
A Parallel GPU Version of the Traveling

Salesman Problem

Molly A. O’Neil, Dan Tamir, and Martin Burtscher

Department of Computer Science, Texas State University, San Marcos, TX

Abstract - This paper describes and evaluates an implemen-

tation of iterative hill climbing with random restart for de-

termining high-quality solutions to the traveling salesman

problem. With 100,000 restarts, this algorithm finds the

optimal solution for four out of five 100-city TSPLIB inputs

and yields a tour that is only 0.07% longer than the optimum

on the fifth input. The presented implementation is highly

parallel and optimized for GPU-based execution. Running

on a single GPU, it evaluates over 20 billion tour modifica-

tions per second. It takes 32 CPUs with 8 cores each (256

cores total) to match this performance.

Keywords: Traveling Salesman Problem, Iterative Hill

Climbing, GPGPU, Program Parallelization

1 Introduction

 The traveling salesman problem (TSP) is one of the

most commonly explored combinatorial optimization prob-

lems (COPs), often used as an early exploration ground for

new approaches to COPs [1]. Consider a complete, undi-

rected, weighted graph G(V, E, W), where V is a set of ver-

tices, E is a set of edges, and W is a set of edge weights. A

Hamiltonian tour in G is a cycle that starts from a vertex v0 ∈

V and traverses all other vertices of G exactly once [1]. The

symmetric TSP is a special case of the problem of finding a

minimal Hamiltonian tour in a complete, undirected, planar,

Euclidean, weighted graph in which the vertices represent

cities, the edge weights represent the distances between the

cities, and the distance from city vA to city vB is the same as

the distance from city vB to city vA. The optimal TSP solution

consists of the Hamiltonian tour that yields the minimum

distance traveled.

 Finding an optimal solution to TSP is NP-hard [2], so

it is frequently approached using heuristic algorithms that

find near-optimal tours. Constructive multi-start search algo-

rithms, such as iterative hill climbing (IHC), are often ap-

plied to combinatorial optimization problems like TSP.

These algorithms generate an initial solution and then at-

tempt to improve it using heuristic techniques until a locally

optimal solution, i.e., one that cannot be further improved, is

reached. In each IHC step, a set of tour modifications, called

moves, are evaluated to determine the best move [3], [4]. For

instance, the tour can be adjusted by a heuristic such as 2-

opt, which removes the edges (vA,vB) and (vC,vD) and adds

edges (vA,vC) and (vB,vD) [1]. The IHC algorithm repeatedly

chooses the best move as the next step, reducing the length

of the tour until it finds a locally optimal solution, then res-

tarts with a new initial construction. This process of local

improvements and restarts continues until the solution is

sufficiently good or a limit on computing resources is

reached [5]. IHC is used for several problems, including

finding the maximal parsimony (phylogenetics) tree (MPT),

where thousands if not millions of restarts are needed to find

a good solution with high probability, making this approach

computationally expensive. In this paper, TSP serves as a

test bed for improving IHC implementations for solving

problems such as MPT.

 The past decade has seen a rise in the use of graphics

processing units (GPUs) as general-purpose computing de-

vices that can efficiently accelerate many non-graphics pro-

grams, especially vector- and matrix-based codes exhibiting

a lot of parallelism with low synchronization requirements.

Because their hardware is primarily designed to perform

complex computations on blocks of pixels at high speed and

with wide parallelism, GPU architectures differ substantially

from conventional CPU hardware. This can make it difficult

to write efficient implementations of non-graphics algo-

rithms for GPUs.

 For example, NVIDIA GPUs require sets of 32 pro-

gram threads, called warps, to execute the same instruction

in every clock cycle or wait. When not all threads in a warp

can execute the same instruction, the warp is subdivided by

the hardware into sets of threads such that all threads in a set

execute the same instruction. These sets execute serially

until they re-converge, resulting in a loss of parallelism.

 The memory subsystem is also optimized for warp-

based processing. If a warp accesses 32 consecutive words

in memory, the hardware merges the 32 reads or writes into

one coalesced memory access that is as fast as a single non-

coalesced access, subject to alignment and word-size con-

straints. Thus, it is crucial to use coalesced memory accesses

to exploit the GPU’s high memory bandwidth.

 The 32 processing elements (PEs) within each stream-

ing multiprocessor (SM) of a GPU share a pool of threads

called a thread block, synchronization hardware, and a soft-

ware-controlled cache called shared memory. A warp can

simultaneously access up to 32 distinct words in shared

memory as long as the words reside in different memory

banks. Barrier synchronization between the threads in an SM

takes one clock cycle if all threads reach the barrier together.

 The PEs are fed with warps for execution in multi-

threading style to hide latencies. Thus, it is paramount for

good performance to have many active resident warps in

each SM. In other words, GPUs require thousands of simul-

taneously running threads, i.e., large amounts of parallelism

to achieve maximum performance.

 The SMs operate largely independently. They can only

communicate with each other through global memory

(DRAM). Thus, synchronization between SMs must be done

using atomic operations on global memory locations, mean-

ing that GPUs are most effective at accelerating codes with

low sharing requirements.

 The large amount of parallelism and wide memory

buses make GPUs well suited to speed up codes displaying

high computational intensity and little synchronization. For

such codes, GPUs have demonstrated a substantial advan-

tage over CPUs in terms of performance per dollar and per-

formance per transistor [6] as well as performance per watt

[7]. GPU implementations of these applications can be do-

zens of times faster than optimized parallel CPU implemen-

tations [8].

 This paper explains how we parallelized and optimized

the IHC algorithm for TSP so that it can reap the benefits of

GPU acceleration. Our implementation running on one GPU

chip is 62 times faster than the corresponding serial CPU

code, 7.8 times faster than an 8-core Xeon CPU chip, and

about as fast as 256 CPU cores (32 CPU chips) running an

equally optimized pthreads implementation. For symmetric,

planar, 100-city problems with 100,000 random restarts, our

code finds the optimal solution for four out of five TSPLIB

inputs and is 0.07% off on the fifth input. Our open-source

CUDA implementation is freely available for download at

http://www.cs.txstate.edu/~burtscher/research/TSP_GPU/.

2 Parallelization and optimization

 This section explains how we implemented, optimized,

and parallelized the IHC algorithm for the TSP problem. In

this discussion, we assume symmetric 100-city problems

with 100,000 random restarts.

2.1 Parallelization

 There are several ways to parallelize this algorithm.

The 100,000 climbers are independent and can be processed

in any order, including concurrently. However, load balance

is a potential problem when parallelizing the climbers as

they require different numbers of IHC steps to reach a local

optimum. Within a climber, each IHC step depends on the

previous step and therefore has to execute serially. In our

implementation, every IHC step evaluates 4851 opt-2

moves. These moves are independent and can be run in pa-

rallel, but they require a reduction operation at the end to

determine the move that yields the largest reduction in tour

length. This reduction can be performed in log2(4851) ≈ 13

steps but necessitates synchronization and data exchange,

which may be slow.

 Because modern GPUs require tens of thousands of

parallel threads that perform very similar tasks to unleash

their full performance, we decided to run the independent

climbers in parallel. This approach results not only in the

highest degree of parallelism but also in the least amount of

synchronization and data exchange. However, the climbers

perform varying numbers of IHC steps to reach a local opti-

mum. We measured between 84 and 124 steps with an aver-

age of 103.3. Since we launch 14,336 threads on the GPU,

the average thread processes only 7 climbers, which results

in load imbalance and consequently poor scaling. In con-

trast, we launch no more than 256 threads on the CPU, yield-

ing an average of 391 climbers per thread, which is enough

to average out the number of IHC steps performed by each

thread. Thus, load balance is not an issue with the CPU code

but is significant in the GPU code. Because load balancing

imposes synchronization and serialization overheads, the

pthreads code actually runs faster without load balancing

whereas the CUDA code runs faster with load balancing.

Hence, we ended up with the following implementations.

 Our pthreads code statically assigns equal (±1) num-

bers of climbers to each thread. The threads run indepen-

dently to find the best solution among their climbers and

only execute a single critical section at the end to determine

the best solution among all threads. The GPU code, in con-

trast, only assigns a single initial climber to each thread.

When a local minimum is reached, the thread checks wheth-

er this minimum is smaller than the currently best solution.

If it is, the best solution is updated using an atomic com-

pare-and-swap instruction. Then, the next climber is ob-

tained from a global worklist using an atomic increment.

Threads terminate when the worklist is empty.

2.2 Code optimization

 Our serial, pthreads, and CUDA implementations use

essentially identical code for evaluating the opt-2 moves,

which takes the vast majority of the runtime. This code sec-

tion comprises two nested for loops that iterate over the

cities to form pairs of cities between which the tour is re-

versed. The CUDA code differs from the serial and pthreads

code in that we manually moved two loop-invariant compu-

tations out of the inner loop and specified that the inner loop

be unrolled eight times. This was not necessary in the serial

and pthreads codes as the C compiler automatically performs

these optimizations.

 Because GPUs are only fast if sets of 32 threads, i.e.,

warps, perform the same work (on different data) at the same

time, our implementation always considers 4851 city pairs in

each IHC step. In particular, the outer i-loop iterates from

the 1
st
 to the 98

th
 city while the inner j-loop iterates from the

i+2
nd

 to the 100
th

 city. Note that this approach avoids dupli-

cations in city pairs due to symmetry as well as pairs of

adjacent cities that never result in a change of the tour

length. Note that we always compute the tour length for all

4851 city pairs, including the ones that did not change from

the previous IHC step, because re-computing them is faster

than recording and retrieving this information.

 We optimized the loop nest by saving values fetched

from memory in register variables so that later iterations can

quickly access them. For example, even though we need four

city IDs (the i
th

, i+1
st
, j

th
, and j+1

st
) in every iteration, the

inner loop body only fetches the j+1
st
 city ID from memory

as the remaining values have been fetched earlier and are

“cached” in variables. Similarly, each opt-2 move needs four

distance values from a two-dimensional matrix (i
th

 to i+1
st

city, j
th

 to j+1
st
 city, i

th
 to j

th
 city, and i+1

st
 to j+1

st
 city, where

the 101
st
 city is the same as the 1

st
 city). Nevertheless, the

code only fully evaluates one distance, partially evaluates

two of the distances (by accessing a vector, i.e., a predeter-

mined row of the matrix), and uses a cached value for the

fourth distance to minimize computations and memory ac-

cesses. Aside from these operations, the inner loop only

contains assignment statements that copy one scalar variable

into another and an if statement to check whether a new

optimum has been found.

 To further boost the performance, the loop nest never

actually computes the tour cost. It only calculates how much

shorter an opt-2 move makes the current tour and picks the

move that results in the greatest savings. As long as an IHC

step results in a reduction in tour cost, the corresponding

best opt-2 move is applied, i.e., the selected tour segment is

reversed, and the next IHC step is initiated. Only once a

local optimum has been reached is the tour cost finally com-

puted. If this cost is lower than the previously found shortest

tour, the new tour is written back to global memory and the

shortest tour is updated. Otherwise, the new tour is simply

discarded to avoid unnecessary memory writes.

 To make the results deterministic and to simplify veri-

fication, the random seed used for generating a tour is the

tour number (0 to 99,999). This guarantees that the length of

the shortest tour is always the same, no matter in which

order the 100,000 tours are processed. Because a cyclic

rotation of a tour does not yield a new tour, the first city,

which is also the last city, can be fixed without loss of gene-

rality. This enables simplifying and accelerating the program

by hard coding the ID of the first city. Our code contains

several other minute enhancements.

 The CUDA code further contains GPU-specific opti-

mizations that do not apply to the CPU code. For instance,

the two-dimensional distance matrix is allocated in shared

memory, a software-controlled cache, so that accesses to it

are always fast. The 1024 tours that are evaluated concur-

rently in an SM are too large to fit in shared memory. Thus,

we allocate them in global memory (DRAM). To still be

able to access them quickly, the code first copies the tours

into local memory, which is part of the global memory but

ensures that every tour access in the two nested loops is

fully coalesced. Other GPU optimizations include limiting

thread divergence to rarely executed code sections and mi-

nimizing CPU/GPU transfers to just 40 kB initially to copy

the distance matrix to the GPU and 108 bytes in the end to

copy the best tour, its cost, and its tour number back to the

CPU. Note that, other than generating the distance matrix

and printing the result, our implementation runs the entire

TSP algorithm on the GPU.

3 Related work

 Most previous GPU-based approaches to the traveling

salesman problem use the Max-Min Ant System (MMAS)

algorithm [9]. This algorithm is a variant of Ant Colony

Optimization (ACO), a metaheuristic algorithm based on the

natural ability of ants to discover, collaboratively, the short-

est path between their nest and a food source by depositing

pheromone along their traveled paths. ACO algorithms si-

mulate the behavior of individual ants, which construct tours

around a graph based on the strength of evaporating phero-

mone trails left by other ants. Dorigo and Gambardella first

presented this algorithm applied as a distributed TSP solver

[10]. ACO algorithms spend the majority of their computa-

tion time in the tour construction phase [11], and because

ants travel independently and each ant constructs a complete

solution based only on the previous iterations’ pheromone

matrix, this phase is highly parallelizable.

 Bai et al. detail a CUDA implementation of the parallel

MMAS algorithm in which multiple ant colonies are simu-

lated concurrently on the GPU, one for each thread block,

with the tours of individual ants within each colony also

parallelized [12]. This implementation achieves up to a 32x

speedup over a serial CPU version under the same workload,

though without finding the optimal solution in some cases.

Jiening et al. present a C++ and Cg implementation of the

MMAS algorithm with up to a 1.4x speedup over the CPU

implementation, which finds the optimal tour on a 30-city

input [13]. You describes a CUDA implementation of a

parallel ACO algorithm [14], with each thread on the GPU

responsible for the travel of a single ant from a unique start-

ing location, achieving up to a 20x speedup over a serial

CPU implementation. Cecilia et al. present several GPU-

based, data-parallel strategies for both the tour construction

and pheromone update stages of the ACO algorithm, achiev-

ing a 28x speedup for the tour stage and a 20x speedup for

the pheromone update stage over sequential CPU code [15].

Many of the prior works on GPU-based ant colony solvers

compare solution quality only against a serial ACO imple-

mentation and do not address how often either implementa-

tion discovers the optimum TSP solution.

 There are also heterogeneous implementations of ACO

algorithms, which implement only part of the TSP solver on

the GPU. Delévacq et al. implement a parallel approach to

the MMAS algorithm that performs tour construction on the

GPU and pheromone update on the CPU [11]. Next, they

compare their implementation against their GPU version of

the original ACO algorithm [16], achieving better solution

quality (though still suboptimal in some cases) and up to a

3.6x speedup. Fu et al. describe an MMAS implementation

in MATLAB with the tour construction performed on the

GPU and the updates performed on the CPU [17]. This im-

plementation achieves roughly a 32x speedup over sequen-

tial CPU code, but with slightly lower solution quality com-

pared to the CPU implementation.

 There also exists a recent genetic algorithm-based TSP

solver in CUDA, presented by Fujimoto and Tsutsui in 2011

[18]. This work parallelizes TSP using the genetic crossover

operator and 2-opt local search. Their CUDA implementa-

tion on a GTX-285 is up to 24.2x faster than a single-core

CPU version, allowing an error ratio over the optimal trip

cost of up to 0.5%.

 To the best of our knowledge, this paper presents the

first GPU implementation of the IHC algorithm for solving

the TSP problem. Our IHC approach may be better suited

for GPUs than previously proposed algorithms as it yields

larger speedups over both serial and parallel CPU imple-

mentations while, at the same time, achieving very high

solution quality.

4 Evaluation methodology

 We evaluated our GPU implementation of TSP on an

NVIDIA Tesla C2050 graphics card, which has CUDA

compute capability 2.0 [19]. This GPU is equipped with 14

streaming multiprocessors (SMs), each with 32 cores, for a

total of 448 cores running at 1.15 GHz and sharing 3 GB of

global memory. Each multiprocessor is configured with 48

kB of shared memory and a 16 kB L1 cache. All SMs share

a 768 kB L2 cache. Each SM has 32,768 registers that are

shared among the threads allocated to the multiprocessor.

The CUDA code was compiled with nvcc version 3.2 using

the “-O3 -arch=sm_20” flags.

 We ran the pthreads and sequential CPU implementa-

tions on the Nautilus supercomputer at NICS, which con-

tains 128 2.0 GHz 8-core Xeon X7550 CPUs sharing 4 TB

of main memory. The pthreads and sequential codes were

compiled with icc version 11.1, with the “-O3 -xW -pthread”

flags for the pthreads version and the “-O3 -xW” flags for

the sequential version.

 We instrumented the three implementations to meas-

ure the runtime of everything except the reading in of the

100 city coordinates and the generation of the distance ma-

trix from these coordinates. We tested all implementations

on five TSPLIB benchmarks containing 100 cities [20].

5 Results

 Figure 1 plots the runtimes (in milliseconds) of our

three IHC implementations on the kroE100 TSPLIB input,

with the minimum, median, and maximum runtime of three

runs plotted separately. The runtimes for other 100-city

inputs and different random restarts are very similar. The

median runtime is listed above the columns. The results

show that our GPU implementation’s median runtime, at

2.497 seconds, is slightly under that of the parallel CPU

version run with 256 threads and dramatically less than that

produced by the sequential CPU code (2.58 minutes). Unlike

the GPU version, which produces highly consistent run-

times, the pthreads runtime at higher thread counts varies

substantially between executions. In fact, in some experi-

ments, it already started varying with 16 threads, i.e., the

problem seems to appear as soon as multiple CPU chips are

used. Since we made sure that there is no false sharing and

only a minimal amount of true sharing in our pthreads im-

plementation, we assume the variability is caused by interfe-

rence from other jobs that were running at the same time on

this large shared memory machine.

 Figure 2 displays the minimum, median, and maximum

speedups of the pthreads and GPU implementations relative

to the sequential CPU implementation. Again, we see that

154684 156413

78350

39175

19591

9802

4908 4368

2724 2539 2497

1024

4096

16384

65536

262144

1 2 4 8 16 32 64 128 256

R
u

n
ti

m
e

s
(i

n
 m

s)

Number of threads (pthreads CPU)

Min
Median
Max

sequential

CUDA
GPU

seq
CPU

pthreads CUDA GPU
(median)

Figure 1. Minimum, median, and maximum runtimes (in milliseconds) of the three TSP implementations

(note that this graph is logarithmic)

the GPU version produces consistent speedups whereas the

pthreads version with 128 and 256 threads demonstrates

significant performance variance. The pthreads code scales

almost perfectly to 32 cores, indicating that it does not suffer

from false sharing, load imbalance, serialization, or other

parallelization overheads. However, scaling is poor beyond

32 threads, possibly due to the increasing thread startup cost.

Additional experiments with different random restarts re-

sulted in the same scaling trends. While the maximum spee-

dup offered by the 256-thread CPU version exceeds that of

the GPU implementation, the GPU code outperforms the

pthreads code in terms of median speedup. It achieves a

consistent speedup of around 61.9 compared to the 256-

thread pthreads version’s median speedup of 60.9. This

means that the GPU is capable of slightly exceeding the

performance of 256 x86 cores or 32 CPUs with eight cores

each on the IHC TSP algorithm.

 The Nautilus supercomputer on which we tested the

pthreads implementation has 2.0 GHz CPU cores. The se-

quential and pthreads implementations would benefit from

CPUs with faster clocks. However, we found the GPU im-

plementation to still offer a 50x speedup over the sequential

implementation executed on a 2.53 GHz Intel Xeon, sug-

gesting that the GPU solution offers a large performance

advantage over the CPU implementation even for the fastest

currently available CPUs.

 Table 1 addresses the solution quality and shows the

cost and number of the shortest tour found by the GPU im-

plementation for five 100-city inputs from the TSPLIB

library when using 100,000 random restarts. The optimal

tour cost and the runtime for each input are shown as well.

Our GPU code finds the optimal tour in all but one case, on

kroE100, where the tour is 0.07% longer. Doubling the

number of climbers to 200,000 allows the GPU code to find

the optimal tour in the last case as well.

Table 1. Solution quality achieved by the GPU

implementation for five 100-city inputs from TSPLIB

6 Summary and conclusions

 This paper explains how we parallelized and optimized

the IHC algorithm for solving the TSP problem on GPUs.

The results demonstrate that our implementation not only

yields a high solution quality but also runs very quickly. It

processes over 20 billion 2-opt moves per second on a single

GPU, which is 62 times faster than an x86 core and as fast

as 32 CPUs with 8 cores running a pthreads version of the

same algorithm. Based on these results, we believe our ap-

proach may be better suited for GPU-based acceleration

than the related ant colony and genetic algorithm-based TSP

solvers that are available for GPUs.

7 Acknowledgments

 This research was supported by an allocation of

advanced computing resources provided by the National

Science Foundation. Some of the computations were

performed on Nautilus at the National Institute for

Computational Sciences [21]. We thank NVIDIA

Corporation for donating the GPU that was used to develop,

Name Optimal Cost Min. Tour Cost Min. Tour # Runtime (s)

kroA100 21,282 21,282 33,188 2.540

kroB100 22,141 22,141 5,969 2.499

kroC100 20,749 20,749 23,092 2.543

kroD100 21,294 21,294 32,142 2.497

22,084 16,941 2.499

22,068 117,583 4.952

TSPLIB Database CUDA GPU Solution Quality

kroE100 22,068

1.0 2.0 3.9
7.9

15.8

31.5
35.4

56.8
60.9 61.9

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128 256

Sp
e

ed
u

p
 o

ve
r

Se
q

u
e

nt
ia

l C
o

d
e

Number of threads (pthreads)

Min

Median

Max

CUDA
GPU

pthreads

(median)

CUDA GPU

Figure 2. Minimum, median, and maximum speedup of the pthreads and GPU implementations relative

to the serial CPU implementation

tune, and measure the CUDA implementation of the

algorithm presented in this paper. We further thank Intel

Corporation for donating the server on which the serial and

pthreads codes were developed.

8 References

[1] Johnson, D. and McGeoch, L. “The Traveling Sales-

man Problem: A Case Study in Local Optimization.” Local

Search in Combinatorial Optimization, by E. Aarts and J.

Lenstra (Eds.), pp. 215-310. London: John Wiley and Sons,

1997.

[2] Garey, M.R. and Johnson, D.S. “Computers and Intrac-

tability: A Guide to the Theory of NP-Completeness.” San

Francisco: W.H. Freeman, 1979.

[3] Ambite, J. and Knoblock, C. “Planning by Rewriting.”

Journal of Artificial Intelligence Research, pp. 207-261.

2001.

[4] Pitsoulis, L.S. and Resende, M.G.C. “Greedy Rando-

mized Adaptive Search Procedures.” Handbook of Applied

Optimization. Oxford University Press, pp. 168-183. 2001.

[5] Rego, C. and Glover, F. “Local Search and Metaheu-

ristics.” The Traveling Salesman Problem and its Variations,

by G. Gutin and A.P. Punnen (Eds.), pp. 309-368. Dor-

drecht: Kluwer Academic Publishers, 2002.

[6] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M.,

Krüger, J., Lefohn, A.E., and Purcell, T.J., “A Survey of

General-Purpose Computation on Graphics Hardware.”

Computer Graphics Forum, Vol. 26, pp. 80-113. 2007.

[7] Huang, S., Xiao, S., and Feng, W. “On the Energy

Efficiency of Graphics Processing Units for Scientific Com-

puting.” International Symposium on Parallel Distributed

Processing, pp. 1-8. 2009.

[8] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer,

J.W., and Skadron, K. “A Performance Study of General-

Purpose Applications on Graphics Processors Using

CUDA,” Journal of Parallel and Distributed Computing,

Vol. 68, No. 10, pp. 1370-1380. 2008.

[9] Stutzle, T. and Hoos, H.H. “MAX-MIN Ant System.”

Future Gen. Comput. Syst., vol. 16, no. 9, pp. 889-914. June

2000.

[10] Dorigo, M. and Gambardella, L.M. “Ant Colony Sys-

tem: A Cooperative Learning Approach to the Traveling

Salesman Problem.” IEEE Transactions on Evolutionary

Computation, Vol. 1, No. 1, pp. 53-66. April 1997.

[11] Delévacq, A., Delisle, P., and Krajecki, M. “Max-min

Ant System on Graphics Processing Units.” Third Interna-

tional Conference on Metaheuristics and Nature Inspired

Computing. October 2010.

[12] Bai, H., Yang, D.O., Li, X., He, L., and Yu, H. “MAX-

MIN Ant System on GPU with CUDA.” Fourth Internation-

al Conference on Innovative Computing, Information and

Control, pp. 801-804. December 2009.

[13] Jiening, W., Jiankang, D., and Chunfeng, Z. “Imple-

mentation of Ant Colony Algorithm Based on GPU.” Sixth

International Conference on Computer Graphics, Imaging

and Visualization, pp. 50-53. August 2009.

[14] You, Y.-S. “Parallel Ant System for Traveling Sales-

man Problem on GPUs.” Eleventh Annual Conference on

Genetic and Evolutionary Computation. July 2009.

[15] Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A.,

and Amos, M. “Parallelization Strategies for Ant Colony

Optimisation on GPUs.” 14
th

 International Workshop on

Nature Inspired Distributed Computing. May 2011.

[16] Delévacq, A., Delisle, P., Gravel, M., and Krajecki, M.

“Parallel Ant Colony Optimization on Graphics Processing

Units.” Sixteenth International Conference on Parallel and

Distributed Processing Techniques and Applications. July

2010.

[17] Fu, J., Lei, L., and Zhou, G. “A Parallel Ant Colony

Optimization Algorithm with GPU-Acceleration Based on

All-in-Roulette Selection.” Third International Workshop on

Advanced Computational Intelligence, pp. 260-264. August

2010.

[18] Fujimoto, N. and Tsutsui, S. “A Highly-Parallel TSP

Solver for a GPU Computing Platform.” Lecture Notes in

Computer Science, Vol. 6046, pp. 264-271. 2011.

[19] “NVIDIA’s Next Generation CUDA Compute Archi-

tecture: Fermi.” Whitepaper, NVIDIA Corporation. 2009.

[20] Reinelt, G. “TSPLIB—A Traveling Salesman Problem

Library.” ORSA Journal on Computing, Vol. 3, No. 4, pp.

376-384. Fall 1991.

[21] National Institute for Computational Sciences,

http://www.nics.tennessee.edu/. Last accessed March 8,

2011.

