
A GPU Algorithm for Detecting Strongly Connected Components
Ghadeer Alabandi

Department of Computer Science
Texas State University
San Marcos, Texas, USA

gaa54@txstate.edu

William Sands
Oden Institute for Computational Engineering and

Sciences
The University of Texas at Austin

Austin, Texas, USA
william.sands@austin.utexas.edu

George Biros
Oden Institute for Computational Engineering and

Sciences
The University of Texas at Austin

Austin, Texas, USA
biros@oden.utexas.edu

Martin Burtscher
Department of Computer Science

Texas State University
San Marcos, Texas, USA
burtscher@txstate.edu

ABSTRACT
Detecting strongly connected components (SCCs) is an important
step in various graph computations. The fastest GPU and CPU im-
plementations from the literature work well on graphs where most
of the vertices belong to a single SCC and the vertex degrees follow
a power-law distribution. However, these algorithms can be slow
on the mesh graphs used in certain radiative transfer simulations,
which have a nearly constant vertex degree and can have significant
variability in the number and size of SCCs. We introduce ECL-SCC,
an SCC detection algorithm that addresses these shortcomings.
Our approach is GPU friendly and employs innovative techniques
such as maximum ID propagation and edge removal. On an A100
GPU, ECL-SCC performs on par with the fastest prior GPU code
on power-law graphs and outperforms it by 7.8× on mesh graphs.
Moreover, ECL-SCC running on the GPU outperforms fast parallel
CPU code by three orders of magnitude on meshes.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms.

KEYWORDS
Strongly connected components, parallelism, performance opti-
mization, GPU implementation

ACM Reference Format:
Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher.
2023. A GPU Algorithm for Detecting Strongly Connected Components. In
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3581784.3607071

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607071

1 INTRODUCTION
A strongly connected component (SCC) of a directed graph 𝐺 =

(𝑉 , 𝐸) is a maximal subset 𝑆 of its vertices that are all reachable
from each other. That is, ∀𝑎, 𝑏 ∈ 𝑆 , there exists a directed path both
from 𝑎 to 𝑏 and from 𝑏 to 𝑎. The subset must be maximal, meaning
it cannot be extended by including additional vertices of𝐺 . SCCs
have the following properties: every vertex 𝑣 ∈ 𝑉 belongs to exactly
one SCC, and contracting each SCC into a single vertex turns 𝐺
into a directed-acyclic graph (DAG). Moreover, every vertex in a
non-trivial SCC (i.e., an SCC with more than 1 vertex) has at least 1
adjacent in-neighbor and 1 adjacent out-neighbor in the same SCC.

Finding SCCs is a key building block in many applications, in-
cluding complex food web analysis [2], data compression [23, 25],
finite element simulations [15], and community detection [21]. Due
to its significance and the ever-increasing graph sizes, it is impor-
tant to be able to compute SCCs quickly in parallel.

Tarjan’s algorithm [24], a well-known sequential approach for
detecting SCCs, runs in linear time in the number of edges and
nodes of 𝐺 . However, it is based on depth-first search, which pre-
vents efficient parallelization. A practical parallel approach called
Forward-Backward (FB) was introduced by Fleischer [8]. It ran-
domly selects a pivot vertex and conducts a breadth-first search
(BFS) in both the forward and the backward direction starting from
the pivot. This partitions the graph into one SCC and three sub-
graphs that can be processed recursively and in parallel (cf. Section 2
for more details). McLendon [15] added a trim step to boost the
performance. The FB-Trim approach starts out by removing (trim-
ming) small SCCs comprising just one or two vertices and then
employs the conventional FB algorithm.

Both BFS steps and the recursive subdivision gradually build up
parallelism but start with none. This is not a problem on CPUs,
where relatively little parallelism is needed to load all cores. How-
ever, the initially low parallelism of FB and FB-Trim can be an
issue on GPUs that require 100,000s of threads to achieve good per-
formance. The problem is exacerbated by input graphs with high
diameters (which lowers the parallelism of BFS) or whose SCCs
form a deep DAG (which increases the number of recursive steps).

https://orcid.org/0000-0003-3643-4751
https://orcid.org/0000-0002-0033-3994
https://orcid.org/0000-0001-7717-3354
https://doi.org/10.1145/3581784.3607071
https://doi.org/10.1145/3581784.3607071


SC ’23, November 12–17, 2023, Denver, CO, USA Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher

We present a new approach for detecting SCCs, called ECL-SCC,
in which all vertices concurrently act as pivots. Hence, our algo-
rithm has a high degree of parallelism from the start, making it
more suitable for devices like GPUs. ECL-SCC assigns two “sig-
nature” values to each vertex: (1) the maximum vertex ID on all
incoming paths and (2) the maximum vertex ID on all outgoing
paths. It then removes all edges from the graph that do not connect
vertices with the same signature, which cannot be in the same SCC.
The algorithm iterates until no more edges are removed. The final
signatures specify to which SCC each vertex belongs.

Although early parallel SCC codes achieve good speedups on
synthetic graphs, their performance is limited and sometimes slower
than serial code when processing large-scale real-world graphs [4,
14]. This is because real-world graphs, especially thosewhose vertex
degrees follow a power-law distribution (e.g., social networks),
have unique features that differ from traditional synthetic graphs:
they often contain a single giant SCC and several small SCCs. As
a consequence, most recent parallel SCC implementations target
graphs with one SCC of size 𝑂 ( |𝑉 |) and numerous small SCCs.

In contrast, our work focuses on graphs from thermal radiative
transfer simulations, which are widely used to study the behavior
of both charged and neutral particle species as well as their inter-
actions with the surrounding media [12]. The radiative transfer
equation (RTE) is a hyperbolic partial differential equation that de-
scribes the probability of finding a particle belonging to the energy
group 𝜆, at the position x, in the direction Ω, at time 𝑡 . The RTE
can often be efficiently solved by performing “transport sweeps”
across multiple (discrete) light propagation directions or ordinates
[1, 16, 26]. Given an unstructured mesh of the target geometry
in which we want to solve the RTE, the sweeping algorithm for
each ordinate induces a directed graph whose traversal, starting
from nodes with no incoming edges, gives the solution. The oc-
currence of cycles in these induced graphs can cause significant
accuracy, physics, and performance problems [22, 26] that, if not
addressed, can lead to livelock during a sweep. Hence, the identifi-
cation of SCCs is a critical first step in such sweeping algorithms.
Note that SCC detection must be performed separately for each
discrete ordinate.

In most applications, the resulting meshes tend to have only
small SCCs. In the case of linear elements, which are convex, all
SCCs are trivial and only encompass a single vertex. However,
meshes generated with high-order curved elements tend to produce
clusters of small SCCs [10, 15, 22]. Moreover, the SCCs typically
form a reasonably deep DAG and the mesh diameters are not small.
In other words, the properties of these graphs differ substantially
from those targeted by existing parallel SCC codes. Furthermore,
none of the existing parallel algorithms for SCC detection in the
RTE community target GPUs. We have designed our ECL-SCC
approach with these mesh graphs in mind. The method proposed
in this work outperforms prior SCC codes by over a factor of 7 on
such inputs.

This paper makes the following main contributions.

• We describe a GPU-friendly SCC algorithm called ECL-SCC
that is more parallel than prior approaches.

• ECL-SCC is based on a new technique (maximum vertex
ID propagation combined with edge removal) and typically
detects multiple SCCs concurrently.
• We present domain-specific code optimizations to speed up
our CUDA implementation of ECL-SCC.
• On meshes from radiation transport simulations, it outper-
forms prior approaches by several factors. On other inputs,
it performs on par with the fastest codes from the literature.

The latest version of our ECL-SCC CUDA implementation is avail-
able in open source through GitHub [5] and on the web [6].

The rest of this paper is organized as follows. Section 2 provides
background information and summarizes related work. Section 3
explains our algorithm in detail. Section 4 describes the evaluation
methodology. Section 5 presents and discusses the results. Section 6
concludes the paper with a summary.

2 BACKGROUND AND RELATEDWORK
In 1972, Robert Tarjan [24] presented the concept of depth-first
search and illustrated how it can help improve various graph algo-
rithms. Among these is an algorithm for detecting SCCs, which is
perhaps the most well-known serial SCC algorithm. It works by
visiting the graph in depth-first search (DFS) order and maintains a
stack of the vertices that have not yet been assigned to any compo-
nent. The algorithm keeps track of the “low-link” value for each
vertex. This value is the smallest index of any vertex reachable in
one step from that vertex, including itself. The low-link determines
which nodes will be removed from the stack to form a new SCC.
Upon termination, all nodes will have been visited and all SCCs
will have been identified.

Since DFS is difficult to parallelize, several other approaches
have been proposed to enable parallel SCC detection. Most of them
follow the Forward-Backward (FB) algorithm outlined in the intro-
duction [8]. It performs both a forward and a backward breadth-first
search (BFS) starting from a randomly selected pivot to determine
two sets of reachable vertices. The intersection of the two sets
demarcates the SCC containing the pivot vertex. The remaining
vertices are separated into three subgraphs: the vertices that are
only in the forward set, the vertices that are only in the backward
set, and the vertices that are in neither set. Next, the three subgraphs
are independently processed in parallel using the same algorithm,
i.e., by selecting a pivot in each of them. Figure 1 shows an example
of this procedure.

McLendon [15] improved the parallel FB algorithm by adding a
Trim step. This step detects SCCs with one or two vertices. Trim-
ming often reduces the size of the graph significantly, which speeds
up the traversals in the BF algorithm. The Trim-1 step identifies
SCCs with only one vertex. If a vertex has no in-edges or no out-
edges, it is guaranteed to be a trivial SCC of size one. The Trim-2
step identifies SCCs with two vertices. Any two vertices that have
no incoming or outgoing edges aside from a bidirectional edge con-
necting them to each other fall in this category. A Trim-3 step was
introduced by Yuede [13] to reduce the size of the graph further. It
detects SCCs with 3 vertices based on five patterns. The trim steps
can be repeated multiple times because new trivial SCCs might
appear after removing other small SCCs from the graph. Figure 2
shows examples of SCCs that can be detected by these trim steps.



A GPU Algorithm for Detecting Strongly Connected Components SC ’23, November 12–17, 2023, Denver, CO, USA

(a) Directed Graph (b) BFS Forward Tree (c) BFS Backward Tree (d) SCC 

9 8

0 41

3 2 5

10
6

11

12

17

15

16

13 14

0

1 2

4 8 3 5

6

10 11

9 12

0

3

2

4 5

6

13

1

14

9 8

0 41

3 2 5

10
6

11

12

17

15

16

13 14

Figure 1: Example illustrating the steps of the FB algorithm: (a) selecting vertex 0 as the pivot, (b) reachable set of forward BFS,
(c) reachable set of backward BFS, (d) resulting SCC (intersection of both sets (yellow)), forward-only set (orange), backward-only
set (blue), and unreachable set (uncolored)

(a) Vertex zero forms a size-1 SCC (b) Vertices 0 and 1 form a size-2 SCC (c) Vertices 0, 1, and 2 form a size-3 SCC

2 4

3 51

01 3

2 40

3 5

4 62

0

1

Figure 2: Examples of small SCCs that can be detected by the trim step: (a) a size-1 SCC, (b) a size-2 SCC, and (c) a size-3 SCC

Hong et al. [11] proposed an efficient parallel CPU SCC detection
method. This algorithm is one of the first to handle real-world
power-law graphs well and uses weakly connected components
(WCCs) to detect small SCCs. It is based on the FB algorithm with
a trim phase. The authors employ two auxiliary data structures:
“mark” and “color”. They set themark flag of a vertex to true once the
vertex has been assigned to an SCC. Vertices that belong to the same
subgraph have the same color assignment. Furthermore, they mark
vertices that have been visited during the forward and backward
traversals. Since they target graphs with one giant SCC and many
small SCCs, they employ two phases of parallelism, one based on
data parallelism to process the single giant SCC and another based
on task parallelism to detect the remaining SCCs.

Yuede et al. [13] proposed a different parallel CPU algorithm for
identifying SCCs. Their algorithm, called iSpan, uses a spanning
tree instead of DFS or BFS to identify the SCCs. To optimize the
spanning tree approach, they introduce a new synchronization
paradigm called relaxed synchronization (Rsync). Rsync combines
both synchronous and asynchronous traversal strategies and is able
to not only reduce the amount of synchronization but also to balance
theworkload. iSpan incorporates two phases. The first phase detects
large SCCs using the spanning-tree algorithm. The second phase
detects small SCCs of up to size 3 using trim techniques and the
remaining small SCCs using the spanning-tree approach. iSpan
runs Trim-1 before the large SCC detection and Trim-1, Trim-2,
and Trim-3 after the large SCC detection. Yuede et al. implemented
iSpan in both OpenMP and MPI.

Barnet et al. [4] present the first GPU algorithm for computing
SCCs. Their CUDA implementation is based on the FB algorithm
and includes the aforementioned trim and coloring enhancements.

Moreover, they designed a new GPU-aware pivot selection ap-
proach. It works by having all threads concurrently write the ID of
all vertices of a subgraph to a singlememory location. The “winning”
IDs determine the pivots (one per subgraph).

Li et al. [14] proposed another GPU method for detecting SCCs
that is also based on FB with trim. However, the authors parallelized
the algorithm by dividing the graph into subgraphs and process-
ing each subgraph simultaneously on different threads. Note that,
unlike in the FB algorithm, SCCs can span multiple subgraphs in
this algorithm. The algorithm selects several pivots, one for each
subgraph. It follows Hong’s approach of using different paralleliza-
tion strategies for detecting large and small SCCs. For large SCCs,
Li et al. employ a topology-driven approach with load balancing,
whereas for small SCCs, they found load balancing to not be needed.

3 ECL-SCC ALGORITHM AND
IMPLEMENTATION

Alg. 1 outlines how ECL-SCC works. It operates on a directed graph
with unique vertex IDs and computes two signature values for
each vertex 𝑣 , called 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 . At the end of the computation,
either value will uniquely identify the SCC to which 𝑣 belongs.
The algorithm comprises an outer loop (Lines 2 to 21) that iterates
until the computation has converged. Each iteration goes through
three phases: signature initialization, maximum-value propagation,
and edge removal. The first phase (Lines 3 to 6) initializes the two
signature values of each vertex to the ID of the corresponding vertex.
The second phase (Lines 7 to 14) propagates the maximum signature
values along the edges. For every directed edge, the 𝑜𝑢𝑡 value of
the source vertex is updated to the 𝑜𝑢𝑡 value of the destination
vertex if it is larger. Similarly, the 𝑖𝑛 value of the destination vertex
is updated to the 𝑖𝑛 value of the source vertex if it is larger. This



SC ’23, November 12–17, 2023, Denver, CO, USA Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher

phase repeats until a fixed point is reached, that is, until no 𝑖𝑛 or 𝑜𝑢𝑡
value changes anymore. The third phase (Lines 15 to 19) removes
the edges whose source and destination vertices belong to different
SCCs. Detecting this condition is simple. If the signatures of the
source and destination differ, the two vertices are guaranteed to
not be in the same SCC, and the edge can safely be removed. Then
the three phases repeat on the reduced graph that has the same
vertices but fewer edges. The algorithm terminates once all vertices
have a signature where the 𝑖𝑛 value matches the 𝑜𝑢𝑡 value.

Phase 1 performs 𝑂 ( |𝑉 |) work, Phase 2 performs 𝑂 (𝑐 |𝐸 |) work,
where 𝑐 = 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐𝑦𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ, and Phase 3 performs 𝑂 ( |𝐸 |) work.
The phases iterate up to 𝑑 times, where 𝑑 = 𝐷𝐴𝐺 𝑑𝑒𝑝𝑡ℎ of the DAG
that results when contracting each SCC into a single vertex. Thus,
the base algorithm performs 𝑂 (𝑑𝑐 |𝐸 | + 𝑑 |𝑉 |)) work in the worst
case. The presence of 𝑐 explains why our algorithm is more efficient
on graphs with small SCCs. We expect the average work complex-
ity to be 𝑂 (𝑙𝑜𝑔(𝑑)𝑙𝑜𝑔(𝑐) |𝐸 | + 𝑙𝑜𝑔(𝑑) |𝑉 |) for the following reasons.
First, if the vertex IDs are randomly distributed, the outer itera-
tions quickly break the DAG into separate pieces (cf. Section 3.2),
thus roughly halving the DAG depth in each step and resulting in
only 𝑙𝑜𝑔(𝑑) iterations. Our experimental results corroborate this
behavior. Second, the cycles can be traversed in as few as 𝑙𝑜𝑔(𝑐)
steps using a “path compression” approach (cf. Section 3.3). Since
the three phases are parallel (cf. Section 3.4), the expected span of
our algorithm, which reflects the length of the longest dependence
chain, is 𝑂 (𝑙𝑜𝑔(𝑑)𝑙𝑜𝑔(𝑐)).

Algorithm 1 ECL-SCC

Input: Directed graph 𝐺 = (𝑉 , 𝐸) with unique vertex IDs
1: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

2: while not 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do
⊲ initialize vertex signatures

3: for all vertices 𝑣 ∈ 𝑉 do
4: 𝑣𝑖𝑛 ← 𝑣𝑖𝑑
5: 𝑣𝑜𝑢𝑡 ← 𝑣𝑖𝑑
6: end for

⊲ propagate max values
7: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒

8: while 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 do
9: for all edges (𝑢 → 𝑣) ∈ 𝐸 do
10: 𝑢𝑜𝑢𝑡 ← max(𝑢𝑜𝑢𝑡 , 𝑣𝑜𝑢𝑡 )
11: 𝑣𝑖𝑛 ← max(𝑢𝑖𝑛, 𝑣𝑖𝑛)
12: end for
13: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ← at least one 𝑣𝑖𝑛 or 𝑢𝑜𝑢𝑡 value changed
14: end while

⊲ remove edges that span SCCs
15: for all edges (𝑢 → 𝑣) ∈ 𝐸 do
16: if 𝑢𝑖𝑛 ≠ 𝑣𝑖𝑛 or 𝑢𝑜𝑢𝑡 ≠ 𝑣𝑜𝑢𝑡 then
17: 𝐸 ← 𝐸 \ (𝑢 → 𝑣)
18: end if
19: end for
20: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← all 𝑣𝑖𝑛 = 𝑣𝑜𝑢𝑡
21: end while
Output: ∀𝑣 : 𝑣𝑖𝑛 (and 𝑣𝑜𝑢𝑡 ) denotes to which SCC vertex 𝑣 belongs

3.1 Algorithm Illustration
We demonstrate the steps of the ECL-SCC algorithm on the input
graph shown in Fig. 3a, which has 12 vertices and 15 edges. Each
vertex is labeled with a unique ID between 0 and 11. The graph
contains two clusters of vertices that are not reachable from each
other. Fig. 3b shows the result of Phase 1, which initializes the two
signature values (shown separated by a colon). The vertex color is
a function of the signature and not part of the algorithm. We only
colored the vertices to make it easier to see which of them have the
same signature. Fig. 3c shows the result of Phase 2, that is, after the
signature propagation has reached a fixed point. All vertices with
a single color are done because their two signature values match.
Fig. 3d shows the result of Phase 3, where the removed edges are
grayed out and dashed. The ECL-SCC algorithm terminates after
repeating these three phases a couple more times. Fig. 3e shows the
final signatures and edges. Note how all vertices belonging to the
same SCC have the same signature, how each SCC has a different
signature, and how all edges within an SCC remain intact whereas
all edges between SCCs have been removed.

This example also illustrates how our ECL-SCC algorithm differs
from the FB approach described above. Considering only the “left”
part of the graph in Fig. 3 that looks like a linked list, picking any of
the vertices as the pivot in the FB algorithm will yield either 2 or 3
subgraphs, namely the trivial SCC containing the pivot, all vertices
“above” it, and all vertices “below” it. In contrast, ECL-SCC is able
to split the linked list into 4 subgraphs in a single step as shown in
Fig. 3d, thus potentially speeding up the convergence.

3.2 ECL-SCC Guarantees
3.2.1 Correctness. The SCCs in an input graph are generally clus-
tered together in the sense that some SCCs can be reached from
others. A graph may contain multiple such clusters that cannot be
reached from each other, as is the case in our example in Fig. 3.
One SCC in each cluster must contain the highest-ID vertex of the
cluster due to the uniqueness of the vertex IDs. They are vertices
9 and 11 in our example. We refer to the SCCs that contain these
vertices as “max” SCCs.

Since, by definition, every vertex in an SCC can be reached by
every other vertex in the same SCC and we are computing the
maximum reachable ID, all vertices in the max SCCs must end up
with the respective highest vertex ID in their 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 signature
values (after Phase 2). No SCC in a different cluster can have this
ID in any of its signatures, no ancestor SCC in the same cluster can
have it in any of its 𝑣𝑖𝑛 values, and no descendant SCC in the same
cluster can have it in its 𝑣𝑜𝑢𝑡 values. Moreover, all ancestor SCCs in
the same cluster must have this ID in all of their 𝑣𝑜𝑢𝑡 values, and all
descendant SCCs in the same cluster must have it in their 𝑣𝑖𝑛 values.
Fig. 3c illustrates this. Consequently, all vertices in a max SCC must
meet the condition 𝑣𝑖𝑛 = 𝑣𝑜𝑢𝑡 and all remaining SCCs must meet
the condition 𝑣𝑖𝑛 ≠ 𝑣𝑜𝑢𝑡 . Therefore, each iteration of the ECL-SCC
algorithm will concurrently detect at least the max SCC in each
cluster and separate them out (meaning all edges to and from those
SCCs will be removed in Phase 3 as their signatures do not match).
For example, in Fig. 3d, the SCCs “rooted” in vertices 9 and 11 are
detected and separated out. The edge removal splits up each cluster
into a max SCC and zero or more smaller clusters that contain the



A GPU Algorithm for Detecting Strongly Connected Components SC ’23, November 12–17, 2023, Denver, CO, USA

0

5

1

2

9

3

7 11

4

10

6 8

(a) Input Graph

0
00:00

5
05:05

1
01:01

2
02:02

9
09:09

3
03:03

7
07:07

11
11:11

4
04:04

10
10:10

6
06:06

8
08:08

(b) Initialization Step

0
09:05

5
09:05

1
09:01

2
02:09

9
09:09

3
11:11

7
11:10

11
11:11

4
11:10

10
11:10

6
11:10

8
11:11

(c) Propagation Step

0
09:05

5
09:05

1
09:01

2
02:09

9
09:09

3
11:11

7
11:10

11
11:11

4
11:10

10
11:10

6
11:10

8
11:11

(d) Edge-Removal Step

0
00:00

5
05:05

1
01:01

2
02:02

9
09:09

3
11:11

7
07:07

11
11:11

4
10:10

10
10:10

6
07:07

8
11:11

(e) Final Result

Figure 3: Example illustrating the operation of the ECL-SCC algorithm

remaining vertices. Those smaller clusters will be processed in the
next iteration. In this manner, all SCCs will eventually be detected,
at which point no clusters will be left and the algorithm stops. Upon
termination, all inter-SCC edges will have been removed from the
graph and only the intra-SCC edges remain. Moreover, the final
signature of each vertex will be the highest ID among all vertices
in the same SCC, as shown in Fig. 3e. Due to the uniqueness of the
vertex IDs, the signatures uniquely identify the SCCs. Since every
vertex can be reached by every other vertex in the same SCC, the
signatures of the vertices in an SCC must be identical (after the
maximum propagation in Phase 2), even if the SCC is still part of a
larger cluster. Therefore, ECL-SCC will never remove an intra-SCC
edge, which would incorrectly split an SCC into multiple pieces.

3.2.2 Termination. Since the input graph has a finite number of
vertices and edges, Phases 1 and 3 will terminate. Phase 2 also
terminates for this reason and because the maximum function is
monotonic (i.e., the signature values either stay the same or in-
crease). Consequently, after a finite number of maximum-value
propagations, the highest ID among all vertices from which ver-
tex 𝑣 can be reached will have propagated to 𝑣𝑖𝑛 , and the highest
ID among all vertices that are reachable from vertex 𝑣 will have
propagated to 𝑣𝑜𝑢𝑡 . This is true for all 𝑣 . At that point, none of
the signatures will change anymore and Phase 2 terminates. The
outer loop that iterates over the three phases is also guaranteed to
terminate because each iteration will find at least one SCC (cf. Sec-
tion 3.2.1). Since there cannot be more than |𝑉 | SCCs, and |𝑉 | is
finite, the ECL-SCC algorithm is guaranteed to terminate.

3.3 Performance Enhancements
The baseline algorithm outlined in Alg. 1 can be improved. To boost
the performance, we incorporated the following optimizations.

We based our implementation on a worklist that holds the edges
of the graph. Hence, Phase 3 does not actually produce a new graph
with fewer edges, which might be expensive to accomplish. Instead,
it populates a new worklist with just the edges that are still needed.
Then, the pointers to the two worklists are swapped to avoid having
to copy the new worklist, which would be time intensive.

Another optimization we included is to also remove the edges
within the detected max SCCs from the worklist since we do not
need them anymore. This reduces the workload as fewer edges will
be processed in the following iterations.

Since Phase 2 iterates, it is the most performance critical code
and the main target of our optimizations. To accelerate the propa-
gation speed and thus reduce the number of iterations, we employ
a technique that is related to “path compression” in union-find data
structures [20]. The idea is the following. Assume vertex 𝑣 has the
signature 𝑥 : 𝑦 (and recall that the signature values are vertex IDs).
Instead of propagating 𝑥 and 𝑦 directly to the neighboring vertices,
we utilize the corresponding signature values from vertices 𝑥 and
𝑦. Since the signatures are initialized with the vertex ID and can
only increase due to the maximum computations, 𝑥𝑖𝑛 ≥ 𝑥 and
𝑦𝑜𝑢𝑡 ≥ 𝑦, meaning it is never worse and often better to propagate
𝑥𝑖𝑛 instead of 𝑥 and 𝑦𝑜𝑢𝑡 instead of 𝑦. In the code, this amounts
to using 𝑖𝑛_𝑚𝑎𝑥 [𝑖𝑛_𝑚𝑎𝑥 [𝑣]] instead of 𝑖𝑛_𝑚𝑎𝑥 [𝑣]. This approach
can double the propagation distance in each step, meaning it only
takes𝑂 (𝑙𝑜𝑔(𝑐)) instead of𝑂 (𝑐) time to traverse a cycle of 𝑐 vertices.

Our implementation takes this idea one step further. Before a
signature value 𝑠 in vertex 𝑣 is overwritten by a larger value 𝑡 , our
code also checks and conditionally updates the signature of vertex 𝑠
with value 𝑡 . This works because all descendants of vertex 𝑣 (i.e., the
vertices reachable from 𝑣) share 𝑣 ’s ancestors and all ancestors of 𝑣
(i.e., the vertices from which 𝑣 is reachable) share 𝑣 ’s descendants.

Initially, we implemented each ECL-SCC phase as a separate GPU
kernel. However, this resulted in significant launch overhead [19]
for inputs where Phase 2 iterates many times. To lower this over-
head, we wrote an asynchronous version of the Phase-2 kernel,
where every thread block internally iterates until none of the edges
assigned to it propagate any more values. This approach can reduce
the number of kernel launches by an order of magnitude.

Another optimization that we considered is to use 4 signature
values comprising 2 maximums and 2 minimums. The minimums
can be computed in the same manner as the maximums except
using a minimum operation. This approach would separate out at
least 2 SCCs from each SCC cluster in each iteration of Alg. 1. We
ended up not using this approach because it doubles the amount of
memory needed to store the signatures.

3.4 Parallelization
ECL-SCC does not perform depth- or breadth-first searches, is not
recursive, and offers more parallelism because it treats every vertex
simultaneously as a pivot. These features makes our approach GPU
friendly and easier to parallelize than FB.



SC ’23, November 12–17, 2023, Denver, CO, USA Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher

Each phase of the ECL-SCC algorithm depends on the result of
the prior phase, which is why three global barriers are needed in
the body of the outer loop, one after each named code section in
Alg. 1. The three “for all” loops are parallel. Phase 1 is embarrass-
ingly parallel, meaning it requires no synchronization. The only
synchronization needed in Phase 3 is an atomic add to request a
new worklist entry if a thread finds that the edge it is processing is
still needed.

Phase 2 can easily be implemented with two atomic max op-
erations. However, as it represents the most performance critical
section of our code, we opted for a faster atomic-free implemen-
tation [17]. Since the signature propagation is monotonic and any
change in a signature value triggers a follow-on iteration, Phase 2
is resilient to temporary priority inversions [18]. This means that
all threads with a higher value for a signature can write their value
without synchronization. One of the writes will “win”, though not
necessarily the one with the highest value. However, any written
value represents an improvement, and the “losing” thread(s) will
try again in the next iteration until the thread with the highest
value succeeds. Whereas this may increase the number of iterations
needed, it often speeds up the code because no explicit synchro-
nization is performed.

ECL-SCC launches all kernels with 512 threads per block. This
number tends to work well on most modern NVIDIA GPUs, which
support 1024, 1536, or 2048 threads per streaming multiprocessor
(SM). Moreover, we use a persistent-thread approach [9], that is, we
launch as many threads as the GPU can concurrently schedule on
its SMs (rather than one thread per edge). This means a thread may
have to process multiple edges, which is beneficial in combination
with our asynchronous Phase-2 implementation.

4 EVALUATION METHODOLOGY
We compared the performance of ECL-SCCwith SCC-GPU [14] and
iSpan [13], which, respectively, are the fastest GPU and the fastest
parallel CPU code we could find. We instrumented each code to
measure the SCC computation time, excluding everything else, such
as reading in the graph, outputting the result, and verifying the
result. Whenever reasonable, we ran each experiment nine times
and report the median runtime. Due to very long runtimes, we were
only able to run iSpan once on some of the inputs. We verified the
solutions of all ECL-SCC runs by comparing them to the results
obtained by Tarjan’s algorithm. Our primary performance metric
is the throughput, which is the number of vertices divided by the
runtime. We focus on the throughput because it is a higher-is-better
metric, which is more intuitive, and it is normalized by the graph
size. This makes the results less input-size dependent.

We evaluated the GPU codes on two generations of NVIDIA
GPUs. The first GPU is a Volta-based Titan V with 5120 processing
elements distributed over 80 multiprocessors. Each multiprocessor
has 96 kB of L1 data cache/shared memory, and the 80 multiproces-
sors share a 4.5 MB L2 cache as well as 12 GB of global memory with
a peak bandwidth of 652 GB/s. The second GPU is an Ampere-based
A100 with 6912 processing elements distributed over 108 multipro-
cessors. Each multiprocessor has 192 kB of L1 data cache/shared
memory, and the 108 multiprocessors share a 40 MB L2 cache and
40 GB of global memory with a peak bandwidth of 1555 GB/s.

We also used two systems to evaluate the CPU code. One is AMD-
based and the other is Intel-based. The first system has a 16-core 3.5
GHz AMD Ryzen Threadripper 2950X CPU with hyperthreading
enabled, allowing the 16 cores to run 32 threads simultaneously.
Each core has a 32 kB L1 data cache, a 512 kB unified L2 cache, and
all cores share a 32 MB L3 cache. The main-memory size is 48 GB.
The second system is based on dual 16-core 2.9 GHz Intel Xeon
Gold 6226R CPUs with hyperthreading enabled, allowing the 32
cores to run 64 threads simultaneously. Each core has a 32 kB L1
data cache, a 1 MB unified L2 cache, and the cores on a socket share
a 44 MB L3 cache. The main-memory size is 64 GB. Both systems
run the Fedora 37 operating system. To compile the GPU codes,
we used nvcc 12.0 with the “-O3 -arch=sm_70” flags for the Titan V
and the “-O3 -arch=sm_80” flags for the A100 GPU. We compiled
the CPU code with gcc/g++ 12.2.1 using the “-O3 -fopenmp” flags.

We used two types of graphs as inputs for our evaluation, the
mesh graphs listed in Tables 1 and 2 and the power-law graphs listed
in Table 3. The latter graphs were obtained from the SuiteSparse
Matrix Collection (SMC) [7]. We selected them because they were
also used in prior work [13, 14]. The tables list the name, number
of vertices, number of edges, average degree, maximum in-degree,
maximum out-degree, number of SCCs, number of size-1 SCCs,
number of size-2 SCCs, the size of the largest SCC, and the depth
of the DAG formed by the SCCs. For the mesh graphs, some of
this information is shown as a minimum and maximum value over
two columns since each mesh type includes multiple ordinates. The
number of ordinates is denoted by 𝑁Ω , which is equivalent to the
number of graphs. We provide additional information about the
meshes in Section 4.1.

These tables highlight some important differences between mesh
and power-law graphs. For instance, the meshes have only low-
degree vertices whereas most of the power-law graphs have some
high-degree vertices. Most of the meshes have very small SCCs
whereas most of the other graphs have one very large SCC that
encompasses the majority of the vertices. Finally, the DAG formed
when collapsing the SCCs is quite deep for most of the meshes but
shallow for most of the power-law graphs.

To compute the throughputs for the 10 power-law graphs, we
used the median runtime of 9 runs. For mesh graphs, we timed the
166 small and 205 large meshes and calculated the throughput based
on the average runtime of each mesh group. For example, in Table 1,
the beam-hex group comprises 30 mesh graphs. We first measured
the average runtime for these 30 graphs and then computed the
corresponding throughput based on this average. Note that these
runtimes do not include any data transfer to/from the GPU as we
are not advocating using GPU code for finding SCCs of graphs
stored on the CPU. Rather, we are targeting environments where
the graph is already on the GPU from a prior processing step and
the SCC result is needed on the GPU for the next processing step.

4.1 Graphs for Radiative Transfer Applications
This subsection describes the graphs that form the basis of any
sweeping algorithm for the RTE. Given an unstructured mesh, the
sweeping algorithm associates to each ordinate a directed graph
that orders the mesh elements to achieve an upwind discretiza-
tion of the RTE. For an ordinate Ω𝑑 , the computation proceeds



A GPU Algorithm for Detecting Strongly Connected Components SC ’23, November 12–17, 2023, Denver, CO, USA

Table 1: Information about the small mesh graphs
Avg Max Max Min Max Min size- Max size- Min size- Max size- Min largest Max largest Min DAG Max DAG

Graph 𝑁Ω Vertices Edges 𝑑𝑒𝑔 𝑑𝑖𝑛 𝑑𝑜𝑢𝑡 SCCs SCCs 1 SCCs 1 SCCs 2 SCCs 2 SCCs SCC size SCC size depth depth
beam-hex 30 262,144 769k 2.93 3 3 262,144 262,144 262,144 262,144 0 0 1 1 318 318
star 8 327,680 654k 2.00 2 2 327,680 327,680 327,680 327,680 0 0 1 1 1,534 1,534
torch-hex 32 264,064 782k 2.96 4 5 263,213 263,519 262,551 262,999 504 626 5 8 286 364
torch-tet 32 515,360 1,008k 1.96 3 3 513,410 514,425 511,527 513,501 916 1,847 4 6 484 1,335
toroid-hex 32 196,608 581k 2.96 4 4 189,045 193,745 188,693 193,602 1 15 32 420 220 697
toroid-wedge 32 196,608 486k 2.47 4 4 189,981 193,467 184,625 190,326 3,141 5,524 2 200 282 346

Table 2: Information about the large mesh graphs
Avg Max Max Min Max Min size- Max size- Min size- Max size- Min largest Max largest Min DAG Max DAG

Graph 𝑁Ω Vertices Edges 𝑑𝑒𝑔 𝑑𝑖𝑛 𝑑𝑜𝑢𝑡 SCCs SCCs 1 SCCs 1 SCCs 2 SCCs 2 SCCs SCC size SCC size depth depth
klein-bottle 8 8,388,608 19M 2.24 4 4 1 75,750 0 75,746 0 3 8,312,856 8,388,608 1 4
mobius-strip 8 4,194,304 11M 2.98 4 4 758,836 4,194,304 695,463 4,194,304 0 102,243 1 3,246,558 1 15,652
torch-hex 32 2,112,512 6M 2.98 4 5 2,109,019 2,110,311 2,106,301 2,108,211 2,013 2,463 6 16 583 752
torch-tet 32 4,122,880 6M 1.98 3 3 4,113,688 4,117,636 4,104,680 4,112,482 5,092 8,912 4 6 1,019 2,745
toroid-hex 32 1,572,864 5M 2.98 4 4 1,535,516 1,561,334 1,534,396 1,560,997 5 37 64 1,504 444 1,865
toroid-wedge 32 1,572,864 4M 2.48 4 4 1,542,117 1,560,181 1,520,331 1,547,498 12,683 22,539 2 747 570 703
twist-hex 61 6,291,456 19M 3.00 5 5 1 1 0 0 0 0 6,291,456 6,291,456 1 1

Table 3: Information about the power-law graphs
Avg Max Max No. Size-1 Size-2 Largest DAG

Graph Vertices Edges 𝑑𝑒𝑔 𝑑𝑖𝑛 𝑑𝑜𝑢𝑡 SCCs SCCs SCCs SCC size depth
cage14 1,505,785 27,130,349 18.02 41 41 1 1 0 1,505,785 1
circuit5M 5,558,326 59,524,291 10.71 1,290,501 1,290,501 647 15 453 5,555,791 1
com-Youtube 1,134,890 2,987,624 2.63 28,576 4,256 1,134,890 1,134,890 0 1 704
flickr 820,878 9,837,214 11.98 8,549 10,272 277,277 269,944 4,345 527,476 5
Freescale1 3,428,755 18,920,347 5.52 25 27 1,061 1 0 3,408,803 1
Freescale2 2,999,349 23,042,677 7.68 30,478 30,167 55,085 1 54,423 2,888,522 1
soc-LiveJournal1 4,847,571 68,993,773 14.23 13,906 20,293 971,232 947,776 16,875 3,828,682 24
web-Google 916,428 5,105,039 5.57 6,326 456 412,479 399,605 4,169 434,818 34
wiki-Talk 2,394,385 5,021,410 2.10 3,311 100,022 2,281,879 2,281,311 529 111,881 8
wikipedia 3,148,440 39,383,235 12.51 168,685 6,576 1,040,035 1,037,369 2,001 2,104,115 85

by sweeping fluxes through the elements of the mesh with data
entering elements through their upwind faces and exiting through
downwind faces. The notion of upwind and downwind faces is
taken relative to the ordinate Ω𝑑 and is determined by the outward
normal vector n(x) restricted to points along the face of every
element. The vertices of the graph represent the elements of an un-
structured mesh, while the edges represent a shared face between
pairs of neighboring elements. The order in which these elements
are traversed forms a directed (possibly cyclic) graph. In the case
of high-order curved elements, the normal vector changes its ori-
entation relative to the ordinate at different locations on the same
face. This creates the notion of a re-entrant face, where neighboring
elements are simultaneously upwind of one another, which induces
cyclic dependencies in the graph. An example of a high-order mesh
with re-entrant faces, which would induce an SCC, is shown in
Figure 4.

Our input meshes listed in Tables 1 and 2 were constructed using
the MFEM library [3]. We used a collection of meshes, including
several sample meshes from MFEM as well as two different rep-
resentations of the geometry of a plasma torch generated with
low-order tetrahedral and hexahedral elements. While the meshes
associated with the torch geometry do not contain cycles, the pro-
posed algorithm should also be able to rapidly identify the absence
of SCCs. Table 4 provides a summary of the different meshes used
in the experiments. Given a mesh and ordinate Ω𝑑 , we construct

each graph by iterating through interior faces and extracting the
pair of elements (𝑒1, 𝑒2) that share this face along with the corre-
sponding face transformation. Then, for each point x𝑖 along this
face, we compute the outward unit normal vector n(x𝑖 ) on 𝑒1. Note
that we always use the convention that 𝑒1 points into 𝑒2. Using this
normal vector, we can find its orientation relative to the ordinate
by checking the sign of the dot product Ω𝑑 · n(x𝑖 ). In particular,
if Ω𝑑 · n(x𝑖 ) > 0, then we create an edge pointing from 𝑒1 to 𝑒2.
Otherwise, the edge points from 𝑒2 to 𝑒1.

5 RESULTS
In this section, we evaluate the performance of ECL-SCC and com-
pare it to the leading GPU and CPU SCC codes from the literature.
We calculated the throughput on each mesh graph based on the
average runtime across all ordinates as listed in Tables 5 and 6. For
the power-law graphs, we used the runtimes presented in Table 7.

5.1 Throughput Comparison
This subsection compares the performance of ECL-SCC with GPU-
SCC, the fastest GPU code from the literature, and iSpan, the fastest
parallel CPU code from the literature, on two GPUs and two CPUs.
In the result charts, the x-axis lists the inputs and the geometric
mean over all of them whereas the y-axis displays the throughput
in millions of completed vertices per second. Note that, in some
cases, we use a logarithmic scale for the y-axis.



SC ’23, November 12–17, 2023, Denver, CO, USA Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher

Figure 4: Example of a high-order mesh with re-entrant faces.
The normal vectors at the quadrature points along the face
shared by elements 𝐾1 and 𝐾4 are shown. The change in color
for the normal vectors indicates a change in the sign of the
inner product with the ordinate Ω.

Table 4: Properties of the meshes we use in our experiments.
They are sample meshes from MFEM [3] along with two
different representations of a plasma torch. The twist meshes
were built by setting the number of twists to 3 and 6 in the
miniapp to change the severity of the distortion.

Mesh Name Element Type Order
beam-hex Hexahedral 1
klein-bottle Quadrilateral 3
mobius-strip Quadrilateral 3
star Quadrilateral 1
torch-hex Hexahedral 1
torch-tet Tetrahedral 1
toroid-hex Hexahedral 3
toroid-wedge Wedge 3
twist-hex Hexahedral 3

5.1.1 Small Mesh Graphs. We start by evaluating the performance
on the small mesh graphs from Table 1. Figure 5 shows the through-
puts on the Titan VGPU. Our ECL-SCC code outperforms GPU-SCC
on all mesh groups except for the beam-hex group, where GPU-SCC
is 1.12 times faster. This group of meshes contains 30 graphs, all of
which have 262,144 SCCs of size 1. Hence, GPU-SCC only uses the
Trim-1 phase and not the actual algorithm to process the beam-hex
meshes, as it runs the trim phase until all trivial SCCs have been
discovered. The same is true for the star meshes. However, the
trivial SCCs in these meshes form the deepest DAG of all our small
meshes, requiring the Trim-1 phase to be iterated many times. In
contrast, ECL-SCC is able to break up the DAG internally, resulting
in fewer iterations and faster processing than GPU-SCC. Based on
the geometric mean over all small meshes, our code is 6.2 times
faster than GPU-SCC on the Titan V.

Figure 6 shows the results of the same experiments but on the
A100 GPU. The trends are very similar to those on the Titan V.
Again, ECL-SCC outperforms GPU-SCC on all graph groups except
beam-hex. However, on the A100, GPU-SCC is only 1.01 times faster
on the beam-hex group. Based on the geometric mean over all small
meshes, ECL-SCC is 6.5 times faster than GPU-SCC on the A100.

Figure 7 displays the throughputs of ECL-SCC on both GPUs and
the throughputs of iSpan on both CPUs. On either GPU, ECL-SCC is

0

10

20

30

40

50

60

beam-hex star torch-hex torch-tet toroid-hex toroid-wedge GEOMEAN

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC GPU-SCC

Figure 5: Throughput in millions of completed vertices per
second on a Titan V with the small mesh graphs

0

10

20

30

40

50

60

beam-hex star torch-hex torch-tet toroid-hex toroid-wedge GEOMEAN

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC GPU-SCC

Figure 6: Throughput in millions of completed vertices per
second on an A100 with the small mesh graphs

0.00

0.01

0.10

1.00

10.00

100.00

beam-hex star torch-hex torch-tet toroid-hex toroid-wedge GEOMEAN

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC (Titan V) ECL-SCC (A100) iSpan (AMD Ryzen) iSpan (Intel Xeon)

Figure 7: Throughput in millions of completed vertices per
second with the small mesh graphs

over three orders of magnitude faster than iSpan running on either
CPU for all small mesh graphs. Based on the geometric mean, our
code is roughly 4400 times faster than iSpan. Note that iSpan also
uses Trim-1 to discover the trivial SCC before detecting any large
SCC, but our code still outperforms it even on the mesh graphs
with only trivial SCCs such as the beam-hex group.

5.1.2 Large Mesh Graphs. In this subsection, we evaluate the per-
formance on the large mesh graphs from Table 2. Due to the long
runtimes, we were only able to run iSpan once per input, and we
were unable to run the graphs in the toroid-wedge group to com-
pletion (we stopped the runs after 24 hours).



A GPU Algorithm for Detecting Strongly Connected Components SC ’23, November 12–17, 2023, Denver, CO, USA

Table 5: Average runtime across ordinates on the small mesh graphs

ECL-SCC ECL-SCC GPU-SCC GPU-SCC iSpan iSpan
Graphs Titan V A100 Titan V A100 AMD Ryzen Intel Xeon
beam-hex 0.0050 0.0046 0.0045 0.0045 30.3428 30.6924
star 0.0098 0.0097 0.0182 0.0184 55.3353 46.1174
torch-hex 0.0071 0.0085 0.0798 0.0901 28.6770 25.9285
torch-tet 0.0162 0.0133 0.2566 0.2939 67.6585 65.3902
toroid-hex 0.0040 0.0046 0.0420 0.0446 17.4289 17.9157
toroid-wedge 0.0037 0.0041 0.0644 0.0729 15.9983 17.4253

Table 6: Average runtime across ordinates on the large mesh graphs

ECL-SCC ECL-SCC GPU-SCC GPU-SCC iSpan iSpan
Graphs Titan V A100 Titan V A100 AMD Ryzen Intel Xeon
klein-bottle 0.2643 0.1564 0.8206 0.6456 0.2524 0.2270
mobius-strip 0.7370 0.3629 3.8899 2.2751 2393.3987 1873.7461
torch-hex 0.0696 0.0376 0.7043 0.4908 2417.4928 1827.9724
torch-tet 0.2772 0.1186 2.4901 1.6397 3977.6657 3746.2860
toroid-hex 0.0345 0.0200 0.3108 0.2524 1569.6603 1210.2917
toroid-wedge 0.0328 0.0189 0.6850 0.5095 1364.8796 > 1 hour
twist-hex 0.1252 0.0586 0.1224 0.1114 0.2203 0.1134

Table 7: Runtime on the power-law graphs

ECL-SCC ECL-SCC GPU-SCC GPU-SCC iSpan iSpan
Graphs Titan V A100 Titan V A100 AMD Ryzen Intel Xeon
cage14 0.0099 0.0046 0.0071 0.0092 0.0362 0.0273
circuit5M 0.0803 0.1077 0.1131 0.1301 0.0946 0.0480
Youtube 0.0035 0.0024 0.0475 0.0574 0.0459 0.0388
flickr 0.0093 0.0079 0.0100 0.0131 0.0124 0.0078
Freescale1 0.0095 0.0043 0.0204 0.0248 0.0843 0.0450
Freescale2 0.0096 0.0061 0.0145 0.0193 crash crash
soc-LiveJournal 0.0827 0.0254 0.0443 0.0296 0.1123 0.0540
web-Google 0.0084 0.0040 0.0188 0.0216 0.0499 0.0287
wiki-Talk 0.0132 0.0090 0.0126 0.0165 0.0091 0.0059
wikipedia 0.9163 0.2167 0.0861 0.0807 0.0642 0.0334

Figure 8 presents the throughputs on the Titan V. ECL-SCC
outperforms GPU-SCC on all graph groups except for twist-hex.
This group of meshes contains 61 graphs, all of which consist of a
single SCC that contains all vertices. GPU-SCC is faster than our
code on 32 of those graphs and 1.02 times faster on average. Note
that GPU-SCC was optimized for graphs with one large SCC (and a
few small SCCs). This explains why it is a little faster on the meshes
of the twist-hex group, which consist of just one SCC. Based on the
geometric mean over all large mesh graphs, our code is 6.0 times
faster than GPU-SCC on the Titan V.

Figure 9 shows the corresponding throughputs on the A100. Our
code outperforms GPU-SCC on all graph groups on this faster and
more recent GPU, including by about a factor of 2 on the twist-
hex graphs. Based on the geometric mean over all large meshes,
ECL-SCC is 8.4 times faster than GPU-SCC on the A100.

Figure 10 shows the throughput of ECL-SCC on both GPUs and
the throughput of iSpan on both CPU systems. On the Titan V, it is
faster on 5 out of 7 large mesh graphs. On the A100, ECL-SCC is
faster than iSpan on all large meshes. On the Titan V, its geometric

0

10

20

30

40

50

60

klein-bo�le mobius-strip torch-hex torch-tet toroid-hex toroid-wedge twist-hex GEOMEAN

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC GPU-SCC

Figure 8: Throughput in millions of completed vertices per
second on a Titan V with the large mesh graphs

mean is 1264 and 596 times higher than that of iSpan on the Ryzen
and Xeon CPUs, respectively. On the A100, the geometric mean
is 2422 and 1142 times higher than iSpan on the Ryzen and Xeon
CPUs, respectively. Note that iSpan is also optimized for graphs



SC ’23, November 12–17, 2023, Denver, CO, USA Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher

0

20

40

60

80

100

120

klein-bo�le mobius-strip torch-hex torch-tet toroid-hex toroid-wedge twist-hex GEOMEAN

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC GPU-SCC

Figure 9: Throughput in millions of completed vertices per
second on an A100 with the large mesh graphs

0.00

0.01

0.10

1.00

10.00

100.00

klein-bo�le mobius-strip torch-hex torch-tet toroid-hex toroid-wedge twist-hex GEOMEAN

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC (Titan V) ECL-SCC (A100) iSpan (AMD Ryzen) iSpan (Intel Xeon)

Figure 10: Throughput in millions of completed vertices per
second with the large mesh graphs

with a power-law distribution, which is why its performance is
quite good on the klein-bottle and twist-hex graph groups, which
mostly contain graphs with just one large SCC.

5.1.3 Power-law Graphs. Since GPU-SCC and iSpan are optimized
for graphs with power-law distributions, we also evaluate how well
our code performs on such graphs even though it has been designed
for graphs from radiative transfer simulations. Figure 11 displays
the resulting throughputs on the Titan V. ECL-SCC outperforms
GPU-SCC on 6 of the 10 graphs and has a geometric mean that is
1.18 times higher. Figure 12 shows the throughputs on the A100.
ECL-SCC outperforms GPU-SCC on 9 of the 10 graphs and has a
geometric mean that is 2.07 times higher than GPU-SCC.

Figure 13 presents the throughputs of ECL-SCC on both GPUs
and iSpan on both CPU systems. We encountered a segmentation
fault while running iSpan on the Freescale2 graph, which is why
this graph is not included in the figure. On the Titan V, ECL-SCC
is faster than iSpan on the Ryzen for 7 of the 9 graphs and faster
than iSpan on the Xeon for 4 of the 9 graphs. Note that the Xeon
has twice as many cores as the Ryzen, which is why iSpan runs
faster on the Xeon. ECL-SCC’s geometric mean is 1.86 and 1.12
times higher that iSpan’s on the Ryzen and Xeon, respectively.

On the A100, ECL-SCC outperforms iSpan on the Ryzen for 6
of the 9 graphs and on the Xeon for 5 of the 9 graphs. ECL-SCC’s
geometric mean is 3.45 and 2.07 times higher than iSpan’s on the
Ryzen and the Xeon, respectively. The factors are higher because
the A100 is faster than the Titan V on most inputs.

1

10

100

1000

ca
ge

14

cir
cu

it5
M

Yo
utu

be
fli

ck
r

Fr
eesc

ale
1

Fr
eesc

ale
2

so
c-

Liv
eJo

urn
al

w
eb-G

oogl
e

w
ik

i-T
alk

w
ik

ip
edia

GEO
M

EA
N

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC GPU-SCC

Figure 11: Throughput in millions of completed vertices per
second on a Titan V with the power-law graphs

1

10

100

1000

ca
ge

14

cir
cu

it5
M

Yo
utu

be
fli

ck
r

Fr
eesc

ale
1

Fr
eesc

ale
2

so
c-

Liv
eJo

urn
al

w
eb-G

oogl
e

w
ik

i-T
alk

w
ik

ip
edia

GEO
M

EA
N

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC GPU-SCC

Figure 12: Throughput in millions of completed vertices per
second on A100 with the power-law graphs

1

10

100

1000

ca
ge

14

cir
cu

it5
M

Yo
utu

be
fli

ck
r

Fr
eesc

ale
1

so
c-

Liv
eJo

urn
al

w
eb-G

oogl
e

w
ik

i-T
alk

w
ik

ip
edia

GEO
M

EA
N

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

ECL-SCC (Titan V) ECL-SCC (A100) iSpan (AMD Ryzen) iSpan (Intel Xeon)

Figure 13: Throughput in millions of completed vertices per
second with the power-law graphs

Clearly, the performance advantage of ECL-SCC over GPU-SCC
and iSpan is much smaller on this type of graph. In fact, on about
half of the inputs, the other codes are faster than ECL-SCC. The
reason is that both GPU-SCC and iSpan are optimized for power-
law graphs whereas ECL-SCC is optimized for another kind of
graph with very different properties. Nevertheless, our code is still
competitive even on power-law graphs, highlighting its versatility.

5.1.4 Expanded Meshes. The speedup trends for the small and
large meshes are similar, and the mesh sizes we use are typical for
RTE applications. However, a significant portion of these meshes
fits in the last-level caches of our CPUs and GPUs. To see whether
the speedup trends also hold for much larger meshes, we took



A GPU Algorithm for Detecting Strongly Connected Components SC ’23, November 12–17, 2023, Denver, CO, USA

0

20

40

60

80

100

120

140

power-law graphs small meshes large meshes

M
ill

io
n

s 
o

f 
ve

r�
ce

s 
p

e
r 

se
co

n
d

fully-op�mized code no asynchronous opera�on

no SCC edge removal no path compression

no persistent threads none of these op�miza�ons

Figure 14: A100 performance impact when removing certain
code optimizations from ECL-SCC

the first ordinate of our twist-hex and large toroid-hex meshes and
replicated them to create 10-times larger inputs. The expanded twist-
hex mesh has 62,914,551 vertices, 188,937,390 edges, and 1 SCC.
The expanded toroid-hex mesh has 15,728,631 vertices, 46,841,420
edges, and 15,581,611 SCCs. We selected these two meshes because
the former is the mesh where GPU-SCC and iSpan perform the best
and the latter is representative of our RTE meshes.

Evaluating these much larger inputs on the A100 GPU and Xeon
CPU, we found the speedup trends to still hold. Specifically, on
the expanded twist-hex mesh, ECL-SCC took 0.697 seconds, iSpan
runningwith 64 threads on the CPU took 1.4× longer, and GPU-SCC
crashed because the mesh is too large. On the expanded toroid-hex
mesh, ECL-SCC took 0.173 seconds, GPU-SCC took 78.5× longer,
and iSpan timed out after 3 hours. In summary, ECL-SCC performs
a little better than the fastest code from the literature on a very
large mesh with a single SCC and is much faster on a very large
mesh with many small SCCs.

5.2 Optimization Evaluation
This subsection evaluates several code optimizations in ECL-SCC
(cf. Section 3.3). The first optimization is implementing Phase 2 in an
asynchronousmanner to reduce the number of kernel launches. The
second optimization is removing all completed edges from the graph
and not just the ones that span SCCs to reduce the workload in later
iterations. The third optimization is adding path compression so
the labels can be propagated faster and not only to the direct vertex
neighbors. The fourth optimization is to employ persistent threads,
meaning multiple edges and vertices are assigned to a single thread,
so that fewer thread blocks need to be launched.

Fig. 14 shows the results for our three types of inputs. For brevity,
we only display results for the A100. Each set of bars represents
the geometric-mean throughput over all graphs in that category.
The individual bars show the throughput of the ECL-SCC code
with all optimizations included, the throughput when disabling any
one of the studied optimizations, and the throughput when all four
optimizations are disabled together.

Path compression and especially asynchronous operation help
on all three types of input graphs. Removing the SCC edges helps
only marginally on the meshes but quite a bit on the power-law
graphs. This is expected as most of the meshes only contain small
SCCs and, therefore, only few intra-SCC edges. Conversely, in many

of the power-law graphs, most of the edges lie within an SCC and
removing them saves significant computation.

Using persistent threads, i.e., assigning multiple edges to a single
thread, greatly boosts the performance on the power-law graphs
but actually hurts on the mesh graphs. This is the case because
persistent threads can speed up the code by improving the effective-
ness of the asynchronous execution, but they can also slow down
the code because they always process all assigned edges, even when
some edges no longer need to be processed. If the edges assigned
to a thread belong to the same SCC, as is often the case in power-
law graphs, they all need to be processed for the same number of
iterations, meaning the benefit outweighs the downside. However,
if the edges belong to different SCCs whose maximum-value prop-
agations reach a fixed point after a different number of iterations,
as is often the case in meshes, the downside outweighs the benefit.
We included this “optimization” regardless to make ECL-SCC com-
petitive on power-law graphs. However, when only targeting mesh
graphs with small SCCs, it should be removed, which would yield
a 10% performance boost.

Disabling all four optimizations results in the lowest perfor-
mance. On all three graph types, these optimizations together more
than double the throughput of ECL-SCC, highlighting the impor-
tance of including them.

6 SUMMARY
The parallel detection of strongly connected components (SCCs)
is an important algorithm for graph analysis and has broad ap-
plications to fields in scientific computing. Most existing parallel
SCC algorithms are based on the Forward-Backward (FB) algo-
rithm and generally perform well on power-law graphs, in which
a few vertices have a very high degree and most vertices tend
to belong to one large SCC. In contrast, this paper introduces a
novel GPU algorithm, called ECL-SCC, to detect SCCs in graphs
arising from radiative transfer applications, which typically only
contain low-degree vertices and whose SCCs tend to be very small.
Unlike the FB algorithm, our algorithm simultaneously uses ev-
ery vertex as a pivot, which increases parallelism and enables it to
partition the graph more quickly. Additionally, it employs new tech-
niques such as maximum vertex-ID propagation and edge removal.
Our CUDA implementation incorporates several domain-specific
code optimizations, including combining asynchronous operation
with persistent threads, utilizing path compression, and employing
data-driven edge-based processing. We evaluated our GPU code
and optimizations on several types of input graphs. Experimental
results on two GPUs from different generations and two CPUs
from different vendors demonstrate that the performance of our
algorithm is commensurate with the fastest preexisting codes on
power-law graphs and outperforms them by over a factor of 5 on
average on mesh graphs.

ACKNOWLEDGMENTS
This work has been supported in part by the Department of Energy,
National Nuclear Security Administration under Award Number
DE-NA0003969, by the National Science Foundation under Awards
1955367 and 2204226, and by equipment donations from NVIDIA
Corporation.



SC ’23, November 12–17, 2023, Denver, CO, USA Ghadeer Alabandi, William Sands, George Biros, and Martin Burtscher

REFERENCES
[1] Marvin L. Adams and EdwardW. Larsen. 2002. Fast iterative methods for discrete-

ordinates particle transport calculations. Progress in Nuclear Energy 40 (2002),
3–159. Issue 1.

[2] Stefano Allesina, Antonio Bodini, and Cristina Bondavalli. 2005. Ecological
subsystems via graph theory: the role of strongly connected components. Oikos
110, 1 (2005), 164–176.

[3] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain
Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio
Kolev, et al. 2021. MFEM: A modular finite element methods library. Computers
& Mathematics with Applications 81 (2021), 42–74.

[4] Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceška. 2011. Computing strongly
connected components in parallel on CUDA. In 2011 IEEE International Parallel
& Distributed Processing Symposium. IEEE, 544–555.

[5] Martin Burtscher. 2023. ECL-SCC Git Repository. https://github.com/burtscher/
ECL-SCC. Accessed: 2023-08-18.

[6] Martin Burtscher. 2023. ECL-SCC Website. https://cs.txstate.edu/~burtscher/
research/ECL-SCC/. Accessed: 2023-08-18.

[7] Tim Davis. [n. d.]. SuiteSparse Matrix Collection. http://sparse.tamu.edu, Last
accessed on 2023-03-16.

[8] Lisa K Fleischer, Bruce Hendrickson, and Ali Pınar. 2000. On identifying strongly
connected components in parallel. In Parallel and Distributed Processing: 15 IPDPS
2000 Workshops Cancun, Mexico, May 1–5, 2000 Proceedings 14. Springer, 505–511.

[9] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of Persistent
Threads style GPU programming for GPGPU workloads. In 2012 Innovative
Parallel Computing (InPar). IEEE, San Jose, CA, USA, 1–14. https://doi.org/10.
1109/InPar.2012.6339596

[10] T.S. Haut, P.G. Maginot, V.Z. Tomov, B.S. Southworth, T.A. Brunner, and T.S.
Bailey. 2019. An efficient sweep-based solver for the 𝑆𝑁 equations on high-order
meshes. Nuclear Science and Engineering 193 (2019), 746–759. Issue 7.

[11] Sungpack Hong, Nicole C Rodia, and Kunle Olukotun. 2013. On fast parallel
detection of strongly connected components (SCC) in small-world graphs. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. 1–11.

[12] John R. Howell, M. Pinar Julian Mengüc, Kyle Daun, and Robert Siegel. 2020.
Thermal Radiation Heat Transfer (7 ed.). Taylor & Francis.

[13] Yuede Ji, Hang Liu, and H. Howie Huang. 2018. iSpan: Parallel Identification of
Strongly Connected Components with Spanning Trees. In SC18: International
Conference for High Performance Computing, Networking, Storage and Analysis.
731–742. https://doi.org/10.1109/SC.2018.00061

[14] Pingfan Li, Xuhao Chen, Jie Shen, Jianbin Fang, Tao Tang, and Canqun Yang.
2017. High performance detection of strongly connected components in sparse
graphs on GPUs. In Proceedings of the 8th International Workshop on Programming
Models and Applications for Multicores and Manycores. 48–57.

[15] William Mclendon III, Bruce Hendrickson, Steven J Plimpton, and Lawrence
Rauchwerger. 2005. Finding strongly connected components in distributed graphs.
J. Parallel and Distrib. Comput. 65, 8 (2005), 901–910.

[16] Warren F. Miller and Elmer E. Lewis. 1993. Computational methods of neutron
transport. Wiley.

[17] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-Free Irregular
Computations on GPUs (GPGPU-6). Association for Computing Machinery, New
York, NY, USA, 96–107. https://doi.org/10.1145/2458523.2458533

[18] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of ACM Symposium on Oper-
ating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). 456–471. https:
//doi.org/10.1145/2517349.2522739

[19] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimization
of Graph Algorithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing
Machinery, New York, NY, USA, 1–19. https://doi.org/10.1145/2983990.2984015

[20] Md. Mostofa Ali Patwary, Peder Refsnes, and Fredrik Manne. 2012. Multi-Core
Spanning Forest Algorithms Using the Disjoint-Set Data Structure. In Proceedings
of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium
(IPDPS ’12). IEEE Computer Society, USA, 827–835. https://doi.org/10.1109/
IPDPS.2012.79

[21] Wen-Chih Peng, Haixun Wang, James Bailey, Vincent S Tseng, Tu Bao Ho, Zhi-
Hua Zhou, and Arbee LP Chen. 2014. Trends and Applications in Knowledge
Discovery and Data Mining: PAKDD 2014 International Workshops: DANTH, BDM,
MobiSocial, BigEC, CloudSD, MSMV-MBI, SDA, DMDA-Health, ALSIP, SocNet, DM-
BIH, BigPMA, Tainan, Taiwan, May 13-16, 2014. Revised Selected Papers. Vol. 8643.
Springer.

[22] Steven J. Plimpton, Bruce Hendrickson, Shawn P. Burns, William McLendon III,
and Lawrence Rauchwerger. 2005. Parallel 𝑆𝑛 sweeps on unstructured grids:
algorithms for prioritization, grid Partitioning, and cycle detection. Nuclear
Science and Engineering 150, 3 (2005), 267–283.

[23] K.H. Randall, R. Stata, R.G.Wickremesinghe, and J.L.Wiener. 2002. The Link Data-
base: fast access to graphs of the Web. In Proceedings DCC 2002. Data Compression
Conference. 122–131. https://doi.org/10.1109/DCC.2002.999950

[24] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160.

[25] Sebastiaan J. van Schaik and Oege de Moor. 2011. A Memory Efficient Reach-
ability Data Structure through Bit Vector Compression. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data (Athens,
Greece) (SIGMOD ’11). Association for Computing Machinery, New York, NY,
USA, 913–924. https://doi.org/10.1145/1989323.1989419

[26] Jan I.C. Vermaak, Jean C. Ragusa, Marvin L. Adams, and Jim E. Morel. 2019.
Massively parallel transport sweeps on meshes with cyclic dependencies. J.
Comput. Phys. 425 (2019), 109892.

https://github.com/burtscher/ECL-SCC
https://github.com/burtscher/ECL-SCC
https://cs.txstate.edu/~burtscher/research/ECL-SCC/
https://cs.txstate.edu/~burtscher/research/ECL-SCC/
http://sparse.tamu.edu
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/SC.2018.00061
https://doi.org/10.1145/2458523.2458533
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1109/IPDPS.2012.79
https://doi.org/10.1109/IPDPS.2012.79
https://doi.org/10.1109/DCC.2002.999950
https://doi.org/10.1145/1989323.1989419

	Abstract
	1 Introduction
	2 Background and Related Work
	3 ECL-SCC Algorithm and Implementation
	3.1 Algorithm Illustration
	3.2 ECL-SCC Guarantees
	3.3 Performance Enhancements
	3.4 Parallelization

	4 Evaluation Methodology
	4.1 Graphs for Radiative Transfer Applications

	5 Results
	5.1 Throughput Comparison
	5.2 Optimization Evaluation

	6 Summary
	Acknowledgments
	References

