
A Module-based Approach to Adopting the 2013 ACM
Curricular Recommendations on Parallel Computing

Martin Burtscher
Texas State University

burtscher@txstate.edu

Wuxu Peng
Texas State University
wuxu@txstate.edu

Apan Qasem
Texas State University
apan@txstate.edu

Hongchi Shi
Texas State University
hs15@txstate.edu

Dan Tamir
Texas State University
dt19@txstate.edu

Heather Thiry
University of Colorado

heather.smith@colorado.edu

ABSTRACT
The widespread deployment of multicore systems over the
last decade has brought about major changes in the software
and hardware landscape. The resulting importance of paral-
lel computing is reflected in the 2013 Curriculum Guidelines
developed by the joint ACM/IEEE taskforce. The docu-
ment recommends increased coverage of parallel computing
and describes a new Knowledge Area on this topic. These
recommendations have already been adopted by several uni-
versities in the form of new parallel-programming courses.
Implementing the recommendations in a complete curricu-
lum, however, poses many challenges, including deciding on
existing material to be removed, complying with adminis-
trative and ABET requirements, and maintaining caps on
graduation credit hours. This paper describes an alterna-
tive approach for adopting the 2013 curricular recommenda-
tions on parallel computing. Specifically, we use a module-
based approach that introduces parallel computing concepts
and re-iterates them through a series of short, self-contained
modules taught across several lower-division courses. Most
of these concepts are then combined into a new senior-level
capstone course on parallel programming. Each module cov-
ers parallelism aspects in the context of a conventional com-
puter science topic, thus enabling us to include parallel com-
puting without a major overhaul of the curriculum. Eval-
uations conducted during the first year show encouraging
results for this early-and-often approach in terms of learn-
ing outcomes, student interest, and confidence gains.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Curriculum

Keywords
parallel computing, module-based instruction, pedagogy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15 March 04-07 2015, Kansas City, MO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677270.

1. INTRODUCTION
The broad adoption of multicore-based computer systems

over the last decade has introduced unprecedented chal-
lenges to programmers, who, for the first time, have to find
ways to take advantage of multiple threads. Because almost
all legacy software was developed to run on a single thread,
most programmers lack the skills, knowledge, and experience
needed to safely and effectively exploit parallelism. Thus, it
is paramount that the next generation of software developers
be trained in parallel programming.

In response to this shift in industry, the computer sci-
ence education community has made efforts to increase the
amount of parallel and distributed computing (PDC) con-
cepts in the curriculum. New classes in parallel and dis-
tributed programming have been added and existing courses
have been bolstered with PDC content. Recently and most
notably, the ACM/IEEE joint taskforce on computing cur-
ricula has published its guidelines for undergraduate degree
programs (henceforth referred to as ACM2013) [3]. This
document puts special emphasis on PDC, which has been
designated as a new Knowledge Area. Unlike all previous
versions, ACM2013 now mandates the inclusion of several
core hours of PDC in every CS curriculum.

There are many challenges to implementing the ACM2013
recommendations on parallel computing. Creating a new
course or offering an existing course on PDC more frequently
gives students the option to be exposed to these concepts.
However, making such a course a required part of the cur-
riculum is often problematic because of the cap on the num-
ber of credit hours. For instance, in Texas this cap is 120
hours for undergraduates, and at Texas State University
more than half of those hours come from non-major areas.
These constraints imply that another course covering some
fundamental aspects of computer science would need to be
eliminated before a new course can be made a requirement.
Furthermore, the Knowledge Units in PDC are such that
they are better covered in multiple courses for pedagogical
reasons, as recommended in ACM2013.

Distributing the PDC concepts over multiple courses raises
several pedagogical, curricular, and administrative challenges.

• Identifying courses for inclusion: The merit of teach-
ing sequential programming as a special case of par-
allel programming is still under debate, which is why
it is not advocated in ACM2013. Hence, the current
direction dictates that PDC be introduced in lower-
level courses within the paradigm of sequential pro-

gramming. Identifying courses where PDC material
can be taught without disrupting the flow of content
while satisfying the pre-requisite structure is difficult.

• Adjusting existing content: Introducing new material,
particularly in lower-division courses, implies that some
existing content needs to be eliminated or condensed.
It is not readily apparent what this content should be,
making it difficult to insert new topics. An even less
desirable approach is to concentrate all material in a
core upper-level course (e.g., Programming Languages
or Operating Systems) where there is some flexibility
in organizing the material. Several of the example cur-
ricula presented in ACM2013 take this approach. How-
ever, by their own admission, this does not provide the
coverage of many of the Tier 2 core topics [3].

• Faculty training: Faculty teaching introductory courses
may not have sufficient experience teaching PDC top-
ics. In many institutions, introductory courses are
staffed by a rotating pool of adjunct faculty. This
makes it difficult to provide adequate training or main-
tain consistency across sections of lower-level courses,
further complicating the adoption of PDC material.

• Administrative issues: At many universities, curricu-
lum revisions require a rather involved process, moving
through departmental, college, and university curricu-
lum committees. Changes may be further restricted to
satisfy the timeline for curriculum cycles.

This paper describes our method to adopting the ACM2013
curricular recommendations on parallel computing that ad-
dresses the above issues. In our early-and-often approach,
parallel computing concepts are introduced and reiterated
through a series of short, self-contained modules across sev-
eral lower-division courses. Most of these concepts are later
combined in a newly designed senior-level capstone course
on parallel programming. The development and deployment
of the modules are based on three key principles (described
in Section 3) that provide pedagogical advantages and facil-
itate a gradual migration to a PDC-enhanced curriculum.

2. BACKGROUND
Although parallel computing has been an important area

within computer science for decades, it did not find its way
into mainstream undergraduate CS curricula until recently.
Efforts at integrating parallelism can be divided into two
periods, delineated by the advent of multicore processors.

2.1 Pre-multicore era integration efforts
Early efforts at integration mostly involved developing an

upper-level elective covering various aspects of parallel com-
puting [10] or an elective that focused solely on a specific
parallel programming paradigm [6, 9]. These courses were
primarily offered at universities that had faculty with re-
search interests in parallel and high-performance computing.
The cost of parallel computers further limited the offering
of such courses to larger research-oriented universities [6]. A
survey of CS undergraduate curricula at 40 universities of
varied orientation (e.g., liberal arts, masters, R1 research)
conducted by the authors in 2009 revealed a similar trend1.
Prior to the multicore shift, there had been only a few efforts
at a more holistic integration of parallel computing into the

1The survey was conducted as part of a proposal to NSF
and was not published independently.

curriculum [12]. Most of these efforts either did not sustain
or were not adopted beyond the originating college.

2.2 Multicore era integration efforts
The industry-wide shift to multicore processors provided

strong impetus for integrating PDC into the undergradu-
ate curriculum. Many more parallel computing courses are
now being offered with greater regularity. Curricular revi-
sions are also under way to include more parallelism. The
Georgia Institute of Technology has adopted a rolling intro-
duction to parallel computing concepts in both its CS and
ECE curricula [7]. The wide availability of multicore sys-
tems has made parallel computers much more affordable.
This has allowed smaller liberal arts colleges to incorporate
parallelism in their courses. In fact, many of the recent in-
tegration efforts have been initiated at such colleges [5, 8].

There are also endeavors at building communities to en-
courage and aid the adoption of PDC topics across univer-
sities, notably the CSinParallel project, whose aim it is to
insert parallel computing concepts into various CS courses
in multiple curricular contexts [2]. The formation of the
TCPP Curriculum committee on PDC by the IEEE and the
National Science Foundation is another notable endeavor in
the same direction. This multi-institutional committee or-
ganizes many activities to encourage adoption of PDC at
universities both nationally and internationally [4]. The suc-
cess of this committee has led to the formation of the CDER
Center, a larger body with similar goals [1].

2.3 PDC in ACM2013
ACM2013 underlines the need for integrating Parallel and

Distributed Computing into undergraduate CS curricula and
includes PDC as a new Knowledge Area. The topics within
the PDC area are broken down into nine Knowledge Units.
Furthermore, parallelism-related concepts also appear in the
System Fundamentals Knowledge Area. Five Core Tier 1
hours on PDC are now recommended, compared to zero in
the previous version of the guidelines. An extra 10 hours of
Core Tier 2 is also recommended. ACM2013 clearly states
the need for spreading PDC topics across many courses in
addition to offering a dedicated course on parallelism. It
includes four example curricula, all of which demonstrate
increased emphasis on parallel computing.

3. OUR APPROACH
For bringing the ACM2013 recommendations to our uni-

versity (and similar institutions), we employ the early-and-
often approach originally proposed by Brown et al. [2]. This
strategy introduces PDC concepts through a series of mod-
ules dispersed across several courses. In our implementa-
tion, we put special emphasis on the coverage of topics in
each module individually and as a sequence. We also pay
attention to when they are taught. As depicted in Fig. 1, the
key idea is to provide sufficient intersection with PDC topics
on every major path through the curriculum. This ensures
that students attain a broad perspective on parallel and dis-
tributed computing, irrespective of their choice of electives.
The development and deployment of the modules is based on
three key principles that provide certain pedagogical advan-
tages and facilitate a gradual migration to a PDC-enhanced
curriculum. We discuss these principles next.

(1) Introduce concepts at the right level of abstrac-
tion: To gain mastery in parallel programming (and se-

Data	
 and	
 Task	
 Parallelism	

Divide-­‐and-­‐conquer	

Dynamic	
 Programming	

B.	
 Paralleliza+on	
 Techniques	

and	
 Parallel	
 Algorithms	

	

	

	

Communica9on	

Synchroniza9on	

Scheduling	
 for	
 Power	
 and	

Performance	

Data	
 Dependence	

	

D.	
 Task	
 Orchestra+on	

	

	

SMP,	
 Clusters	

NUMA,	
 UMA	

Cache	
 Sharing	

Cache	
 Coherence	

	

	

	

C.	
 Parallel	
 Architectures	

	

	

Speedup	

Efficiency	

Scalability	

Cache	
 Locality	

Load	
 Balancing	

Complexity	

Analysis	

E.	
 Performance	

	

	

	

Concurrency	
 and	
 Parallelism,	
 Decomposi9on	

Power	
 and	
 Performance	

	

	

A.	
 Elementary	
 No+ons	

low

high

Level of
A

bstraction

Figure 2: Module classification based on level of abstraction

upper-­‐
level	

elec*ve	

	
 m
ajor	

path	

capstone	

	
 m
ajor	

path	

early	

introduc*on	

reinforce
ment	

colla*on	

isolated	

coverage	

C
on

ve
nt

io
na

l A
pp

ro
ac

h
E

ar
ly

-a
nd

-O
fte

n
A

pp
ro

ac
h

Figure 1: The one-elective (top) and our early-and-
often (bottom) approach of introducing PDC

quential programming, for that matter), students need to
learn how to think about problems at different levels of ab-
straction and acquire the ability to switch between levels.
Nevertheless, it is important to determine the right level
of abstraction for introducing different aspects of parallel
problem solving as exposing students to multiple levels all
at once can create confusion. We advocate an approach
that starts with the most abstract forms of concurrency and
progressively reveals lower-level mechanisms. For example,
students can learn about Amdahl’s law for parallel programs
without being able to write parallel programs; therefore, this
topic can already be introduced in a CS I module. Fig. 2
shows a classification of module topics based on the level of
abstraction. Higher-level concepts are introduced first and
reinforced in subsequent years as students are gradually ex-
posed to lower-level ideas. Some topics, such as performance
of parallel programs, span multiple levels of abstraction and
are covered in several modules.

(2) Provide “parallel context” to key topics in the
existing curriculum: Many theories and concepts covered
throughout the CS curriculum can enhance a student’s com-
prehension of parallel computing principles. However, such
topics are often not taught in a parallel context. For exam-
ple, almost all data structures courses introduce recursion,
and, in many cases, a divide-and-conquer algorithm is used
as a primary example. Yet, the fact that divide-and-conquer
algorithms naturally lend themselves to parallelism is rarely

emphasized. Our approach incorporates parallel context in
key topics such as divide-and-conquer algorithms. Since the
modules are dispersed over several courses and do not intro-
duce completely new concepts but rather extend topics that
are already being covered, they can be introduced with min-
imal disruption of the original course schedule and content.

(3) Encourage adoption: For our approach to be suc-
cessful, the modules need to be easy to adopt such that even
an instructor with no prior experience in teaching parallel
computing can seamlessly plug them into her course. With
this goal in mind, the modules are designed to be short (1-3
hours) and self-contained. They include lecture notes, as-
signments, exercises, exam questions, solutions, and ped-
agogical notes. Although the modules follow a textbook
treatment of the material, they are not tied to any spe-
cific textbook and are designed to be mostly programming
language independent. Examples and assignments are cre-
ated for multiple languages, APIs, and platforms, enabling
straightforward adoption at other institutions.

4. IMPLEMENTATION
We began implementing the early-and-often approach at

Texas State in Fall 2012. In this section, we describe our
implementation efforts over the past two years.

4.1 Curriculum Overview
Our university offers both a Bachelor of Arts (BA) and a

Bachelor of Science (BS) degree in computer science. The
difference between the two programs in terms of major courses
is minimal, and the described strategy applies equally to
both programs. Thus, we only discuss the BS curriculum,
an overview of which is shown in Fig. 3. Not all electives are
listed and only Discrete Math is included among the required
math courses. The students have to take an additional 46
credit hours of General Education Core, which is not shown
in Fig. 3. The CS introductory sequence has a hardware
and a software track. In the hardware track, the students
progress through CS I, Assembly, Digital Logic, and Com-
puter Architecture. In the software sequence, the students
move through CS I, CS II, and Data Structures2. Software
Engineering and Object Oriented Design and Implementa-
tion (OODI) serve as two required capstone courses. Embed-
ded Systems and Human Factors are two of the three project
courses that our students are required to take. Hence, most
of them will take one of these courses while pursuing their
undergraduate degree.

2This course doubles as an Algorithms course.

A

AB AB

AB

Computer	
 Ethics	

Computer	

Networks	

Opera4ng	

Systems	

freshm
an	

senior	

Discrete	
 Math	

Object	
 Oriented	
 Design	
 Human	
 Factors	

sophom
ore	

junior	

CS	
 I	

A	

CS	
 II	

A,	
 B,	
 E	

Assembly	

A,	
 C,	
 E	

Data	
 Structures	
 	

A,	
 B,	
 E	

Computer	
 Architecture	

C,	
 E	

Digital	
 Logic	

A,	
 C	

Embedded	
 Systems	

C	

SoEware	
 Engineering	

D	

D,	
 E	

Parallel	
 Programming	

A,	
 	
 B,	
 C,	
 D,	
 E	

Compilers	

C,	
 E	

D	

Special	
 Topics	

B,	
 C,	
 D,	
 E	

prerequisite

required course

project-elective

elective

module introduced

 module planned

A	

A	

Figure 3: Computer science curriculum and mapping of PDC modules to major courses

Module Category ACM2013 PDC Knowledge Unit
A. Elementary Notions Parallelism Fundamentals (PF)
B. Parallel Algorithms Parallel Decomposition (PD)

Parallel Algorithms (PA)
C. Parallel Architecture Parallel Architecture (PR)
D. Task Orchestration Communication & Coordination (CC)
E. Parallel Performance Parallel Performance (PP)

Table 1: Module categories and their correspon-
dence to ACM2013 Knowledge Units

4.2 Coverage of ACM2013 Knowledge Units
To date, we have developed seven modules covering var-

ious aspects of parallel computing. These modules are di-
vided into five categories indexed A through E. The module
categories and the ACM2013 Knowledge Units (KU) they
correspond to are shown in Table 1. The planning and de-
velopment of the modules began prior to the publication of
ACM2013. For this reason, our classification differs slightly
from the ACM2013 mandated KUs. This difference is only
nominal, however. As shown in Table 2, our module top-
ics map closely to the topics of the corresponding KUs in
ACM2013. For instance, module A in Elementary Notions
covers all four topics (and corresponding learning outcomes)
of the Parallelism Fundamentals KU. Combined, the seven
modules provide coverage of all Tier 1 Core topics and most
Tier 2 Core topics in the Parallel Algorithms and Parallel
Performance KUs.

4.3 Module Placement
Because of the 120-hour cap on graduation hours and

many of our students’ dependence on financial aid, most
CS majors only end up taking about four or five upper-level
electives before graduating. This makes careful planning of
module integration vital to the success of our strategy.

Before implementing our strategy, we first performed a de-
tailed review and analysis of the material covered in each of
our introductory sequence courses and several upper-level
electives. In reviewing the existing content, we had two

ACM2013 PDC Knowledge Unit
Courses PF PD CC PR PA PP
CS I 0.75 0.25
CS II 0.5 0.5 0.25 0.25
Computer Ethics
Assembly 0.5 0.5
Digital Logic 0.5 0.5
Data Structures 0.25 0.5 0.5 0.5
Computer Architecture 0.25 1 0.5
OODI 1 0.5
Software Engineering 1
Embedded Systems 1
Operating Systems 1 0.5
Other Elective
Total 2.75 2 1.75 3 2 1.5

Table 3: PDC coverage in CS major path (grey cells
refer to Tier 2 topics)

goals: (i) to find context for introducing parallel topics and
(ii) to identify content that has been removed or de-emphasized
in ACM2013. Based on this analysis, we constructed a map-
ping of our modules to various courses in the curriculum.
This mapping is illustrated in Fig. 3. We found opportu-
nities for introducing modules in four introductory courses,
both in the hardware and the software track. We also dis-
covered opportunities in four upper-level required courses.
Computer Ethics is the only required course where we could
not place a module. We identified several electives as good
candidates for module integration as shown in Fig. 3.

Most of these opportunities have already been exploited
(shown in green text in Fig. 3). We plan to introduce more
modules in future years. However, as the data in Table 3
show, our current implementation already provides excel-
lent coverage of ACM2013 PDC topics. A typical major
will encounter 8.5 Tier 1 hours and 4.5 Tier 2 and elec-
tive hours even without taking the Parallel Programming
capstone course. It should be noted, though, that several
concepts are reiterated throughout the modules. Hence, the

Module Topics in ACM2013 PDC Knowledge Units
1a 1b 1c 1d 2a 2b 3a 3b 4a 4b 4c 4d 5a 5b 5c 5d 6a 6b 6c 6d 6e 6f

A x x x x x x x x x x
B x x x x x x x x x x
C1 x x x x x x x
C2 x x x x x x x
D1 x x x x x x x
D2 x x x x x x x x
E x x x x x x x x

Table 2: Coverage of ACM2013 topics in PDC modules. Topics are numbered sequentially starting with first
Knowledge Unit (i.e., 1a denotes the first topic in KU Parallelism Fundamentals)

0%

10%

20%

30%

40%

50%

very
good

good fair poor very poor

Fr
ac

tio
n

of
 T

ot
al

 R
es

po
ns

es

Figure 4: Student performance on PDC topics in all
courses where a module was introduced (2013-14)

9.5 cumulative hours in Tier 1 do not quite represent 9.5
hours of coverage of distinct PDC topics.

5. EVALUATION
We instated two forms of evaluation during the first year.

The assessment plan for the student learning outcomes was
designed by the involved faculty whereas the teaching effec-
tiveness and student engagement was evaluated through an
independent external evaluator. Additionally, we began col-
lecting and compiling data for a longitudinal study in which
we evaluate student performance in the capstone Parallel
Programming course in relation to the number of modules
the students have encountered as they progressed through
the program. At this time, we do not have sufficient lon-
gitudinal data to present because only a few students have
completed the capstone course who have also taken a class
with a PDC module. We hope to publish these results by
the end of 2015.

The modules were implemented in 13 sections of six differ-
ent courses over three semesters. The combined enrollment
in these sections was 323. Seven instructors were involved
in teaching the modules in the various sections.

5.1 Learning Outcome
For each section in which a module was introduced, a final

exam question was prepared to assess student comprehen-
sion of the material covered. Although programming assign-
ments and homeworks were associated with most modules,
for consistency, we only considered student performance on
final exam questions to evaluate the learning outcome. Aside
from numeric scoring (which was different for different sec-
tions), a rubric was created for each question that graded
the student responses on a scale of very poor, poor, fair,
good, and very good. Fair or better was considered a pass-
ing grade.

Fig. 4 shows the resulting student performance on the
final exam questions in all courses where a module was im-

plemented. We observe a satisfactory learning outcome for
students who were introduced to new PDC concepts. Over-
all, 67% of the students received a passing grade on the exam
questions. This rate is slightly higher than all majors who
score a C or better in these courses.

0%

10%

20%

30%

40%

50%

very
good

good fair poor very poor

Fr
ac

tio
n

of
 T

ot
al

 R
es

po
ns

es

lower-division
upper-division

Figure 5: Comparison of student performance in
lower- and upper-division courses

Fig. 5 compares the student performance in lower- and
upper-division courses. We were apprehensive that the stu-
dents may perform poorly in some of the lower-division courses
because the topics appear to be too advanced to them. Yet,
somewhat surprisingly, the passing rate was higher (about
3%) in the lower-division courses, attesting to the suitability
of module placement.

After implementing a module for the first time, we ob-
tained feedback both from the instructor and the students
on the content and pedagogy. Then we revised and improved
the modules based on this feedback. Fig. 6 compares the stu-
dent performance in courses where a module was introduced
for the first time to courses where a revised module was in-
troduced. As we can see, there is almost a 17% increase
in the passing rate when a revised module is taught, either
by the same instructor or by a different instructor. These
results suggest the need for iterative improvement and ad-
justment of each module.

5.2 Student Interest and Learning Experience
We conducted an independent external evaluation to as-

sess changes in student confidence and interest in computer
science as well as the students’ perceptions of their classroom
learning experiences. To obtain these measurements, the
Student Assessment of Learning Gains (SALG) survey [11]
was administered electronically at the end of the semester
to the students enrolled in courses where a module was in-
troduced.

The strongest reported gains were in confidence and in-
terest in computer science in general and parallel computing
in particular. The students also thought that the learning

0%

10%

20%

30%

40%

50%

very
good

good fair poor very poor

Fr
ac

tio
n

of
 T

ot
al

 R
es

po
ns

es

Initial
Revised

Figure 6: Comparison of student performance dur-
ing first and second installment of same module

3.38

3.3

3.25

3.24

2.0 2.5 3.0 3.5 4.0

Confidence	
 and	

Interest	
 Gains	

Learning	
 Experiences	

Support	
 for	
 Learning	
 	

Class	
 Ac:vi:es	

Scale Mean (4.0 point scale)

Figure 7: External evaluation summary

experiences and instructional environment in the classroom
helped their learning. They rated their interactions with
peers and instructors positively and reported that specific
class activities, such as lectures, examples, and asking ques-
tions, were helpful. The students were slightly positive that
course assignments, projects, and tests helped their learning.

Fig. 7 summarizes the scale means of the total sample
of students from the four SALG survey scales. Next, we
highlight specific aspects of this assessment.

Fig. 8 provides a course-wise breakdown of student re-
sponses with respect to their learning experience, and confi-
dence and interest gains. The students rated the learning en-
vironment in their course positively. Fig. 8 shows the course
means for the “learning experiences scale”, which measures
the efficacy of the general instructional approach and cur-
riculum in the course. The learning environment in each
course was rated between“somewhat helpful”(3.0) and“very
helpful” (4.0). The mean over all courses was 3.3. The dif-
ferences among the courses are not statistically significant.
Thus, the students were generally satisfied with the teach-
ing strategies in all courses. For instance, 89% of the stu-
dents found the “instructional approach taken in this class”
to be “somewhat” or “very” helpful. Similarly, 88% of stu-
dents felt that their learning was enhanced by the way that
the class sessions, activities, and assignments fit together.
Overall, 75% of the students reported that the course had
increased their “enthusiasm for this subject” a moderate or
great amount. 92% of the students reported that the course
had increased their interest in taking more CS courses.

6. CONCLUSIONS
In this paper, we present a strategy for adopting the ACM2013

recommendations that does not require a major overhaul of
the curriculum. Our approach addresses several challenges
commonly faced when incorporating a substantial amount

2.0 2.5 3.0 3.5 4.0

4328

3358

3339

2318

2308

ALL

Scale Mean (4.0 point scale)

Confidence	

Learning	

Figure 8: Student learning experience, confidence
and interest gains

of new material into an existing curriculum. We have im-
plemented this strategy at our university and so far achieved
reasonable success in terms of student learning outcome, en-
gagement, and interest.

Acknowledgements
This work was funded by the National Science Foundation
under grants DUE-1141022 and CNS-1253292.

7. REFERENCES
[1] Center for parallel and distributed computing

curriculum development and educational resources
(CDER). http://www.cs.gsu.edu/~tcpp.

[2] CSinParallel Project. http://csinparallel.org/.

[3] ACM IEEE Joint Task Force on Computing
Curricula, Computer Science Curricula
Recommendation and Guidelines 2013, 2013.

[4] NSF/IEEE-TCPP Curriculum Initiative on Parallel
and Distributed Computing.
http://www.cs.gsu.edu/~tcpp/curriculum, 2013.

[5] D. J. Ernst and D. E. Stevenson. Concurrent cs:
Preparing students for a multicore world. SIGCSE
Bull., 40(3):230–234, June 2008.

[6] A. L. Fisher and T. Gross. Teaching the programming
of parallel computers. In Proceedings of the
Twenty-second SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’91, pages
102–107, New York, NY, USA, 1991. ACM.

[7] Y. S. Gavrilovska H. H., Schwan L. K. and W. M.
Multi-core curriculum development at georgia tech:
Experience and future steps. In UCRC Workshop on
Experimental Research in Computer Systems, 2006.

[8] J. R. Graham. Integrating parallel programming
techniques into traditional computer science curricula.
SIGCSE Bull., 39(4):75–78, Dec. 2007.

[9] J. Hartman and D. Sanders. Teaching a course in
parallel processing with limited resources. SIGCSE
Bull., 23(1):97–101, Mar. 1991.

[10] D. G. Hyde. A parallel processing course for
undergraduates. SIGCSE Bull., 21(1), 1989.

[11] E. Seymour, D. Wiese, A. Hunter, and S. M.
Daffinrud. Creating a better mousetrap: On-line
student assessment of their learning gains. In National
Meeting of the American Chemical Society, 2000.

[12] W. E. Toll. Decision points in the introduction of
parallel processing into the undergraduate curriculum.
SIGCSE Bull., 27(1):136–140, Mar. 1995.

