

Runtime Compression of MPI Messages to Improve the
Performance and Scalability of Parallel Applications

Jian Ke and Martin Burtscher
Computer Systems Laboratory

School of Electrical and Computer Engineering
Cornell University, Ithaca, NY 14853

{jke, burtscher}@csl.cornell.edu

Evan Speight
Future Systems Group

IBM Austin Research Lab
Austin, TX 78758

speight@us.ibm.com

ABSTRACT
Communication-intensive parallel applications spend a
significant amount of their total execution time exchanging
data between processes, which leads to poor performance
in many cases. In this paper, we investigate message com-
pression in the context of large-scale parallel message-
passing systems to reduce the communication time of indi-
vidual messages and to improve the bandwidth of the over-
all system. We implement and evaluate the cMPI mes-
sage-passing library, which quickly compresses messages
on-the-fly with a low enough overhead that a net execution
time reduction is obtained. Our results on six large-scale
benchmark applications show that their execution speed
improves by up to 98% when message compression is en-
abled.

1. INTRODUCTION
Parallel computation on clusters of inexpensive worksta-
tions has become the standard method for constructing
supercomputers out of commodity parts. Pairing industry-
standard SMP or uniprocessor nodes with high-speed in-
terconnection networks provides a computing platform that
can achieve reasonable performance on a wide range of
applications from databases to scientific algorithms.

In order to hide many of the implementation-specific de-
tails of the underlying network protocol, several portable
message-passing libraries have been designed that allow a
“write once, run anywhere” paradigm for large-scale com-
puting needs. The Message Passing Interface (MPI) [13] is
perhaps the most widely used of these libraries. MPI pro-
vides a rich set of interfaces for operations such as point-
to-point communication, collective communication, and
synchronization operations.

There has been much work on improving the perform-
ance of MPI runtime libraries. Some libraries, such as
TMPI [15] and TOMPI [4], provide fast messaging be-
tween processes co-located on the same node via shared
memory semantics that are completely hidden from the
application writer. Other implementations [12, 14] take
advantage of user-level networks such as VIA [5] or In-
finiBand [11] to drastically reduce the amount of overhead
associated with sending messages, reducing small message

latency. Still other researchers have investigated ways to
improve the performance of collective communication op-
erations in MPI [16].

While reducing the latency of small messages can be
beneficial, there has been little work on improving the
achievable bandwidth of large messages because with large
message sizes the utilization of most networks is relatively
good in comparison. However, our research indicates that
for many MPI applications large messages dominate the
overall message makeup. This paper investigates the idea
of employing a fast compression algorithm to improve the
overall bandwidth achievable by the system during periods
of heavy communication.

The latency to send a message to another process com-
prises the message setup overhead and the time for the
message to pass through the network, the latter of which
roughly equals to the message size divided by the network
bandwidth. The setup overhead can be expressed as a
fixed cost plus a term that is proportional to the message
size. Therefore, the total latency L for a message of size S
is

BW

S
SllL ++≈ 10

, (1)

where l0 is the constant setup overhead, l1 is the per byte
overhead, and BW is the network bandwidth. When com-
pressing messages before they are sent and decompressing
them at the receiving end, the latency becomes

BW

RS
SllSllL

/'
1

'
010

' ++++≈ , (2)

where l0
’ + l1

’S is the overhead incurred by the compres-
sion and the decompression and R is the compression rate.
For the compression to reduce the communication latency,
L’ < L must hold. Using the above two equations, the ine-
quality can be rewritten as

0)
11

('
0

'
1 >−−−

lSl
R

R

BW
. (3)

Since l0
’ and S cannot be negative, the term in parenthe-

ses must be sufficiently greater than zero for the above
inequality to hold. Hence, the compression overhead per
message byte must at least satisfy

'
1

11
l

R

R

BW
>−

. (4)
0-7695-2153-3/04 $20.00 (c)2004 IEEE

In Table 1, we tabulate the maximum available CPU cy-
cles to compress each message byte for various compres-
sion rates assuming a platform with a 3GHz processor and
a 1Gbps network bandwidth.

Table 1: Compression speed requirements.

compression rate 1.2 1.5 2.0 4.0
max. cycles per byte 4 8 12 18

For instance, with a compression rate of 1.5, the CPU

needs to compress and decompress one byte every eight
cycles. Since CPUs operate on four or eight bytes at a
time, there are actually 32 cycles available per word on, for
example, a Pentium-style machine. This corresponds to
roughly one hundred machine instructions (assuming no
stalls), as Pentiums can execute multiple instructions per
cycle, which is sufficient to run a low-overhead compres-
sion algorithm. Finally, the compression and decompres-
sion can be overlapped as will be discussed in Section 2.4.

This paper introduces cMPI, a library that automatically
compresses and decompresses MPI messages at runtime
without any application-level source code modifications.
cMPI currently provides the forty most commonly-used
MPI functions, which is enough to cover the vast majority
of MPI applications. We evaluate cMPI on a set of bench-
marks from the NAS Parallel Benchmark Suite [1] and the
ASCI Purple Benchmark Suite [8]. Our results show that
cMPI can improve parallel application scaling beyond the
point of an MPI library that does not employ a
compression scheme, resulting in up to 98% reduction in
overall execution time.

The rest of this paper is organized as follows. Section 2
describes the design of the cMPI library. Section 3 pre-
sents the experimental evaluation methodology used. Sec-
tion 4 discusses results of the cMPI library on the Veloc-
ity+ supercomputing cluster at the Cornell Theory Center.
Section 5 presents conclusions and avenues for future
work.

2. IMPLEMENTATION
In this section we describe the design of our cMPI library,
the compression algorithm that allows cMPI to make better
use of available network bandwidth, and several perform-
ance-enhancing optimizations.

2.1 The cMPI Library
We have implemented a commonly used subset of forty
MPI functions in our cMPI library, covering most point-to-
point communications, collective communications, and
communicator creation APIs in the MPI specification [13].
The library is written in C and provides an interface for
linking with Fortran applications. cMPI utilizes TCP as
the underlying network protocol and creates one TCP con-
nection between every two communicating MPI processes.
Each process creates a message thread to handle sending to

and receiving from all communication channels. This
thread also compresses and decompresses appropriate mes-
sages if the corresponding environment variable is set, that
is, if compression is enabled. A flag in the cMPI message
header marks whether or not a particular message has been
compressed so that the receiver can interpret the message
correctly.

When calling a send function in MPI, the application
must specify the message data type to the underlying MPI
library. Based on this type, an appropriate compression
method can be selected. Since the majority of the mes-
sages in numeric applications consist of arrays of
MPI_DOUBLEs, in the initial implementation presented in
this paper we only compress messages that consist of the
type MPI_DOUBLE. Choosing a suitable compression
algorithm for different MPI data types is the subject of
ongoing work.

2.2 Compression Scheme
Our compression technique employs a value predictor to
forecast message entries based on earlier entries. The
compression is performed one MPI_DOUBLE at a time.
To compress an MPI_DOUBLE, we predict its value and
then encode the difference between the predicted and the
true value. If the prediction is close to the true value, the
difference can be encoded in just a few bits.

Figure 1 illustrates how the fourth value D4 in a message
of 64-bit MPI_DOUBLEs is compressed. First, the DFCM
value predictor (see Section 2.3) produces a guess D’4.
Then we xor D4 and D’4 to obtain the difference Diff4.
Diff4 has many leading zero bits if the prediction D’4 is
close to D4. The leading zeros are then encoded using a
leading zero count (LZC). The remaining bits (EBits) are
not compressed.

D1 D2 D0 D3 D4
. . .

XOR D΄4

∆2 ∆3 ∆1

HashFunc

LastD

∆ 4̋

∆΄4

... ...

PredictFunc Diff4

LZC

C3 C4

. EBits

C5

Original Message

D
FC

M
 P

re
di

ct
or

Compressed Message
Figure 1: The compression algorithm.

In our compression scheme, we use four bits for the

LZC, which encodes 4*LZC leading zeros. Note that this

scheme provides the same average code length as a six-bit
LZC if the leading zero counts are evenly distributed. For
maximum speed, we wrote the leading zero counter in
inline assembly code, where we take advantage of the Pen-
tium’s leading-zero-count instruction [7].

We chose not to use a more sophisticated compression
scheme because the (de)compression time lies on the criti-
cal path for message transmission and reception. There-
fore, this code’s execution time needs to be kept very short
so that reductions in message latency are not lost due to the
(de)compression overhead.

At the receiver side, the messaging thread first reads the
four-bit LZC and then 64-4*LZC effective bits to regener-
ate the difference Diff4. The predictor at the receiving end
is kept consistent with the sender’s predictor by always
updating both predictors with the same values, i.e., the
previously seen MPI_DOUBLEs. Thus both predictors are
guaranteed to produce the same prediction D’4. The true
value D4 can therefore trivially be regenerated by xoring
Diff4 with D’4.

2.3 The DFCM Predictor
The differential-finite-context-method predictor (DFCM)
[6] computes a hash out of the n most recently encountered
differences between consecutive values in the original
message, where n is referred to as the order of the predic-
tor. Figure 1 shows the third-order DFCM predictor we
use. It performs a table lookup using the hash as an index
to retrieve the differences that followed the last two times
the same hash was encountered, i.e., the last two times that
same sequence of last three differences was observed. The
retrieved differences are used to predict the next value by
adding them to the previous value in the message as ex-
plained below. Once the prediction has been made, the
predictor is updated with the true difference and value.

The DFCM predictor exploits both spatial and temporal
locality in MPI messages. Scientific applications often
communicate data of adjacent simulation points in the
same message. Each simulation point typically consists of
multiple physical properties. The property lists of adjacent
simulation points all exhibit the same structure and the
values of the properties of two adjacent simulation points
are often numerically close. For instance, each simulation
point in a weather forecast application may include proper-
ties such as the pressure and the temperature. The tempera-
tures of two spatially adjacent simulation points should
differ only slightly. Hence, such data patterns can readily
be captured by the predictors and looked up when similar
patterns repeat in the same or a subsequent message.

The DFCM predictor was originally proposed as a mi-
cro-architectural enhancement to predict the content of
CPU registers [6]. Recently, it has been modified and suc-
cessfully used to compress program traces [2, 3]. We
found the DFCM predictor with the following modifica-
tions to predict and compress floating-point messages well.

Hash function: For sequences of floating-point values,
the chance of an exact 64-bit prediction match is low.
Moreover, it is desirable that, for example, the decimal
difference sequence (0.6001, 0.9001) be hashed to the
same index as the sequence (0.6000, 0.9000) in a second-
order DFCM predictor. For this reason, our hash function
uses only the m most significant bits and ignores the re-
maining bits. Our experiments show that hashing only the
first fourteen bits (the sign bit, eleven exponent bits, and
two mantissa bits) results in the best average prediction
accuracy. We use the following hash function.

hash(∆0, ∆1, ∆2) = lsb0..14(∆2 ⊗ (∆1 << 5) ⊗ (∆0 << 10))

In this function, ⊗ denotes bit-wise xor, << denotes bit-
wise left shift with zero insertion, and the ∆i stand for the
most significant fourteen bits of the difference between
consecutive MPI_DOUBLE values in the MPI message.
The lowest five bits of the ∆i consist of three exponent and
two mantissa bits and thus contain the most frequently
changing bits. Shifting each ∆i by five bits before xoring
them moves the frequently changing bits of the three ∆i
into non-overlapping positions, which we found to de-
crease the chance of detrimental aliasing in the hash table.
Note that we only need the fifteen least-significant bits of
the xor result for the index.

Prediction function: Instead of keeping just the latest ∆
in the hash-table, we keep two deltas, ∆” and ∆’. These
represent the most and the second-most recent difference
values. Each ∆ is a full 64-bit difference value. The pre-
dicted difference ∆p is set to ∆” if ∆” and ∆’ are not close
to each other, i.e., the first fourteen bits are not the same.
Otherwise, ∆p is set to ∆”+(∆”-∆’). In other words, we use
a conventional DFCM predictor except if the two ∆s are
almost the same, in which case we add ∆”-∆’ to account
for the drift in the difference values, which we found to
improve the prediction accuracy and thus the resulting
compression rate.

2.4 Optimizations
To reduce the (de)compression overhead, cMPI posts a
send whenever the compressed message size reaches one
or two times the Maximum Transmission Unit (MTU) of
the network interface, which is typically 1500 bytes for
Ethernet. This allows the receiver thread to start decom-
pressing the message as early as possible, hiding some of
the compression overhead.

For small messages, the setup overhead dominates the
total messaging time. Our experiments show that com-
pressing messages below a certain threshold yields no per-
formance improvement due to the overhead introduced by
the compression algorithm. In fact, for small messages the
compression overhead may easily exceed the improved
message bandwidth, as is evident from Equation 3. Hence,
we only invoke compression for messages that are at least
128 MPI_DOUBLEs (one kilobyte in our system) in size.

Since processes usually exchange large messages with only
a small number of other processes and a predictor is only
created when the first message of at least one kilobyte is
seen, employing such a cutoff also reduces the number of
predictors needed in each process, which in turn reduces
the memory requirement.

3. EVALUATION METHODS
In this section we describe the system we use to generate
our results as well as the benchmark applications used in
each experiment.

3.1 System
We performed all measurements on the Velocity+ cluster
at the Cornell Theory Center [10]. Velocity+ runs Micro-
soft Windows 2000 Advanced Server and consists of 64
dual-processor nodes with 733 MHz Intel Pentium III
processors and two gigabytes of RAM per node. The net-
work we used is 100Mb/s Ethernet, interconnected by
3Com 3300 24-port switches. Note that although we use
Fast Ethernet in our experiments due to resource con-
straints, our processor speed is also correspondingly lower
than current state-of-the-art microprocessors. We run large
enough problem sizes that our chosen applications scale
reasonably well, even in the baseline cases (see Table 3).
We are currently migrating our experiments to a cluster
with faster processors and network.

Table 2: Benchmark program information.

Program Lang Problem Size Description
LU F77 Class C Simulated CFD application that uses

symmetric successive over-relaxation
(SSOR) to solve a block lower triangular-
block upper triangular system of equations

BT F77 Class C

SP F77 Class C

sPPM F77 384x384x384 3-D gas dynamics problem on a uniform
Cartesian mesh, using a simplified version
of the PPM (Piecewise Parabolic Method)

Sweep3D F77 256x256x256 Solver for the 3-D, time-independent,
particle transport equation

AZTEC C/F77 31855013 Parallel iterative library for solving linear
systems

Simulated CFD applications that solve
systems of equations resulting from an
approximately factored implicit finite-
difference discretization of the Navier-
Stokes equations

3.2 Benchmarks
Our benchmark suite consists of three applications from
the NAS Parallel Benchmark Suite (NPB) [1] and three
applications from the ASCI Purple Benchmarks [8]. The
NAS Parallel Benchmarks are a set of eight programs de-
rived from computational fluid dynamics (CFD) applica-
tions consisting of five kernels and three pseudo-
applications. We use the three pseudo-applications LU,
BT, and SP. In addition, we use sPPM, Sweep3D, and
AZTEC from the ASCI Purple Benchmark suite (Sweep3D
is no longer included in the current release of the Purple
benchmarks but its source code is still available [9]).

Table 2 provides an overview of these applications. BT
and SP require the number of processes to be a square
number. Hence, we run them on 36, 64, and 100 proces-
sors. LU requires the process count to be a power of two,
so we run it on 32, 64, and 128 processors. The three re-
maining applications, sPPM, Sweep3D, and AZTEC, are
also run on 32, 64, and 128 processors.

3.3 Predictor Configuration
Our experiments show that third-order DFCM predictors
with a hash-table size of 215 lines work well for all six ap-
plications. Higher order predictors do not improve the
compression rate. Larger hash tables increase the com-
pression rate slightly, but are not worthwhile because of
their much larger memory requirement. Hence, we use
hash tables with 215 lines for all experiments.

Each line in the hash table requires 16 bytes to store two
MPI_DOUBLEs in our system. Thus, the total table size is
512 kilobytes (215 * 16 bytes). Due to the minimum mes-
sage-length requirement introduced in Section 2.4, only
four to twelve predictors are created in each process.
Hence, no more than six megabytes of memory are allo-
cated for the predictor tables.

4. RESULTS
Section 4.1 compares the runtime of all applications with
different numbers of processes on MPI-Pro, the commer-
cial MPI implementation used on Velocity+, and on cMPI
with message compression turned off. This is done to en-
sure that any speedups we obtain with compressed mes-
sages are not due to a poor baseline implementation. Sec-
tion 4.2 studies the performance improvement when mes-
sage compression is turned on. We conduct measurements
for different numbers of processes to evaluate the effect of
message compression on the scalability of the six applica-
tions. Section 4.3 presents message information and com-
pression rates. Section 4.4 investigates the time spent
compressing and decompressing messages.

4.1 cMPI Baseline Performance
We first compare our MPI library with MPI-Pro, a widely
used commercial MPI implementation. Figure 2 plots the
ratio of the baseline cMPI’s execution time normalized to
that of MPI-Pro for our six benchmark applications and
various numbers of processes. Results below one indicate
that cMPI (without compression) is faster than MPI-Pro.
The absolute runtimes (in seconds) are given in Table 3.
Note that for improved readability, most of the figures in
this paper are not zero based.

When BT is run on 100 and SP on 64 or 100 processors,
cMPI outperforms MPI-Pro by almost 20%. On the other
hand, MPI-Pro is faster than cMPI for some of the other
programs and configurations, though never by more than
7.2%. The two MPI implementations perform within about
5% of each other in the majority of the cases. The results

clearly show cMPI (without compression) to be competi-
tive with MPI-Pro. All remaining experiments use cMPI
without compression as their baseline.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

BT SP LU sPPM Sweep3D AZTEC

cM
P

I r
u

nt
im

e
n

or
m

a
liz

e
to

 M
P

I-
P

ro

32|36

64

128|100

Figure 2: Runtime of cMPI normalized to MPI-Pro.

Table 3: Benchmark runtimes in seconds.

cMPI cMPI with
baseline compres.

36 3079 3176 3160
64 2207 2086 1986

100 1861 1537 1399
36 2821 2885 2863
64 2811 2361 2001

100 2552 2130 1692
32 3122 3128 3120
64 1690 1696 1665

128 1074 1130 1098
32 2173 2203 2173
64 1184 1195 1108

128 1283 1200 607
32 523 544 535
64 278 298 289

128 195 207 198
32 2340 2191 2019
64 1606 1526 1343

128 1470 1543 1198

program MPI-Pro

BT

SP

procs

LU

sPPM

Sweep3D

AZTEC

4.2 Speedup with Message Compression
The rightmost column in Table 3 shows the runtime of
cMPI when message compression is enabled. The corre-
sponding speedup over no compression is depicted in
Figure 3. Numbers above one indicate that an application
runs faster with compression than without.

The figure shows that all applications show improved
performance when message compression is turned on.
sPPM improves by 98 percent on the 128-process run. As
can be seen in Table 3, sPPM does not scale to more than
64 processors on our baseline system. However, our com-
pression approach allows this application to scale almost
perfectly to 128 processors. AZTEC’s speed improves by
up to 29% in the 128-process run, which also does not
scale on the baseline system. For this application, message
compression improves the overall performance at each
processor-point in addition to increasing the scalability.

The other four applications achieve a performance im-
provement of 3% to 26% in 128-process runs (100-process
runs for BT and SP). Overall, these results clearly demon-
strate the improved scalability that can result from utilizing
our message compression technique in MPI.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

BT SP LU sPPM Sweep3D AZTEC

sp
e

e
du

p
 o

ve
r n

o
 c

o
m

p
re

ss
io

n

32|36

64

128|100

 1.98

Figure 3: Speedups due to message compression.

4.3 Message Information and Compression Rate
The net saving in communication time and the fraction of
the total runtime that is communication time determine the
performance improvement due to message compression.
The former is in turn determined by the compression rate
and the latter is interchangeable with the communication to
computation ratio. The higher the compression rate and
the larger the communication to computation ratio, the
greater the message-compression effect.

Table 4: Statistics about large messages (above 1kB).

of message average predictors
procs count size (kB) per process

BT 64 617,856 80.9 12
SP 64 1,232,256 71.8 12
LU 64 56,476 256.2 7
sPPM 64 74,048 654.4 11
Sweep3D 64 286,720 24.0 7
AZTEC 64 207,522 785.1 3.9
BT 100 1,206,600 54.1 12
SP 100 2,406,600 47.3 12
LU 128 116,972 194.4 7.3
sPPM 128 156,480 428.2 11.5
Sweep3D 128 593,920 18.2 7.3
AZTEC 128 418,338 785.1 4

program

Table 4 summarizes the message information for each

application on 64- and 128|100-process runs. The message
count is the sum of all messages on all processes that are
larger than one kilobyte. As we can see, the message count
roughly doubles when the number of processes is doubled,
so the message count per process remains about the same.
However, the computation per process is usually halved, as
problem sizes remain the same across varying numbers of
processors. At the same time, the average message size
decreases by between zero and 35%, meaning that the
communication to computation ratio increases substantially

as the number of processes doubles. Thus, assuming a
constant compression rate, we expect higher speedups due
to message compression as the number of processes in-
creases, which the results in Figure 3 confirm. In other
words, the compression scheme we employ allows for an
overall improvement in the application’s use of available
network bandwidth, reducing overall communication time
and improving performance.

The predictors per process numbers in Table 4 record
the average number of (de)compression predictors created
by each process. Our experiments show that the maximum
number of predictors in any process is twelve. Since one
compression predictor and one decompression predictor
are created for each channel that has large (above one kilo-
byte) messages, the number of predictors per process di-
vided by two yields the average number of major commu-
nicating neighbors of each process.

While a high communication to computation ratio pro-
vides opportunity for speedup due to message compres-
sion, the compression rate dictates the final success. The
compression rate is the size of the original message divided
by the size of the compressed message. Applications with
highly predictable message values will demonstrate higher
compressibility as described in Section 2.2. Interestingly,
we found the compression rate to be rather constant for
different numbers of processes with each application. This
appears to be an indication that the message compressibil-
ity is program dependent but independent of the degree of
parallelization. Hence, we only list the compression rates
for two problem sizes for each application in Table 5.

Table 5: Compression rates.
processes BT SP LU sPPM Sweep3D AZTEC
64 1.35 1.30 1.24 4.39 1.39 1.46
128|100 1.36 1.29 1.24 4.63 1.40 1.46

A compression rate of over four for sPPM and 1.46 for

AZTEC, together with their large average message sizes,
leads to the excellent runtime reductions shown in Figure
3. The other four applications exchange shorter messages
and have a compression rate between 1.24 and 1.4, which
is why they exhibit smaller speedups. sPPM’s messages
are highly compressible because they contain large chunks
of non-zero values that only differ in the last few bits.

Note that we excluded the kernel benchmark applica-
tions from our study because their message data patterns,
and hence the compressibility, may not be representative of
real applications. For the reasons discussed in Section 2.3,
we believe that the message compressibility demonstrated
in the applications we did investigate in this paper is char-
acteristic of many real applications.

4.4 Compression Overhead
The average compression and decompression times in the
128-process runs (100-process runs for BT and SP) are
plotted in Figure 4 as a percentage of the total runtime.

They lie in the range of 0.4 to 1.8 percent of the runtime
for most applications except AZTEC, where they represent
5.7 percent of the runtime. Compressing the messages
takes approximately the same time as decompressing them
in all six applications. Note that even though the
(de)compression overhead is non-negligible, we obtain an
overall performance gain. This is mainly due to the larger
benefit of the reduced communication time. In addition,
some of the (de)compression may have been overlapped
with message completion, reducing the overhead imposed
by our compression scheme.

0%

1%

2%

3%

4%

5%

6%

BT SP LU sPPM Sweep3D AZTEC

re
la

tiv
e

o
ve

rh
e

a
d

compression time

decompression time

Figure 4: Average (de)compression overhead

(128|100-process runs).

5. CONCLUSIONS AND FUTURE WORK
This paper shows that the messages of large-scale parallel
scientific applications are compressible and introduces
message compression as part of an MPI library to reduce
the messaging overhead. Our novel compression algorithm
is based on value prediction and encodes the difference
between the true value and the predicted value to save bits.
The compression algorithm is fast and provides good com-
pression rates for all applications we have investigated.
The saved messaging overhead outweighs the compression
and decompression overhead in all applications, resulting
in an overall runtime reduction. We observed speedups on
128-process runs of at least 3% for all benchmarks and up
to 98% in one case.

The compression is handled by the MPI library and is
therefore completely transparent to user applications.
MPI-library providers can easily add our compression
scheme to their implementation, which will immediately
benefit a wide range of parallel programs without any
source-code changes at the application level.

We are planning to evaluate the benefits of message
compression on other parallel machines with various net-
working speeds. The relative speed of communication to
computation will have a significant effect on the perform-
ance gain achievable through message compression. In
particular, we would like to investigate the potential bene-
fits of message compression on future architectures and
computing grids.

 Another direction for exploration is the possibility of
off-loading the compression and decompression to the
network interface card. Due to the simplicity of our com-
pression approach, the (de)compression can be performed
directly by a NIC processor and may even be implement-
able in the NIC hardware.

Finally, since the compression rate is crucial to the ulti-
mate performance, we are also investigating other com-
pression algorithms that better exploit the unique charac-
teristics of MPI messages. Adaptively choosing the best
compression algorithm for a particular message type may
yield more performance gains on applications in areas
other than scientific computing.

6. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation under Grants No. 0125987, 0208567, and
0312966. This research was conducted using the resources
of the Cornell Theory Center, which receives funding from
Cornell University, New York State, federal agencies,
foundations, and corporate partners.

7. REFERENCES
[1] D. Bailey, T. Harris, W. Saphir, R. v.d. Wijngaart, A.

Woo, and M. Yarrow, “The NAS Parallel Bench-
marks 2.0,” Technical Report NAS-95-020, NASA
Ames Research Center, December 1995.

[2] M. Burtscher and M. Jeeradit, “Compressing Ex-
tended Program Traces Using Value Predictors,” In-
ternational Conference on Parallel Architectures and
Compilation Techniques, September 2003, pp. 159-
169.

[3] M. Burtscher, “VPC3: A Fast and Effective Trace-
Compression Algorithm,” Joint International Con-
ference on Measurement and Modeling of Computer
Systems, June 2004, pp. 167-176.

[4] E. D. Demaine, “A Threads-Only MPI Implementa-
tion for the Development of Parallel Programs,” In-

ternational Symposium on High Performance Com-
puting Systems, July 1997, pp. 153-163.

[5] D. Dunning, G. Regnier, G. McApline, D. Cameron,
B. Shubert, F. Berry, A. Merritt, E. Gronke, and C.
Dodd, “The Virtual Interface Architecture,” IEEE
Micro, March/April 1998, pp. 66-76.

[6] B. Goeman, H. Vandierendonck, and K. Bosschere,
“Differential FCM: Increasing Value Prediction Ac-
curacy by Improving Table Usage Efficiency,” Sev-
enth International Symposium on High Performance
Computer Architecture, January 2001, pp. 207-216.

[7] http://www.intel.com/design/pentium/MANUALS/
24319101.PDF

[8] http://www.llnl.gov/asci/purple/
[9] http://www.llnl.gov/asci_benchmarks/
[10] http://www.tc.cornell.edu/
[11] Infiniband Trade Association, Infiniband Architec-

ture Specification, Release 1.0, October 2000.
[12] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K.

Panda, “High Performance RDMA-Based MPI Im-
plementation over InfiniBand,” International Confer-
ence on Supercomputing, June 2003, pp. 295-304.

[13] MPI Forum, “MPI: A Message-Passing Interface
Standard,” The International Journal of Supercom-
puter Applications and High Performance Comput-
ing, 8(3/4):165-414, 1994.

[14] E. Speight, H. Abdel-Shafi, and J. K. Bennett, “Real-
izing the Performance Potential of the Virtual Inter-
face Architecture,” International Conference on Su-
percomputing, June 1999, pp. 184-192.

[15] H. Tang and T. Yang, “Optimizing Threaded MPI
Execution on SMP Clusters,” International Confer-
ence on Supercomputing, June 2001, pp. 381-392.

[16] R. Thakur and W. Gropp, “Improving the Perform-
ance of Collective Operations in MPICH,” European
PVM/MPI Users' Group Conference, September
2003, pp. 257-267.

