC. It was, almost without exception, successful in iden-

tifying and recommending the optimizations that were

thought to be most appropriate by human performance ex-

perts that had tuned these codes before AutoSCOPE existed.

AutoSCOPE and PerfExpert are freely available at

http://www.tacc.utexas.edu/perfexpert/.

2. Filtering and ranking approach

This section explains how AutoSCOPE makes its rec-

ommendations. It uses the same process for each code sec-

tion in PerfExpert’s output. The purpose of filtering is to

eliminate inapplicable suggestions. The purpose of ranking

is to order the suggestions so that the most relevant recom-

mendations can be identified and outputted. The ultimate

goal is to make the final list neither too long nor too short

and, of course, to include the most appropriate optimization

suggestions for each code section. Additionally, we want

AutoSCOPE and its database to be easily extensible.

1. recommendation: use smaller types (e.g., float instead of double, short instead of int)

 categories: data-TLB, data-L2+memory-accesses attributes: -

2. recommendation: move loop invariant memory accesses out of loop

 categories: data-L1-accesses attributes: loop

3. recommendation: change the order of loops

 categories: data-TLB, data-L2+memory-accesses attributes: loop

4. recommendation: employ loop blocking and interchange

 categories: data-TLB, data-L2+memory-accesses attributes: loop

5. recommendation: fuse multiple loops that access the same data

 categories: data-L2+memory-accesses attributes: loop, multiple_loops

6. recommendation: componentize loops by factoring them into their own subroutines

 categories: data-L2+memory-accesses attributes: loop

7. recommendation: apply loop fission so every loop accesses just two different arrays

 categories: data-memory-accesses attributes: loop

8. recommendation: move loop invariant computations out of loop

 categories: FP-instructions attributes: loop

Figure 4: Simplified excerpt from AutoSCOPE’s recom-

mendation database

To support ranking and filtering, each entry in the opti-

mization database is annotated with a set of attributes and a

non-empty set of categories. The attributes specify condi-

tions that must be met for the corresponding entry to be use-

ful. For example, an attribute might state that this is a loop

optimization and therefore only applies to loops. In contrast,

the categories are used to compute weighted averages of

LCPI values for the ranking. Figure 4 shows a small excerpt

from the current optimization database, excluding code ex-

amples and compiler flags. We use this sample database

throughout this section, along with the PerfExpert output

from Figure 1, to illustrate the filtering and ranking process

of AutoSCOPE, which entails the following steps.

Function versus loop filtering: AutoSCOPE uses a dis-

joint set of recommendations for code sections that

represent loops and code sections that represent functions.

This separation is a consequence of how HPCToolkit [24],

upon which PerfExpert is build, treats functions and loops.

Whereas functions and loops are assessed individually and

do not include measurements from other functions they call,

a function’s assessment always includes the loops executed

by this function. Hence, for any loop that is listed by Perf-

Expert, the enclosing function is necessarily also listed, and

all suggested optimizations for the loop also apply to the

function, leading to unnecessary duplication of suggestions.

If, however, a function is listed but a contained loop is not,

then that loop is not important and therefore loop optimiza-

tions should not be suggested for this function. Combining

these two cases, we find that there is never a good reason to

suggest loop optimizations for functions or function optimi-

zations for loops. Consequently, AutoSCOPE only emits

suggestions with the loop attribute for loops and suggestions

without the loop attribute for functions. For example, entry

1 in the above database does not have the loop attribute and

is therefore not recommended for our example loop nest.

Multiple function or loop filtering: Several of the opti-

mizations in the database only apply if there are multiple

important functions or loops. For instance, recommenda-

tions that require the reordering of functions or loops as well

as recommendations to fuse multiple loops belong to this

category. AutoSCOPE only makes such recommendations if

multiple functions or multiple loops are included in PerfEx-

pert’s output. This is why it excludes entry 5.

Weighted LCPI ranking: Once the database entries with

suitable attributes have been identified, they are ranked

based on their category annotations. This is done by taking

the LCPI values of the listed categories of each entry and

adding them up. For instance, if a code section has a data

access LCPI of 14.6 and a data TLB LCPI of 9.9, optimiza-

tions that help with data access bottlenecks will be ranked

higher than optimizations that alleviate data TLB issues, but

optimizations that help with both problems are ranked high-

est. In our example, AutoSCOPE computes the following

weights: entry 3 = 22.7, entry 4 = 22.7, entry 6 = 12.8, entry

7 = 11.9, entry 8 = 3.0, and entry 2 = 1.7.

Ranking-based filtering: Because the ranking not only

orders the suggestions but also assigns a metric of relevance

to them, AutoSCOPE is able to filter out recommendations

that are unlikely to be relevant. It currently uses a 30% thre-

shold for this purpose, i.e., suggestions whose relevance is

less than 30% of the most relevant recommendation are dis-

carded. 30% of 22.7 is 6.81, so entries 8 and 2 are consi-

dered not relevant enough and are filtered out.

Attribute-based tie breaking: Because there are over an

order of magnitude more recommendations in our (growing)

database than there are categories, the weighted LCPI rank-

ing often yields multiple suggestions with the same rank. To

break these ties, recommendations with more attributes (that

must all match) are given priority. The intuition behind this

approach is that an entry with more attributes is more spe-

cific and therefore more likely to be a good match for the

given code section.

Order-based tie breaking: If there are still ties left, Au-

toSCOPE uses the order in which the suggestions are listed

in the database as the final tie breaker. This allows the data-

base writer to indicate which optimizations should be listed

first in case of a tie without having to resort to additional

annotations. In our example, entry 3 will be listed before

entry 4 even though both of them have the same ranking

(see below for why this is a good order).

Number-based filtering: This last step is optional and

not enabled in the current version of AutoSCOPE. If too

many suggestions are left, only the top k will be outputted,

where k is a user selectable threshold. The purpose of this

step is simply to curtail the list to no more than k sugges-

tions so as not to clutter the output.

Using the above ranking and filtering approach for the

loop nest assessed in Figure 1 results in the recommenda-

tions shown in Figure 3, both for the full database as well as

for the database shown in Figure 4. Even without knowing

what this loop nest does, it makes sense to exclude entry 1

because it is not restricted to loops and will therefore be

recommended for the function containing the loop nest, en-

try 2 because the L1 data cache does not represent the major

performance bottleneck, entry 5 because we only have a

single loop nest, and entry 8 because floating-point opera-

tions are not the major performance bottleneck. It also

makes sense to recommend entry 3 over entry 4 because

entry 3 requires only two nested loops whereas entry 4 re-

quires three nested loops, making entry 3 more likely to

apply in general (PerfExpert does not report the nesting

depth to AutoSCOPE). Entry 6 only helps with L2 data

cache and data memory access problems whereas entries 3

and 4 additionally help with data TLB problems. Thus, en-

tries 3 and 4 should be listed before entry 6. Finally, entry 7

addresses DRAM page conflicts and thus primarily helps

with memory issues, which is why it is listed last.

2.1 Suggestion relevance

Applying the first transformation suggested by Auto-

SCOPE in Figure 3 results in the code shown in Figure 5.

This optimization is simple. It improves the performance by

a factor of 2.5 and eliminates all TLB problems.

 for (i = 0; i < n; i++)

 for (k = 0; k < n; k++)

 for (j = 0; j < n; j++)

 c[i][j] += a[i][k] * b[k][j];

Figure 5: Matrix-matrix multiplication code after exchang-

ing the j and k loops

Applying the second transformation from Figure 3 yields

the code shown in Figure 6. As this example illustrates, ap-

plying some optimizations is quite complex and the code

examples are essential to show the programmer what needs

to be done. In this case, all the user has to do after modify-

ing the code appropriately is find a good value for the para-

meter s, which can be done using manual trials or autotun-

ing. Applying this optimization eliminates the remaining

data-access bottlenecks and improves performance by a

factor of 5.2. At this point, the performance is very good

and no further optimizations are needed. Hence, Auto-

SCOPE not only correctly identified useful code optimiza-

tions but also eliminated a large number of irrelevant or

inapplicable recommendations from consideration, thus

helping the user by focusing his or her attention on just a

few optimizations that are targeted for this code section.

 for (k = 0; k < n; k += s)

 for (j = 0; j < n; j += s)

 for (i = 0; i < n; i++)

 for (kk = k; kk < k + s; kk++)

 for (jj = j; jj < j + s; jj++)

 c[i][jj] += a[i][kk] * b[kk][jj];

Figure 6: Matrix-matrix multiplication code after applying

loop blocking

2.2 Extensibility

Adding database entries is simple. The database is stored

in plain text format. New entries can be added using any

text editor. Of course, the new entries need to include proper

category and attribute annotations. Using plain text also

makes it easy to update existing entries, such as modifying a

code example, adding compiler flags, or altering attributes.

Adding extra categories is more involved. The database

entries that correspond to the new category need to be anno-

tated accordingly and the parser in AutoSCOPE has to be

extended to recognize the new category. However, the rest

of AutoSCOPE’s functionality, such as computing the

weighted average of the LCPI values and displaying the

results on a web page, can be reused.

Adding new attributes requires the affected database en-

tries’ annotations to be updated and AutoSCOPE to include

a new function to recognize or compute the new attribute.

For example, future versions of PerfExpert might output the

loop nesting depth, which is currently not available. This

would allow us, for instance, to annotate entry 3 in our sam-

ple database to require at least a doubly-nested loop. Such

an annotation would prevent AutoSCOPE from recommend-

ing entry 3 for any non-nested loops.

3. Related work

There are many performance evaluation tools with a

wide range of approaches and functionalities. Performance

tools may implement four functions: measurement, analysis

based on the measurements, recommendation of source-

code optimizations, and automation of source-code optimi-

zations. The tools can be further classified by the basis for

measurement and analysis: performance-counter-based ver-

sus event-trace-based and by whether the tool requires the

source code to be annotated to generate measurements.

Since the subject of this paper is derivation of recommenda-

tions for source-code optimizations for bottlenecks that are

identified and characterized through performance-counter

measurements and analyses, we only briefly mention papers

that do not, in our best judgment, consider source-code op-

timizations or where the analyses are based on event traces.

Tau [20], [25], PerfSuite [16], [22], HPCToolkit [12],

[24], IPM [14], and Open|SpeedShop [19] are among the

most powerful and widely used tools that provide perfor-

mance-counter-based measurement and analysis. Each of

these tools provides flexible and in-depth measurement and

association of performance bottlenecks with source-code

segments. Each tool provides the measurements and at least

some of the analyses upon which optimization can be based

but do not extend to recommendation of or automation of

source-code optimizations.

PerfExplorer [13] extends Tau with additional analysis

and diagnostic capabilities. However, PerfExplorer/Tau uses

code instrumentation and event tracing, which can perturb

the execution behavior, and does not recommend source-

code optimizations. In contrast, PerfExpert bases its analysis

and optimization recommendations upon data provided by

HPCToolkit, which requires no code instrumentation and

uses CPU performance counters to minimize perturbation.

There are several tools that provide source-code optimi-

zations for some types of bottlenecks. ThreadSpotter [26]

captures information about data access patterns from a

cache simulator and offers advice on related losses, specifi-

cally latency exposed due to poor locality, competition for

bandwidth, and false sharing. It recommends possible opti-

mizations for bottlenecks resulting from data accesses. Perf-

Expert attempts a more comprehensive diagnosis of bottle-

necks, targeting not only data locality but also instruction

locality, floating-point performance, etc. and recommends

optimizations across this spectrum. ThreadSpotter does not

attempt automated optimizations.

SLO [2] uses cache profiling to measure data reuse dis-

tances and other locality metrics. It associates these meas-

ures with code segments, particularly loops, and suggests

optimizations such as loop tiling or loop interchange.

Paradyn [17], based on Dyninst [3], is a performance

measurement tool for parallel and distributed programs.

Performance instrumentation is inserted into the application

and modified during execution. It associates bottlenecks

with specific causes and program parts but does not extend

to recommending application optimizations.

Periscope [11] collects and aggregates performance in-

formation through an agent-based approach. It provides

identification of the source-code locations of performance

bottlenecks and analyses of causes for the bottlenecks.

MAQAO [9] is a performance analysis tool that com-

bines performance counter measurements with static infor-

mation to generate diagnoses. It derives the static informa-

tion from the assembly code. It contains a knowledge base

of important assembly patterns, which can be associated

with hints for possible code optimizations.

The IBM Productive, Easy-to-use, Reliable Computing

System (PERCS) project [5], [6], [27] is building an auto-

mated system that detects and analyzes performance bottle-

necks in application codes, identifies potential source-code

optimizations, and includes automated optimization capabil-

ities. The Bottleneck Detection Engine (BDE), which is the

core of the framework, utilizes a database of rules to detect

bottlenecks in the given application. The BDE feeds the

information on bottleneck locations, including metrics asso-

ciated with the bottlenecks, to the user. It may also suggest

how much improvement could be obtained by the optimiza-

tion of a given bottleneck. In addition to suggestions to the

user, IBM’s tool also supports directly modifying the source

code and applying standard transformations through the

compiler. The limitation of PERCS is that it requires the use

of IBM’s proprietary software stack including its compilers.

Systems that base their analyses on event traces include

KOJAK [18], KappaPI [10] and the Parallel Performance

Wizard [23]. KOJAK aims at the development of a generic

automatic performance analysis environment for parallel

programs. The Parallel Performance Wizard attempts auto-

matic diagnosis as well as automated optimization. It is,

however, based on event trace analysis and requires pro-

gram instrumentation. Its primary applications have been

problems associated with the partitioned global address

space (PGAS) programming model, although it applies to

other performance bottleneck issues as well.

Cray’s ATExpert [15] graphically displays the perfor-

mance of parallel programs. It points the user to specific

problem areas in the source code, tries to explain why the

problems are occurring, and suggests steps to resolve them.

It does not provide code templates or rank suggestions.

The Performance Engineering Research Institute (PERI)

Autotuning project [1] combines measurement and search-

directed auto-tuning in a multistep process to obtain auto-

mated optimization. It can be viewed as a special case of an

expert system where one flexible solution method is applied

to all types of bottlenecks. It is unclear whether autotuning

by itself can effectively optimize the wide spectrum of bot-

tlenecks that arise when executing complex codes on multi-

core chips and multi-socket nodes. We hope to be able to

incorporate methods from this project in the optimization

capabilities of a future version of PerfExpert.

4. Evaluation methodology

4.1 System

We used the PerfExpert installation on Ranger, the su-

percomputing Sun Constellation Linux Cluster at the Texas

Advanced Computing Center. Ranger contains 3,936 16-

way SMP compute nodes made of 15,744 quad-core 2.3

GHz AMD Opteron (Barcelona) processors, i.e., 62,976

compute cores. It has 123 TB of main memory, 1.7 PB of

global disk space, and a theoretical peak performance of 579

TFLOPS. All compute nodes are interconnected using Infi-

niBand in a seven-stage full-CLOS fat-tree topology provid-

ing 1 GB/s point-to-point bandwidth.

4.2 Applications

We have tested AutoSCOPE on MANGLL/DGADVEC,

HOMME, and LIBMESH/EX18. These large-scale HPC

programs represent various application domains. They were

all compiled with the Intel compiler v10.1.

MANGLL is a scalable adaptive high-order discretiza-

tion library. It supports dynamic parallel adaptive mesh re-

finement and coarsening, which is essential for numerical

solution of the partial differential equations (PDEs) arising

in many multiscale physical problems. DGADVEC is an

application built on top of MANGLL for the numerical so-

lution of the energy equation that is part of the coupled sys-

tem of PDEs arising in convection simulations, describing

the viscous flow and temperature distribution in Earth’s

mantle. MANGLL and DGADVEC are written in C.

HOMME is an atmospheric general circulation model

consisting of a dynamical core based on the hydrostatic equ-

ations, coupled to sub-grid scale models of physical

processes. The HOMME code is designed to provide 3D

global atmospheric simulation similar to the Community

Atmospheric Model. The benchmark version of HOMME

we are using was one of NSF’s acceptance benchmark pro-

grams for Ranger. It is written in Fortran 95.

The LIBMESH library provides a framework for the

numerical approximation of partial differential equations

using continuous and discontinuous Galerkin methods on

unstructured hybrid meshes. It supports parallel adaptive

mesh refinement computations as well as 1D, 2D, and 3D

steady and transient simulations on a variety of popular

geometric and finite element types. EX18 uses LIBMESH

to solve the transient nonlinear problem using the object-

oriented FEMSystem class framework. LIBMESH and

EX18 are written in C++.

5. Results

This section compares the suggestions produced by Au-

toSCOPE with actual optimizations that performance ex-

perts implemented to accelerate large-scale HPC codes. Due

to space reasons, we only show one key loop per program.

Figure 7 shows the recommendations AutoSCOPE

makes for the most important loop in LIBMESH/EX18.

This loop performs a large number of memory accesses,

most of which hit in the L1 data cache, and quite a few

floating-point operations. Hence, AutoSCOPE focuses on

suggestions that reduce the number of load instructions,

boost the bandwidth to the L1 data cache, and reduce the

number of floating-point instructions.

Loop in function NavierSystem::element_time_derivative(…) (23.3% of runtime)

move loop invariant memory accesses out of loop

loop i {a[i] = b[i] * c[j]} → temp = c[j]; loop i {a[i] = b[i] * temp;}

enable the use of vector instructions to transfer more data per access

align arrays, use only stride-one accesses, make loop count even (pad arrays)

struct {double a, b;} s[63]; for (i = 0; i < 63; i++) {s[i].a = 0; s[i].b = 0;} →

__declspec(align(16)) double a[64], b[64]; for (i = 0; i < 64; i++) {a[i] = 0; b[i] = 0;}

use the “-opt-streaming-stores always” compiler flag

move loop invariant computations out of loop

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];}

Figure 7: Condensed AutoSCOPE recommendations for the

most important loop in EX18

When we manually optimized this code (before Auto-

SCOPE existed), we obtained a substantial speedup by ap-

plying the first and third recommendation, i.e., by factoring

out common subexpressions involving memory accesses

and by moving loop invariant code [4]. Based on simple

tests, the author of EX18 had assumed that the compiler

would do this automatically. However, several of the com-

mon subexpressions we found involve C++ templates and

most of them use pointer indirections, which seem to make

the code too complex for the compiler to optimize. These

simple optimizations (for a human) made the loop 32% fast-

er, yielding an application-wide speedup of 5%.

Figure 8 shows AutoSCOPE’s recommendations for one

of the two key loops in DGADVEC. This loop’s perfor-

mance profile is quite similar to that of the EX18 loop dis-

cussed above except it performs significantly more floating-

point operations. Hence, the recommendations are similar

but the order in which they are listed is different.

Loop in function dgadvecRHS() at dgadvec.c:993 (19.4% of total runtime)

move loop invariant computations out of loop

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];}

componentize loops by factoring them into their own subroutines

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ...

move loop invariant memory accesses out of loop

loop i {a[i] = b[i] * c[j]} → temp = c[j]; loop i {a[i] = b[i] * temp;}

enable the use of vector instructions to transfer more data per access

align arrays, use only stride-one accesses, make loop count even (pad arrays)

struct {double a, b;} s[63]; for (i = 0; i < 63; i++) {s[i].a = 0; s[i].b = 0;} →

__declspec(align(16)) double a[64], b[64]; for (i = 0; i < 64; i++) {a[i] = 0; b[i] = 0;}

use the “-opt-streaming-stores always” compiler flag

Figure 8: Condensed AutoSCOPE recommendations for the

most important loop in DGADVEC

Together with the developers of DGADVEC, we have

been able to accelerate this loop through vectorization. The

primary performance problem is the L1 load-to-use hit la-

tency of three cycles, which cannot be hidden as there are

not enough independent instructions available to execute.

Since this latency is fixed in hardware, we can only reduce

the average latency by increasing the bandwidth, i.e., ac-

cessing multiple data items per memory transaction through

the use of SSE instructions. Hence, we rewrote the loop so

that the compiler can vectorize it [8] (i.e., we applied the

fourth recommendation). Comparing the old and new loop

implementations, we found that the number of executed

instructions is 44% lower and the number of L1 data-cache

accesses is 33% lower due to the vectorization [4].

Figure 9 shows the optimization suggestions for an im-

portant loop in HOMME, which has also been manually

tuned. This loop suffers primarily from bad memory access

performance. Many of the accesses miss in all cache levels

and go to main memory. As a consequence, AutoSCOPE

recommends optimizations that aim at helping the compiler

optimize the code better, enhance the memory access pat-

terns, and improve the main memory latency.

Loop in function preq_robert() at prim_si_mod.F90:846 (8.9% of total runtime)

componentize loops by factoring them into their own subroutines

... loop i {...} ... loop j {...} ... → void li() {...}; void lj() {...}; ... li(); ... lj(); ...

change the order of loops

loop i { loop j {...} } → loop j { loop i {...} }

employ loop blocking and interchange

loop i {loop k {loop j {

 c[i][j] = c[i][j] + a[i][k] * b[k][j];}}} →

loop k step s {loop j step s {loop i {for (kk = k; kk < k + s; kk++)

 {for (jj = j; jj < j + s; jj++) {c[i][jj] = c[i][jj] + a[i][kk] * b[kk][jj];}}}}}

apply loop fission so every loop accesses just two different arrays

loop i {a[i] = a[i] * b[i] - c[i];} → loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];}

move loop invariant computations out of loop

loop i {x = x + a * b * c[i];} → temp = a * b; loop i {x = x + temp * c[i];}

Figure 9: Condensed AutoSCOPE recommendations for an

important loop in HOMME

A performance expert has successfully sped up this loop

by applying microfission (the fourth recommendation) to

reduce DRAM page conflicts, which makes the main memo-

ry accesses substantially faster [4], [7]. On a Ranger node,

only 32 DRAM pages can be open at once. With 16 threads

running on the 16 cores of a node, each thread can access at

most two different memory areas simultaneously without

losing performance. Thus, applying microfission so that

each loop only processes two arrays eliminates DRAM page

conflicts. However, because the compiler automatically fus-

es the loops, it was necessary to also break out each loop

into a separate procedure (the first recommendation), which

results in a 62% speedup and much better core utilization.

6. Conclusion and future work

AutoSCOPE helps programmers by automatically re-

commending source-code optimizations and compiler flags

for alleviating node-level performance bottlenecks that have

been identified by the PerfExpert measurement and analysis

tool. AutoSCOPE processes PerfExpert’s output using a set

of rules to identify matching recommendations in its anno-

tated database. It then ranks these recommendations to se-

lect the most appropriate ones. AutoSCOPE is constructed

as an extensible framework to which we can add annotations

and rules to extend its capabilities or to adapt it to different

execution environments. Our evaluation on real HPC appli-

cations has demonstrated almost 100% conformance to hu-

man expert optimization selections. While the output some-

times still includes inapplicable suggestions, AutoSCOPE

correctly eliminates over 95% of the suggestions from the

database that do not apply, thus helping the user a great deal

by focusing his or her attention on just a few targeted opti-

mizations. In future work, we plan to add more rules and

annotations to further improve the selection quality and to

apply selected source-code optimizations automatically for

straightforward cases.

7. References

[1] D. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J.

Hollingsworth, P. Hovland, S. Moore, K. Seymour, J.

Shin, A. Tiwari, S. Williams, and H. You. “PERI Auto-

Tuning.” Journal of Physics: Conference Series,

125(1):012089, 2008.

[2] K. Beyls and E. D’Hollander. “Refactoring for Data Lo-

cality.” IEEE Computer, Vol. 42, no. 2, pp. 62-71. 2009.

[3] B. R. Buck and J. K. Hollingsworth. “An API for Runtime

Code Patching.” Journal of High Performance Computing

Applications, 14:317-329. 2000.

[4] M. Burtscher, B.D. Kim, J. Diamond, J. McCalpin, L.

Koesterke, and J. Browne. “PerfExpert: An Easy-to-Use

Performance Diagnosis Tool for HPC Applications.” SC

2010 Int. Conference for High-Performance Computing,

Networking, Storage and Analysis. November 2010.

[5] Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and

H-F. Wen. “A Framework for Automated Performance

Bottleneck Detection.” 13th Int. Workshop on High-Level

Parallel Programming Models and Supportive Environ-

ments. 2008.

[6] G. Cong, I-H. Chung, H. Wen, D. Klepacki, H. Murata, Y.

Negishi, and T. Moriyama. “A Holistic Approach towards

Automated Performance Analysis and Tuning.” Euro-Par

2009. 2009.

[7] J. Diamond, M. Burtscher, J. McCalpin, B.D. Kim, S.

Kecker, and J. Browne. “Making Sense of Performance

Counter Measurements on Supercomputing Applications.”

2011 IEEE International Symposium on Performance

Analysis of Systems and Software. April 2011.

[8] J. Diamond, B.D. Kim, M. Burtscher, S. Keckler, K. Pin-

gali, and J. Browne. “Multicore Optimization for Ranger.”

2009 TeraGrid Conference. June 2009.

[9] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Ac-

quaviva, and W. Jalby. “Exploring Application Perfor-

mance: a New Tool for a Static/Dynamic Approach.” The

Sixth Los Alamos Computer Science Institute Symp. 2005.

[10] Antonio Espinosa, Tomas Margalef, and Emilio Luque.

“Automatic detection of parallel program performance

problems.” SIGMETRICS Symposium on Parallel and Dis-

tributed Tools, p. 149. 1998.

[11] M. Gerndt and M. Ott. “Automatic performance analysis

with Periscope.” Concurrency Computation: Practice and

Experience. 2009.

[12] HPCToolkit: http://www.hpctoolkit.org/. Last accessed

April 1, 2011.

[13] K. A. Huck, A. D. Malony, S. Shende, and A. Morris.

“Knowledge Support and Automation for Performance

Analysis with PerfExplorer 2.0.” Large-Scale Program-

ming Tools and Environments, Special Issue of Scientific

Programming, vol. 16, no. 2-3, pp. 123-134. 2008.

[14] IPM: http://ipm-hpc.sourceforge.net/. Last accessed April

1, 2011.

[15] J. Kohn and W. Wiliams. “ATExpert.” Journal of Parallel

and Distributed Computing, 18:2, pp. 205-222. 1993.

[16] Rick Kufrin. “PerfSuite: An Accessible, Open Source Per-

formance Analysis Environment for Linux.” 6th Int. Con-

ference on Linux Clusters: The HPC Revolution. 2005.

[17] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hol-

lingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchithapa-

dam, and T. Newhall. “The Paradyn Parallel Performance

Measurement Tool.” IEEE Computer, 28:37-46. 1995.

[18] B. Mohr and F. Wolf. “KOJAK - A Tool Set for Automat-

ic Performance Analysis of Parallel Applications.” Int.

Conference on Parallel and Distributed Computing. 2003.

[19] Open|SpeedShop: http://www.openspeedshop.org/wp/.

Last accessed April 1, 2011.

[20] S. Shende and A. Malony. “The Tau Parallel Performance

System.” International Journal of High Performance

Computing Applications, 20(2): 287-311.

[21] PerfExpert: http://www.tacc.utexas.edu/perfexpert/. Last

accessed April 1, 2011.

[22] PerfSuite: http://perfsuite.ncsa.uiuc.edu/. Last accessed

April 1, 2011.

[23] H-H. Su, M. Billingsley, and A. D. George. “Parallel Per-

formance Wizard: A Performance Analysis Tool for Parti-

tioned Global-Address-Space Programming.” 9th Int.

Workshop on Parallel & Distr. Scientific and Engineering

Computing. 2008.

[24] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M.W.

Fagan, and M. Krentel. “HPCToolkit: performance tools

for scientific computing.” Journal of Physics: Conference

Series, 125. 2008.

[25] Tau: http://www.cs.uoregon.edu/research/tau/home.php.

Last accessed April 1, 2011.

[26] ThreadSpotter:

http://www.roguewave.com/products/threadspotter.aspx.

Last accessed April 1, 2011.

[27] H. Wen, S. Sbaraglia, S. Seelam, I. Chung, G. Cong, and

D. Klepacki. “A productivity centered tools framework for

application performance tuning.” Fourth International

Conference on the Quantitative Evaluation of Systems, pp.

273-274. 2007.

