
P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution: A Prefetching Mechanism
that Uses Multiple Cores to Speed up
Single Threads

ILYA GANUSOV and MARTIN BURTSCHER

Cornell University

This paper describes future execution (FE), a simple hardware-only technique to accelerate indi-
vidual program threads running on multicore microprocessors. Our approach uses available idle
cores to prefetch important data for the threads executing on the active cores. FE is based on
the observation that many cache misses are caused by loads that execute repeatedly and whose
address-generating program slices do not change (much) between consecutive executions. To exploit
this property, FE dynamically creates a prefetching thread for each active core by simply sending
a copy of all committed, register-writing instructions to an otherwise idle core. The key innovation
is that on the way to the second core, a value predictor replaces each predictable instruction in the
prefetching thread with a load immediate instruction, where the immediate is the predicted result
that the instruction is likely to produce during its nth next dynamic execution. Executing this mod-
ified instruction stream (i.e., the prefetching thread) on another core allows to compute the future
results of the instructions that are not directly predictable, issue prefetches into the shared memory
hierarchy, and thus reduce the primary threads’ memory access time. We demonstrate the viability
and effectiveness of future execution by performing cycle-accurate simulations of a two-way CMP
running the single-threaded SPECcpu2000 benchmark suite. Our mechanism improves program
performance by 12%, on average, over a baseline that already includes an optimized hardware
stream prefetcher. We further show that FE is complementary to runahead execution and that the
combination of these two techniques raises the average speedup to 20% above the performance of
the baseline processor with the aggressive stream prefetcher.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Ar-
chitectures (Multiprocessors)

General Terms: Design, Performance

Additional Key Words and Phrases: Future execution, prefetching, memory wall, chip multi-
processors

1. INTRODUCTION

The cores of modern high-end microprocessors deliver only a fraction of their
theoretical peak performance. One of the main reasons for this inefficiency is the

Authors’ address: Ilya Ganusov and Martin Burtscher, Computer Systems Laboratory, Cornell
University, Frank H.T. Rhodes Hall, Ithaca, NY 14853; email: {ilya,burtscher}@csl.cornell.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1544-3566/06/1200-0001 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006, Pages 1–26.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

2 • I. Ganusov and M. Burtscher

long latency of memory accesses. Often, load instructions that miss in the on-
chip caches reach the head of the reorder buffer before the data is received, thus
stalling the processor. As a consequence, the number of instructions executed
per unit time is much lower than what the CPU is capable of handling.

Prefetching techniques have been instrumental in addressing this problem.
Prefetchers attempt to guess what data the program will need in the future
and fetch them in advance of the actual program references. Correct prefetches
can thus reduce the negative effects of long memory latencies. While existing
prediction-based prefetching methods have proved effective for regular appli-
cations, prefetching techniques developed for irregular codes typically require
complicated hardware that limits the practicality of such schemes.

This paper proposes a new approach to hide the latency of cache misses in
both regular and irregular applications using relatively modest hardware sup-
port. We call our approach future execution (FE). The design of the FE mech-
anism was inspired by the observation that most cache misses are caused by
repeatedly executed loads with a relatively small number of dynamic instruc-
tions between consecutive executions of these loads. Moreover, the sequence of
executed instructions leading up to the loads tends to remain similar. Hence,
for each executed load, there is a high probability that the same load will be
reexecuted soon. Therefore, whenever a load instruction is executed, we issue
a copy of that load in another core of the same CMP with the address for the
nth next instance to perform a prefetch into the shared memory hierarchy.

Value predictors can be used to determine the likely address each load is
going to reference in the nth next “iteration.” However, many important load
addresses are not directly predictable. Fortunately, even if a missing load’s
address exhibits no regularity and is thus unpredictable, it is often possible
to correctly predict the input values to its data-flow graph (backward slice)
and thus to compute a prediction for the address in question. Since the same
sequence of instructions tends to be executed before each critical load, the data-
flow graph stays largely the same. Exploiting this property, future execution
predicts all predictable values in the program and then speculatively computes
all values that are reachable from the predictable ones in the program’s data-
flow graph, which greatly increases the number of instructions for which an
accurate prediction is available.

Our mechanism uses a second core in a CMP to perform the future execution.
We propose to use an idle core instead of a specialized execution engine, because
it simplifies the design and allows the idle execution resources of the second
core to be put to good use. Whenever additional threads need to be run on the
CMP, the prefetching activity is canceled so that the second core can be utilized
by another thread for nonspeculative computation.

The FE mechanism works as follows. The original unmodified program exe-
cutes on the first core. As each instruction commits, it updates the value predic-
tor with its current result. A prediction is then made to obtain the likely value
the instruction is going to produce during its nth next execution. If the confi-
dence of the prediction is high, the instruction is replaced with a load-immediate
instruction, where the immediate is the predicted result. Instructions with a
low prediction confidence remain unmodified. After that, the processed stream

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 3

of instructions is sent to the second core, where it is injected into the dispatch
stage of the pipeline. Instructions are injected in the commit order of the first
core to preserve the program semantics. Since we assume that the same se-
quence of instructions will reexecute in the future, the second core essentially
executes n “iterations” ahead of the nonspeculative program running in the first
core. The execution of each instruction in the second core proceeds normally,
utilizing the future values. Loads are issued into the memory hierarchy using
speculative addresses and instructions commit upon reaching the head of the
ROB, ignoring all exceptions.

All major high-performance microprocessor manufacturers have announced
or are already selling chips with at least two cores. Future generations of these
processors will undoubtedly include more cores. While multiple cores are ben-
eficial in multiprogrammed environments, the performance of individual com-
putation threads does not improve and may even suffer a penalty because of
increased contention for shared-memory hierarchy resources. In many cases,
a programmer might have to manually parallelize applications in order to get
a benefit from multiple cores, which increases the software complexity and
cost. In light of this trend, architectural techniques that smooth the transi-
tion from single to multicore computing are becoming very important [Rattner
2005]. We believe that future execution provides a way for multicore proces-
sors to provide immediate benefits and presents a relatively simple yet effec-
tive architectural enhancement to exploit additional cores to speed up indi-
vidual threads without the need for any programmer intervention or compiler
support.

Future execution presents a novel way of generating prefetch addresses for
loads, producing irregular sequences of addresses that are not directly pre-
dictable. Unlike previous proposals on prefetching via preexecution [Moshovos
et al. 2001; Roth and Sohi 2001; Roth et al. 1998], FE does not require explicit
program data-flow analysis to extract prefetching threads, either in software
or hardware. In addition, future execution can prefetch dynamically distant
misses and cover very long load latencies. Furthermore, it allows to adaptively
change the prefetching distance n through a simple adjustment in the predic-
tor. Finally, FE requires no live-in register variables from the target thread. As
a consequence, it has a low thread startup cost (no hardware context needs to
be copied) and can instantly stop or resume the execution of the prefetching
thread depending on the availability of an idle core.

The next section discusses the implementation of the FE microarchitecture.
We start by presenting a quantitative analysis of the observations that inspired
our design. We then focus on the hardware support necessary to implement
FE. We made an effort to minimize the complexity and to move most of the
added hardware out of the core. Next, we show that our simple implementation
delivers an average speedup of 25% on SPECcpu2000 programs relative to a
conventional superscalar core. Compared to a baseline with an aggressive hard-
ware stream prefetcher, FE still provides an average speedup of 12%. Finally,
we demonstrate that future execution is complementary to prefetching based
on runahead execution and that both approaches exhibit significant synergy
when used together.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

4 • I. Ganusov and M. Burtscher

Fig. 1. Execution distance measured in number of instructions between the loads that result in
an L2 cache miss and the previous dynamic execution of the same static loads.

2. MOTIVATION

In this section we present a quantitative analysis of the common program prop-
erties that are exploited by future execution. All results are obtained using the
benchmark suite and baseline microarchitecture described in Section 4.

One of the main program properties exploited by FE is that most load misses
occur in “loops” with relatively short iterations. Note that we call any repeti-
tively executed instruction a loop instruction and that FE is completely unaware
about the location of loops in a program. Figure 1 presents the breakdown of
the distance between the load instructions that cause an L2 cache miss and
the previous execution of the same load instruction. The bars are broken down
by distance: fewer than 100, between 100 and 1000, and between 1000 and
10,000 dynamic instructions. The taller the bar, the more often that range of
instruction distances occurred. The total height of the bar represents the frac-
tion of L2 cache misses that occur in loops with less than 10,000 instructions
per iteration.

The data show that, on average, from 70 to 80% of the misses occur in loops
with iterations shorter than 1000 instructions. This observation suggests a
prefetching approach in which each load instruction triggers a prefetch of the
address that the same load is going to reference in the nth next iteration. Since,
in most cases, the time between the execution of a load instruction and its next
dynamic execution is relatively short, this approach is unlikely to prefetch much
too early.

Analyzing the instructions in the data-flow graphs of the problem loads, we
found that while problem load addresses might be hard to predict, the inputs
to their data-flow graphs often are not. Therefore, even when the miss address
itself is unpredictable, it is frequently possible to predict the input values of the
instructions leading up to the problem loads and thus to compute an accurate
prediction by executing these instructions.

Figure 2 shows the breakdown of the load-miss addresses in the SPEC-
cpu2000 programs that can potentially be predicted and prefetched by fu-
ture value prediction and by future execution one iteration ahead of the main

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 5

Fig. 2. Distribution of cache-miss addresses that can be correctly predicted directly by a future
value predictor (fvpred) and using future execution (fexec).

program execution. The lower portion of each bar represents the fraction of
misses that is directly predictable by a stride-two-delta (ST2D) value predictor
[Sazeides and Smith 1997]. The upper bar shows how many miss addresses
that are not predictable by the ST2D predictor can be correctly obtained by
predicting the inputs of the instructions in the data-flow graph of the missing
loads with the ST2D predictor and computing the resulting address. The height
of the stacked bar indicates the total fraction of misses that can potentially be
correctly predicted. To measure the potential prediction coverage of future ex-
ecution, we reconstruct the data-flow graph of each problem load whenever a
cache miss occurs, compare it to the data-flow graph of the same static load
during its previous execution, extract the part of the data-flow graph that is
the same, and then check if the values provided by the future value predic-
tor during the previous execution would have allowed to correctly compute the
load address referenced by the load instruction in the current iteration. We
limit the size of the data-flow graph that we analyze to 64 instructions. This
potential study ignores the effects of unpredictable loop-carried dependencies
passed through memory, i.e., all load instructions with predictable addresses
are assumed to fetch correct data one iteration ahead.

Figure 2 illustrates that while value prediction alone is quite effective for
some applications, future execution can significantly improve the fraction of
load miss addresses that can be correctly predicted and prefetched. One-half
of the SPECcpu2000 programs experience a significant (over 10%) increase in
prediction coverage when future execution is employed in addition to value
prediction.

Figure 3a shows a code example that exhibits the program properties dis-
cussed above. An array of pointers A is traversed, each pointer is dereferenced,
and the resulting data are passed to the function “foo.” Assume that the data
referenced by the elements of array A are not cache-resident. Further assume
that there is little or no regularity in the values of the pointers stored in A. Un-
der these assumptions each execution of the statement data=*ptr will cause a
cache miss. As shown in Figure 3b, in machine code this statement translates
into a single-load instruction load r4, 0(r4) (highlighted in bold).

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

6 • I. Ganusov and M. Burtscher

Fig. 3. Code example.

A conventional predictor will not be able to predict the address of the prob-
lem instruction since there is no regularity in the address stream for this
instruction. However, the address references of instruction load r4, 0(r3) are
regular because each instance of this instruction loads the next consecutive el-
ement of array A. Therefore, it is possible to use a value predictor to predict the
memory addresses for this instruction, speculatively execute this instruction,
and then use the speculatively loaded value to prefetch the data for the prob-
lem load instruction. Since the control flow leading to the computation of the
addresses of the problem load remains the same throughout each loop iteration
(Figure 3c), a value predictor can provide predictions for the next iterations
of the loop and the addresses of the problem load will be computed correctly.
Therefore, sending the two load instructions to the second core in commit order
and future predicting the first instruction makes it possible to compute the ad-
dresses of the second load that will be referenced by the main program during
the next iterations.

3. IMPLEMENTATION OF FUTURE EXECUTION

Our implementation of future execution is based on a conventional chip mul-
tiprocessor. A high-level block diagram of a two-way CMP supporting FE is
shown in Figure 4. Both microprocessors in the CMP have a superscalar exe-
cution engine with private L1 caches. The L2 cache is shared between the two
cores. Conventional program execution is performed on the “left” core while
future execution is performed on the “right” core. To support FE, we introduce
a unidirectional communication link between the cores with a value predictor
attached to it. Both the communication link and the predictor are not on the
critical path and should not affect the performance of either core in a negative
way. The following subsections describe the necessary hardware support and
the operation of FE in greater detail.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 7

Fig. 4. The FE architecture.

3.1 Overview of Operation

Each register-writing instruction committed in the regular core is sent to the
second core via the communication link. The data that need to be transferred
to the second core include the decoded instruction, result value, and a partial
PC to index the value predictor table. Stores, branches, jumps, calls, returns,
privileged instructions, system calls, and arithmetic floating-point instructions
are not transmitted. If the communication link’s buffer is full, further commit-
ted instructions are dropped and not transmitted to the second core. Each sent
instruction passes through the value predictor, updates the predictor with its
current output, and requests a prediction of the value it is likely to produce in
the nth next dynamic instance. Each prediction is accompanied by a confidence
estimation [Lipasti et al. 1996].

If the confidence of the prediction is high, the corresponding instruction is
replaced by a load-immediate instruction, where the immediate is the predicted
result. If the predicted instruction is a memory load, an additional nonbinding
prefetch instruction for that load’s address is generated right before the load-
immediate instruction. This allows the future core to prefetch this data without
stalling the pipeline if the memory access misses in the cache. All instructions
with a low prediction confidence remain unmodified.

After that, the processed stream of committed instructions is sent to the
second core, where it is injected into the dispatch stage of the pipeline. Since
instructions are transmitted in decoded format, they can bypass the fetch and
decode stages. Instruction dispatch proceeds as normal—each instruction is re-
named and allocated a reservation station and a ROB entry if these resources
are available. Whenever the input values for the instruction are ready, it ex-
ecutes, propagates the produced result to the dependent instructions, and up-
dates the register file. If the instruction at the head of the ROB is a long latency
load, it is forced to retire after a timeout period that equals the latency of an
L2 cache hit. This approach significantly improves the performance of the FE
mechanism as it avoids stalling the pipeline. Timed-out instructions set the
invalid bit in the corresponding result register. The execution of instructions
that depend on the invalidated result is suppressed.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

8 • I. Ganusov and M. Burtscher

When entering FE mode, i.e., before the prefetching thread starts being in-
jected into the available idle core, all registers of that core are invalidated. This
flash invalidation of all registers occurs only once before the future execution
thread is launched. The invalid register bits are gradually reset by the exe-
cuted future instructions that have valid inputs. For example, load-immediate
instructions always make their target registers valid since they do not have
input dependencies. This register-invalidation policy suppresses the execution
of all further instructions whose inputs cannot be predicted or computed with
high confidence.

Note that the implementation of future execution in this paper differs from
the implementation used in previous studies [Ganusov and Burtscher 2005;
Ganusov 2005]. This study simplifies the implementation so that all instruc-
tion transformations take place outside the core. For example, our previous
implementation required special logic in the dispatch stage of the pipeline to
fill in the result field of the ROB and RS entries of FE instructions with pre-
dicted values. The implementation presented in this paper is more intuitive,
requires no additional dispatch logic to support future execution, and features
a simpler way to suppress the execution of unpredictable instructions.

3.2 Hardware Support

Future execution requires additional hardware support to transmit decoded
instructions, their result values, and partial PCs to the value predictor be-
tween the cores. Depending on the microarchitecture, the ROB may have to
be augmented to hold the necessary data until instruction retirement. In this
study, the communication bandwidth corresponds to the commit width (four
instructions/cycle), which we believe to be a reasonable bandwidth for a uni-
directional on-chip point-to-point link. Since it is rare for a microprocessor to
fully utilize its commit bandwidth for a long period of time, and because not
all instructions need to be transmitted to the second core, it may be possi-
ble to curtail the bandwidth without significant loss of performance. For ex-
ample, Section 5.4 demonstrates that the communication bandwidth can be
reduced to two instructions/cycle with little effect on the efficiency of the FE
mechanism.

The value-prediction module resides between the two CMP cores. We use a
relatively simple, PC-indexed stride-two-delta predictor [Sazeides and Smith
1997] with 4096 entries. The predictor estimates the confidence of each pre-
diction it makes using 2-bit saturating up–down counters. The confidence is
incremented by one if the predicted value was correct and decremented by one
if the predicted value was wrong. The particular organization of the value pre-
dictor is not essential to our mechanism and a more powerful predictor (e.g., a
DFCM predictor [Goeman et al. 2001]) may lead to higher performance.

To support the execution of the future instruction stream, a multiplexer has
to be added in front of the dispatch stage of the pipeline. In FE mode, the
multiplexer directs instructions to be fetched from the receive buffer of the
communication link. In normal mode, instructions are fetched by the processor’s
front end.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 9

Table I. Simulated Processor Parameters

Processor
Fetch/dispatch/commit width 4/4/4
I-window/ROB/LSQ size 64/128/64
Physical registers 184
LdSt/Int(IntMult)/FP units 2/4(2)/2
Branch predictor 16k-entry bimodal/gshare hybrid
RAS entries 16
BTB 2k entries, 2-way
Branch misprediction penalty Minimum 12 cycles

Memory Subsystem
Cache sizes 64kB IL1, 64kB DL1, 2MB L2
Cache associativity 2-way L1, 8-way L2
Cache load-to-use latencies 3 cyc L1, 12 cyc L2
Cache line sizes 64B L1, 64B L2
Cache MSHRs 16 L1, 24 L2
Main memory latency Minimum 400 cycles
Main memory bus Split-trans., 8B-wide, 4:1 frequency ratio,

contention, queuing, bandwidth modeled
Hardware stream prefetcher between L2 and main memory, 16 streams,

max. prefetch distance: 8 strides
Future Execution Hardware

Future value predictor 4k-entry ST2D, 2bc conf. estimator
Prediction distance 4 strides ahead
Intercore communication link 5-cycle latency, 4 insns/cycle bandwidth
Communication link buffer size 64 instructions

The processor’s register file may have to be extended to accommodate an
invalid bit for each physical register. Only one extra bit per register is needed.
Many modern microprocessors already include some form of dirty or invalid
bits associated with each register that could be utilized by the FE mechanism.

Since we model a two-way CMP with private L1 caches, we need a mecha-
nism to keep the data in the private L1 caches of the two cores consistent. In
this work, we rely on an invalidation-based cache coherency protocol for this
purpose. Therefore, whenever the main program executes a store instruction,
the corresponding cache block in the private cache of the future core is invali-
dated. Since store instructions are not sent to the future core, future execution
never incurs any invalidations.

4. EVALUATION METHODOLOGY

We evaluate future execution using an extended version of the SimpleScalar
v4.0 simulator [Larson et al. 2001]. The baseline is a two-way CMP consisting of
two identical four-wide dynamic superscalar cores that are similar to the Alpha
21264 (Table I). The minimum memory latency for the baseline processor is 400
cycles. We model bandwidth and contention on the memory bus and limit the
number of outstanding bus transactions to 32. We used CACTI 3.2 [Shivakumar
and Jouppi 2001] to determine the simulated cache access latencies.

The communication latency between the two cores is five cycles and
the communication bandwidth corresponds to the commit width (four

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

10 • I. Ganusov and M. Burtscher

instructions/cycle). Note that FE is not very sensitive to the communication
latency (see Section 5.4). In all modeled configurations, we assume that one
of the cores in the CMP can be used for future execution. We also simulate a
configuration with an aggressive hardware stream prefetcher [Palacharla and
Kessler 1994] between the shared L2 cache and main memory. The stream
prefetcher tracks the global history of the last 16 miss addresses, detects
arbitrary-sized strides and applies a stream-filtering technique by only allo-
cating a stream after a particular stride has been observed twice. It can simul-
taneously track 16 independent streams and prefetch up to 8 strides ahead of
the data consumption of the processor. Our implementation of the future exe-
cution mechanism employs a stride-two-delta (ST2D) value predictor [Sazeides
and Smith 1997] that predicts values four iterations ahead. Predicting four
iterations ahead does not require extra time, in case of the ST2D predictor.
We simply modified the predictor hardware to add the predicted stride four
times, which is achieved by a rewiring that shifts the predicted stride by two
bits.

We use all 26 integer and floating-point programs from the SPECcpu2000
benchmark suite [http://www.spec.org/osg/cpu2000/]. The programs are run
with the SPEC-provided reference inputs. If multiple reference inputs are
given, we simulate the corresponding programs with up to the first three in-
puts and average the results from the different runs. The only exception to this
rule is the program vpr, which has two reference inputs. We simulate only one
of the reference inputs (routing), because SimpleScalar could not simulate vpr
correctly with the second input (placement). The C programs were compiled
with Compaq’s C compiler V6.3-025 using “–O3 –arch ev67 –non shared” plus
feedback optimization. The C++ and Fortran 77 programs were compiled with
g++/g77 V3.3 using “–O3 –static.” The Fortran 90 programs were compiled
with Compaq’s f90 compiler V5.3-915.

We use the SimPoint 3.1 toolset [Sherwood et al. 2002] and SimpleScalar’s
sim-safe simulator to identify representative simulation points. Each program
is simulated for 500 million instructions after fast-forwarding past the number
of instructions determined by SimPoint. Note that we use simulation points
that are different from the simulation intervals use in previous studies on
future execution [Ganusov and Burtscher 2005; Ganusov 2005]. Those stud-
ies use SimPoint 1.1 and the ATOM binary instrumentation and analysis tool
[Srivastava and Eustace 1994] to produce the simulation points.

Table II provides information about the benchmarks used. The cache miss
rates shown are local. Out of the 26 programs used in this study, four integer
and two floating-point programs are not memory-bound, since they obtain less
than 5% speedup with a perfect L2 cache. The perfect-cache speedup for the
rest of the programs varies greatly and reaches up to 1400% for mcf. This large
speedup is explained by an exceptionally large number of L1 misses and a very
high L2 cache miss rate that reaches 48.6%. Note that for several memory-
bound programs (e.g., mcf, art, equake, and swim), the perfect L2 cache speedup
cannot be obtained even with a perfect prefetching scheme because of memory
bus bandwidth limitations.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 11

Table II. Benchmark Suite Details (for the Simulated Intervals of 500 M Instructions)

NoPref Loads L1 Miss L2 Miss Perfect L2
App. IPC (M) Rate (%) Rate (%) Speedup (%)
bzip2 1.56 143.94 1.47 0.70 24.55
crafty 1.92 155.85 0.82 0.07 2.10
eon 1.75 148.32 0.12 0.00 0.20
gap 1.44 127.02 0.36 1.22 24.62
gcc 1.33 180.30 2.56 1.10 30.38
gzip 1.69 113.80 3.52 1.77 3.35
mcf 0.04 209.74 23.11 48.62 1399.55
parser 0.84 125.79 2.56 2.40 103.48
perlbmk 1.77 146.69 0.30 0.09 7.42
twolf 1.29 144.63 5.04 0.05 1.84
vortex 2.09 130.30 0.75 0.39 34.55
vpr 0.54 165.19 3.10 3.29 120.41
ammp 1.44 132.32 3.90 1.35 31.92
applu 0.97 114.27 2.10 6.64 198.38
apsi 2.43 120.67 1.52 0.78 10.81
art 0.69 148.46 19.72 6.97 183.48
equake 0.26 234.53 7.50 24.40 675.56
facerec 1.15 123.90 2.40 4.83 178.51
fma3d 0.80 150.17 3.01 7.10 217.41
galgel 2.49 184.71 2.94 0.29 2.00
lucas 0.42 80.69 7.91 23.68 431.63
mesa 1.92 129.16 0.32 0.55 23.04
mgrid 0.91 183.09 2.42 19.02 203.19
sixtrack 2.62 96.83 0.23 0.18 4.77
swim 0.42 123.65 8.51 19.11 689.75
wupwise 1.30 114.31 1.15 3.60 134.67

5. EXPERIMENTAL RESULTS

In this section, we experimentally measure the effectiveness of our proposed
mechanism. Section 5.1 evaluates the performance of prefetching, based on fu-
ture execution and compares the speedups with those of stream prefetching.
In Section 5.2, we take a closer look at prefetching itself and gain additional
insight by measuring the prefetching accuracy and coverage as well as the time-
liness of prefetches. In Section 5.3, we compare our future execution technique
to prefetching, based on several variations of runahead execution and show that
the two techniques are complementary to each other. Finally, in Section 5.4 we
study the sensitivity of future execution to several parameters of the baseline
microprocessor, such as the minimum memory latency, the intercore communi-
cation delay/bandwidth, and the prefetch distance.

5.1 Execution Speedup

In this section, we compare the performance impact of our prefetching tech-
nique to a stream-based hardware prefetcher. The base machine for this ex-
periment is described in Table I. It represents an aggressive superscalar pro-
cessor without hardware prefetching. We model three processor configurations:

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

12 • I. Ganusov and M. Burtscher

Fig. 5. Execution speedup.

the baseline with prefetching based on future execution (fexec), the baseline
with an aggressive hardware stream prefetcher between the shared L2 cache
and main memory (stream) [Palacharla and Kessler 1994], and the baseline
with stream prefetching as well as future execution (stream + fexec). Figure 5
presents speedups for individual programs, as well as the geometric mean over
the integer and the floating-point programs (integer programs are shown in the
left panel, floating-point programs in the right panel). Note that the scale of
the y axis for the SPECint and the SPECfp benchmarks is different. The per-
centages on top of the bars are the speedups of future execution combined with
stream prefetching (stream + fexec) over stream prefetching alone (stream).

The results show that the hardware stream prefetcher used in our study is
very effective, attaining significant speedups for the majority of the programs,
with peaks of 306% for swim and 159% for lucas. The average speedup over the
SPECint programs is 13%, while the SPECfp applications experience an aver-
age speedup of 48%. Note that we tuned the parameters of the stream prefetcher
to maximize the prefetching timeliness and to minimize cache pollution on our
benchmark suite.

When the model with only future execution is compared to the model with
only stream prefetching, future execution outperforms stream prefetching on
five programs, while stream prefetching is better on nine. The remaining twelve
programs achieve about the same performance with both models. As the follow-
ing section will show, in many cases the stream prefetcher can prefetch fewer
load misses than future execution, but it provides more timely prefetching and,
hence, larger performance improvements. The timeliness of the prefetches is-
sued by future execution can be improved by adjusting the prediction distance of
the future value predictor, but we use the same prediction distance throughout
this paper (except for Section 5.4) to make the results comparable. Neverthe-
less, the fexec model provides significant speedup (over 5%) for 12 programs,
with an average speedup of 13% for the integer and 40% for the floating-point
programs, and a maximum of 227% on swim.

The model with the best performance is the one that combines the stream
prefetcher and future execution. On average, this model has a 50% higher IPC
than the model with no prefetching. Moreover, this model has a 10% higher

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 13

Fig. 6. Prefetch coverage.

IPC than the baseline with stream prefetching. Out of the 26 programs used
in our study, 12 significantly benefit (over 5% improvement) from future ex-
ecution when it is added to the baseline that already includes a hardware
stream prefetcher. If we look at the behavior of the integer and floating-point
programs separately, adding future execution to the baseline with a stream
prefetcher increases the performance of SPECint and SPECfp by 5 and 21%,
respectively. This indicates that future execution and stream prefetching inter-
act favorably and complement each other by prefetching different classes of load
misses.

Overall, the results in this section demonstrate that future execution is quite
effective on a wide range of programs and works well alone and in combination
with a stream prefetcher.

5.2 Analysis of Prefetching Activity

In this section, we provide insight into the performance of prefetching based
on future execution by taking a closer look at the prefetching activity. We begin
by presenting the prefetch coverages obtained by different prefetching tech-
niques. We define the prefetch coverage as the ratio of the total number of
useful prefetches (i.e., the prefetches that reduce the latency of a cache miss-
ing memory operation) to the total number of misses originally incurred by the
application.

Figure 6 shows the prefetch coverages for different prefetch schemes, il-
lustrating significant coverage, especially for SPECfp. On roughly one-half of
the programs, the coverage achieved by future execution is higher than that
achieved by the stream prefetcher. The value predictor that assists the future
execution makes predictions based on the local history of values produced by
a particular static instruction, while the stream prefetcher observes the global
history of values. Therefore, the two techniques exploit different kinds of pat-
terns, akin to local and global branch predictors.

When stream prefetching is combined with future execution, the two
techniques demonstrate significant synergy. In eleven programs (bzip2, gcc,
perlbmk, ammp, applu, apsi, equake, facerec, fma3d, lucas, and mesa) the cov-
erage is at least 10% higher than when either technique is used alone. Overall,

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

14 • I. Ganusov and M. Burtscher

Fig. 7. Distribution of cache misses that were prefetched by a stream prefetcher (stream), based
on value predictions (vpred), and using future execution (fexec).

future execution increases the prefetching coverage from 34 to 51%, on the
integer, and from 63 to 85%, on the floating-point programs.

Figure 7 shows the breakdown of the prefetch coverage for the case when
stream prefetching is combined with future execution (stream + fexec configu-
ration). The lower segment of each bar corresponds to the prefetches initiated
by the stream prefetcher. The middle portion shows how many prefetches were
issued based on predictions provided by the value predictor. The upper part of
each bar represents the portion of issued prefetch addresses that required the
execution of instructions to compute the correct prefetch address. The height of
the stacked bar indicates the total fraction of misses that were prefetched. Note
that the height of the bar is sometimes slightly less than reported in Figure 6,
because the origin of some of the prefetches could not be determined. In this
study, if multiple prefetch mechanisms issued prefetches for the same memory
location, the mechanism that issued the earliest prefetch is given credit for that
prefetch request.

Figure 7 illustrates that future value prediction and future execution provide
a significant coverage increase over the stream prefetcher (over 10%) for 16 out
of the 26 applications used in our study. Out of these 16 applications, 6 programs
benefit mostly from future execution, 8 programs owe most of the coverage
increase to future value prediction, and 2 programs benefit roughly equally
from value prediction and future execution. Note that in seven programs the
addition of future execution makes the stream prefetcher more effective. For
example, gap gets almost all of its misses prefetched by the stream prefetcher,
but the data in Figure 6 demonstrate that stream prefetching can prefetch
less than a one-half of the cache misses without future execution. We suspect
that this is caused by favorable interactions between the loads issued from the
future core and the stream prefetcher, where future loads enable more precise
and earlier identification of important streams that are then further prefetched
by the stream prefetcher. On average, future execution increases the coverage
provided by the stream prefetcher from 34 to 41%, on the integer applications,
and from 63 to 66%, on the floating-point programs.

We next analyze the accuracy of our prefetching scheme by comparing the
number of useless prefetches issued by the prefetching mechanisms to the total

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 15

Fig. 8. Percentage of useless prefetches issued by different prefetching mechanisms relative to
the total number of prefetches issued.

number of prefetches issued. We categorize a prefetch request as useless if
the prefetched data is evicted from the cache before being used by the main
thread. Figure 8 shows the percentage of useless prefetches associated with
the two prefetching schemes. The results illustrate that a large majority of the
prefetches issued are useful in both the SPECint and the SPECfp programs
with over 70% of useful prefetches for both techniques. There are a few inter-
esting cases where stream prefetching causes much fewer useless prefetches
than future execution. They occur in the programs eon, gap, twolf, facerec, and
sixtrack. We find that useless prefetches occur in loops where many loads de-
pend on the values of a loop-carried dependency passed through memory that
is not preserved by future execution. This results in computing the wrong ad-
dresses for load instructions and the fetching of useless data. We suspect that
in sixtrack many prefetches are issued too far in advance and get evicted from
the cache before being used. However, even though the accuracy of the stream
prefetcher is higher in those cases, the coverage for many of the programs is
quite small, meaning that the higher accuracy does not noticeably improve the
performance.

Finally, we investigate the prefetch timeliness of the different schemes. The
prefetch timeliness indicates how much of the memory latency is hidden by the
prefetches. The results are presented in Figure 9. For each program, the upper
bar corresponds to the fexec model, the middle bar to the stream model, and the
lowest bar represents the stream + fexec model. Each bar is broken down into
five segments corresponding to the fraction of the miss latency hidden by the
prefetches: less than 100 cycles (darkest segment), between 100 and 200 cycles,
between 200 and 300 cycles, between 300 and 400 cycles, and over 400 cycles
(lightest segment). Therefore, the lightest segment represents the fraction of
prefetches that hide the minimum full-memory latency.

Both future execution and stream prefetching are quite effective at hiding
the memory access latency. In case of future execution, 65% of the prefetches in
SPECint and 55% of the prefetches in SPECfp are completely timely, fully elim-
inating the associated memory latency. For both the integer and the floating-
point programs, only 25% of the prefetches hide less than 100 cycles of la-
tency (one-quarter of the memory latency). The timeliness of future execution

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

16 • I. Ganusov and M. Burtscher

Fig. 9. Timeliness of the prefetches.

prefetches can be improved by adjusting the prediction distance of the future
value predictor. For example, increasing the prediction distance from 4 to 8 in-
creases the number of completely timely prefetches for most of the programs,
with a low prefetch timeliness by at least 15%, resulting in significant increase
in performance (see Section 5.4).

Overall, this section demonstrates that prefetching based on future execution
is quite accurate, significantly improves the prefetching coverage over stream
prefetching, and provides timely prefetches, which may be further improved by
dynamically varying the prediction distance.

5.3 Comparison with Runahead Execution

The previous subsections showed that prefetching based on future execution
is quite effective and provides significant speedups over the baseline with an
aggressive stream prefetcher. In this section, we compare our mechanism to
several variations of runahead execution, a recently proposed execution-based
prefetching technique.

The concept of runahead execution was first proposed for in-order processors
[Dundas and Mudge 1997] and then extended to perform prefetching for out-of-
order architectures [Mutlu et al. 2003]. The runahead architecture “nullifies”
and retires all memory operations that miss in the L2 cache and remain unre-
solved at the time they reach the ROB head. It starts by taking a checkpoint of
the architectural state and retiring the missing load before the processor enters
runahead mode. Once in runahead mode, instructions execute normally except
for two major differences. First, the instructions that depend on the result of the
load that was “nullified” do not execute but are nullified as well. They commit

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 17

an invalid result and retire as soon as they reach the head of the ROB. Second,
store instructions executed in runahead mode do not overwrite data in mem-
ory. When the original “nullified” memory operation completes, the processor
rolls back to the checkpoint and resumes normal execution. All register values
produced in runahead mode are discarded.

We implemented a version of runahead execution similar to the one described
by Mutlu et al. [2003]. Runahead mode is triggered by load instructions that
stall for more than 30 cycles. Store data produced in runahead mode is retained
in a runahead cache, which is flushed upon the exit from runahead mode.

In addition to this conventional version of runahead execution, we imple-
ment and evaluate two extensions. First, we employ value prediction to supply
load values for the long-latency load instructions. When such loads time out,
a stride-two-delta value predictor provides a predicted load value and a pre-
diction confidence. If the confidence is above threshold, the predicted value
is allowed to propagate to the dependent instructions. If the confidence is
below threshold, the result of the load instruction that timed out is invali-
dated in the same way loads are invalidated in the conventional runahead
mechanism.

Second, we implement the checkpointed early load-retirement mechanism
(CLEAR) [Kirman et al. 2005], which attempts to avoid squashing the correct
program results produced in runahead mode. The CLEAR mechanism utilizes
value prediction to provide values for the load instructions that time out and
is similar in spirit to checkpoint-assisted value prediction, as proposed by Ceze
et al. [2004]. While the conventional runahead mechanism checkpoints the pro-
cessor state only once before entering runahead mode, CLEAR checkpoints
the processor state before every prediction that is made in runahead mode. If
the value provided by a value predictor was incorrect, the processor state is
rolled back to the checkpoint corresponding to that value prediction. However,
if the prediction was correct, the corresponding checkpoint is released and the
processor does not have to roll back after the long-latency memory operation
completes.

Note that both runahead extensions that we evaluate in this study share
value prediction and confidence estimation tables with the future execution
mechanism. When runahead is used without future execution, only load in-
structions update the value predictor. When runahead and future execution
are used together, every committed instruction updates the value predictor
with the exception of stores, branches, and system calls. Our implementation
of CLEAR assumes an unlimited number of available checkpoints.

Figure 10 shows the execution speedup of different techniques relative to
the stream baseline. First, we compare the performance of future execution
without runahead execution, shown in Figure 5, to the performance of different
runahead schemes when they are used without future execution. Overall, the
geometric-mean speedups of different runahead techniques and FE are similar
when they are applied separately. On average, conventional runahead, runa-
head with value prediction, and CLEAR provide performance improvements
of 2, 6.4, and 7.2% on SPECint and around 17% on SPECfp. FE provides 5%
speedup on SPECint and 21% on SPECfp applications.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

18 • I. Ganusov and M. Burtscher

Fig. 10. Comparison with runahead execution.

When runahead execution and future execution are employed together, their
cumulative effect is quite impressive. The average speedups for the conven-
tional runahead implementation rise to 6.5 and 29% for the integer and the
floating-point programs, respectively. The average speedups for runahead with
value prediction also exhibits a significant boost with future execution, increas-
ing from 6.4 to 9.1% for SPECint and from 16 to 29% for SPECfp applications.
The CLEAR mechanism demonstrates similar performance improvements. The
interaction between future and runahead execution is especially favorable with
eight programs (mcf, vpr, applu, facerec, fma3d, equake, mgrid, and wupwise),
where the speedups are from 5 to 50% higher than when either of the techniques
is used alone.

Runahead allows prefetching cache misses that are within close temporal
proximity of the long-latency load instructions that initiated runahead mode.
Therefore, even though runahead execution obtains significant prefetch cov-
erage while the processor is in runahead mode, its potential is limited by the
length of the runahead period. On the other hand, FE prefetches can generally
hide more latency than runahead prefetches, because the FE mechanism is-
sues memory requests several iterations ahead of the current execution point.
In spite of the better prefetch timeliness, FE’s coverage is sometimes limited
by the value prediction coverage and the regularity of the address-generating
slices. The combination of runahead execution and future execution allows to
exploit the strengths of both approaches, thus resulting in symbiotic behavior.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 19

Fig. 11. Sensitivity of future execution to the main memory latency.

Fig. 12. Sensitivity of future execution to the intercore communication delay.

5.4 Sensitivity Analysis

In this subsection we evaluate the effectiveness of future execution when sev-
eral hardware parameters are varied. First, we investigate the effect of the
memory latency on FE’s performance. Second, we compare the performance of
FE configurations with different intercore communication latencies and band-
width capabilities. Finally, we analyze the performance benefits provided by
FE with different prefetch distances. All results in this subsection show the
speedup provided by FE relative to the stream baseline.

Figure 11 shows the speedup provided by FE on processors with five dif-
ferent memory latencies, ranging from 100 to 500 cycles. Overall, the perfor-
mance benefit for both integer and floating-point programs steadily increases
with increasing memory latency. The SPECint speedup ranges from 1.6% for a
relatively short 100-cycle memory latency to almost 5.5 for a 500-cycle latency.
The average speedup for the SPECfp programs increases from 6.7 to 24.4%.

Figure 12 demonstrates how the communication latency between the cores
affects the performance improvements provided by FE. As we increase the com-
munication latency from 5 to 30 cycles, most of the applications show no sig-
nificant changes in the amount of speedup obtained by future execution. The
speedup changes by more than 5% only for four programs (vpr, applu, facerec,
and fma3d). We observe that longer communication latencies seem to hurt the

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

20 • I. Ganusov and M. Burtscher

Fig. 13. Sensitivity of future execution to the intercore communication bandwidth.

performance benefit in fma3d. Future execution in vpr and facerec generally
becomes more effective with the increasing communication delay, while applu
demonstrates no correlation between the speedup and the communication la-
tency. The geometric mean speedups for the SPECint and SPECfp applications
change by less than 0.5%. FE is not very sensitive to the communication de-
lay because of two main reasons. First, prefetching four iterations ahead hides
the full memory latency for many of the applications and delaying a prefetch
request by an additional 5–25 cycles still results in a timely prefetch. Second,
even if the delayed prefetch does not hide the full memory latency, the com-
munication delay constitutes only a small fraction of the total memory latency.
Increasing the latency of a prefetched memory request by a few percent does
not have a significant performance impact.

Figure 13 shows the sensitivity of future execution to the communication
bandwidth between the cores. We vary the communication bandwidth from
four to one instructions/cycle. The results show that decreasing the bandwidth
from four to three instructions/cycle has almost no impact on the effective-
ness of FE. If we cut the communication bandwidth in half to two instruc-
tions/cycle, only three programs experience a significant (over 5%) performance
degradation (vortex, applu, and equake), while the geometric mean speedups
stay practically unchanged. However, further reduction of the bandwidth to one
instruction/cycle often makes the bandwidth insufficient for the effective oper-
ation of FE. In particular, six programs experience a significant performance
degradation. Compared to the case where the communication bandwidth cor-
responds to the processor commit width (four instructions/cycle), the geometric
mean speedup for integer programs decreases from 5 to 3.8%, while the IPC
speedup for the floating-point applications drops from 21 to 12%. In most cases,
this degradation is caused by a large number of instructions that are dropped
because of the lack of space in the communication buffer. As a result, some
prefetch addresses are never computed, while others are computed incorrectly
and pollute the cache or the stream prefetcher’s miss history (e.g., swim).

Next, we analyze the impact of the prefetch distance on the performance of
future execution. We vary the prediction distance of the value predictor from one
to ten iterations ahead and show the corresponding speedups in Figure 14. The

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 21

Fig. 14. Sensitivity of future execution to the future value prediction distance.

results show that most of the programs benefit from an increased prefetch dis-
tance. As one might expect, the prefetch coverage generally decreases slightly
for larger lookaheads, but the reduction in coverage is compensated for by the
improved timeliness of the prefetch requests. Vpr and ammp are the only pro-
grams where the decreasing prefetch coverage dominates the improved time-
liness. Surprisingly, some programs (e.g., bzip2, applu, and fma3d) exhibit a
growing prefetch coverage with increasing prefetch distance. This phenomenon
occurs due to a favorable interaction between future execution and the stream
prefetch engine. As we increase the prediction distance, the memory requests is-
sued by future execution indirectly increase the prefetch distance of the stream
prefetcher and thus make the stream prefetches more timely. Therefore, fewer
loads time out in the future core and fewer address-generating slices are in-
validated, enabling more future load addresses to be computed. We found that
prefetching more than 10 strides ahead does not improve FE performance.

On average, increasing the future prediction distance from 1 to 10 iterations
ahead increases the geometric mean speedup for integer applications from 3.2
to 5%, while the IPC speedup for the floating-point applications increases from
11 to 30% over the baseline with aggressive stream prefetching. These results
suggest that future execution may greatly benefit from a dynamic mechanism
to adjust the prediction distance.

Overall, this section demonstrates that prefetching based on future execu-
tion obtains performance improvements across microprocessor configurations
with different memory latencies, intercore communication delay/bandwidth pa-
rameters, and future value prediction distances.

6. RELATED WORK

Hardware prefetching techniques based on outcome prediction typically use
various kinds of value predictors [e.g., Palacharla and Kessler 1994; Sazeides
and Smith 1997; Lipasti et al. 1996] and/or pattern predictors to dynami-
cally predict which memory references should be prefetched. One of the first
hardware prefetchers based on outcome prediction was the concept of stream
buffers proposed by Jouppi [1990]. Subsequently, a number of other outcome
prediction-based prefetching techniques was introduced. Examples include

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

22 • I. Ganusov and M. Burtscher

stride prefetching [Fu et al. 1992], the Markov prefetcher [Joseph and Grun-
wald 1997], content-directed prefetching [Cooksey et al. 2002], tag-correlating
prefetching [Hu et al. 2003], and dead-block-correlating prefetching [Lai et al.
2001].

The advantage of prefetching schemes based on outcome prediction is the
ability to implement the schemes in the cache controller so that other parts of
the microprocessor do not need to be modified. This way the implementation of
the prefetching scheme can be decoupled from the design of the execution core,
significantly lowering the complexity and the verification cost. The downside of
such prefetching schemes is their limited coverage and ability to capture misses
that exhibit irregular behavior.

Unlike previous approaches, future execution employs value prediction only
to provide initial predictions. These initial predictions are then used to com-
pute all values reachable from the predictable nodes in the program data-flow
graph, i.e., obtain predictions for otherwise unpredictable values. We demon-
strate that our approach significantly improves the prediction coverage relative
to conventional value prediction. Since future execution requires relatively sim-
ple modifications to the execution core of the microprocessor, we believe it pro-
vides a reasonable tradeoff between the implementation cost and the resulting
performance improvement.

Similar to future execution, Zhou and Conte [2003] used value prediction
to speculatively compute unpredictable values of instructions currently held
in the instruction window and speculatively issue load instructions. However,
our mechanism provides better latency tolerance because of the use of future
predictions and delivers a higher prediction coverage because the speculation
scope is not limited by the number of instructions in the instruction window.

Prefetching techniques based on preexecution [Moshovos et al. 2001; Roth
and Sohi 2001; Roth et al. 1998] typically use additional execution pipelines
or idle thread contexts in a multithreaded processor to execute helper threads
that perform dynamic prefetching for the main thread. Typically, these tech-
niques create preexecution helper threads (PEHT) by extracting program slices
that compute critical data addresses. Then they insert triggers for these helper
threads into the original program. The execution of the helper threads at run-
time precomputes critical data addresses ahead of the original program and
issues prefetch requests. Helper threads can be constructed dynamically by
specialized hardware structures or statically. If a static approach is used, the
prefetching threads are constructed manually [Zilles and Sohi 2001] or gener-
ated by the compiler [Luk 2001] or a trace analysis tool [Roth and Sohi 2002].
If PEHTs are constructed dynamically, a hardware analyzer extracts execu-
tion slices from the dynamic instruction stream at run-time, identifies trigger
instructions to spawn the helper threads, and stores the extracted threads in
a special table. Examples of this approach include slice-processors [Moshovos
et al. 2001] and dynamic speculative precomputation [Collins et al. 2001].

FE has the following advantages over preexecution prefetching. First, FE
allows to dynamically change the prefetching distance through a simple ad-
justment in the predictor. Second, since a PEHT is only able to execute once
all inputs to the thread are available, it runs a higher risk of prefetching

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 23

late. FE, on the other hand, does not need all inputs to initiate prefetch-
ing. Third, if any load with dependent instructions in a PEHT misses in the
cache, the prefetching thread will stall, preventing further prefetching. FE of-
ten breaks data-flow dependencies through value prediction and thus can avoid
stalling the prefetch activity. Compared to software PEHT approaches, FE does
not require recompilation or binary rewriting and thus can speedup legacy
code.

On the other hand, prefetching based on preexecution can potentially provide
a higher prefetching coverage than future execution since it is not limited by
the predictability of the program data. In addition, PEHTs typically need to
execute fewer instructions than FE and as such can operate profitably on the
same core together with the main thread. Finally, preexecution requires no
value prediction table and software approaches need no hardware support at
all. Notwithstanding, we believe our approach may well be complementary to
software-controlled pre-execution helper threads.

Slipstream prefetching [Ibrahim et al. 2003] is another form of a software-
controlled preexecution that targets distributed shared-memory (DSM) applica-
tions. Slipstream prefetching threads represent a reduced version of the target
computation threads. This reduced version dynamically skips the execution of
shared memory stores and synchronization primitives and thus is able to run
ahead of the target thread and generate an accurate address stream. As a re-
sult, slipstream prefetching can provide higher prefetching coverage than FE.
However, the proposed approach targets only DSM applications and cannot
speed up single-threaded programs.

Runahead execution is another form of prefetching based on speculative ex-
ecution [Dundas and Mudge 1997; Mutlu et al. 2003]. In runahead processors,
the processor state is checkpointed when a long-latency load stalls the head of
the ROB, the load is allowed to retire, and the processor continues to execute
speculatively. When the data is finally received from memory, the processor rolls
back and restarts execution from the load. Future execution does not need to
experience a cache miss to start prefetching, requires no checkpointing support
or any other recovery mechanism and, as we demonstrate in this paper, works
well in combination with runahead execution.

Similar to FE, hardware-only techniques, such as the minimal dual-core
speculative multithreading architecture [Srinivasan et al. 2004] (SpMT) and
the dual-core execution paradigm (DCE), proposed by Zhou [2005], utilize idle
cores of a CMP to speed up single-threaded programs. The DCE approach effec-
tively proposes to launch a runahead execution thread whenever a long-latency
load instruction fully stalls the execution of a thread. The runahead core then
tries to follow the program path and execute all instructions that do not depend
on the results of load instructions that miss in the cache while invalidating all
instructions that stall the execution. The regular core reexecutes all instruc-
tions committed by the runahead core. If the regular core detects that the runa-
head core deviated from the correct control path, it flushes the runahead core’s
pipeline and restarts runahead execution. In contrast to DCE, our FE technique
never requires to check the results produced by the speculative threads and is
recovery-free. In addition, DCE requires the nonspeculative core to redirect

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

24 • I. Ganusov and M. Burtscher

the instruction fetch engine upon reaching the speculation point, while in FE
the nonspeculative computation is not even aware that prefetching is taking
place.

The SpMT approach spawns speculative threads on procedure calls, loop
boundaries, or cache misses and executes them on another core. Speculative
threads prefetch important data, precompute branch outcomes, and perform
some useful computation that can later be integrated into the nonspeculative
thread. The main difference between SpMT and future execution is that the
former needs mechanisms to control the execution of the speculative threads
by tracking the violation of memory and register dependences. Future exe-
cution generates prefetching threads that are completely decoupled from the
nonspeculative execution, which eliminates the need for any checking mech-
anism and makes it recovery-free. In general, SpMT requires more complex
hardware support, but may provide more performance benefit, since it allows
the reuse of speculatively computed results.

7. CONCLUSION

This paper presents future execution (FE), a simple technique to hide the latency
of cache misses using moderate hardware and no ISA, programmer, or compiler
support. FE harnesses the power of a second core in a multicore microprocessor
to prefetch data for a thread running on a different core of the same chip. It
dynamically creates a prefetching thread by sending a copy of all committed,
register-writing instructions to the second core. The innovation is that on the
way to the second core, a value predictor replaces each predictable instruction’s
result in the prefetching thread with the result the instruction is likely to pro-
duce during its nth next execution. Future execution then leverages the second
core’s execution capabilities to compute the prefetch addresses that could not
be predicted with high confidence, which we found to significantly increase the
prefetching coverage. FE requires only small chip area additions. Unlike previ-
ously proposed approaches, our mechanism does not need any thread triggers,
features an adjustable lookahead distance, does not use complicated analyzers
to extract prefetching threads, requires no storage for prefetching threads, and
works on legacy code, as well as new code. Overall, FE delivers a geometric-
mean speedup of 12% over a baseline with an aggressive stream prefetcher on
the SPECcpu2000 applications. Furthermore, future execution is complemen-
tary to runahead execution and the combination of these two techniques raises
the average speedup to 20%.

REFERENCES

CEZE, L., STRAUSS, K., TUCK, J., RENAU, J., AND TORRELLAS, J. 2004. Cava: Hiding l2 misses with
checkpoint-assisted value prediction. IEEE Comput. Archit. Lett. 3, 1, 7.

COLLINS, J. D., TULLSEN, D. M., WANG, H., AND SHEN, J. P. 2001. Dynamic speculative precomputa-
tion. In Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchitec-
ture. 306–317.

COOKSEY, R., JOURDAN, S., AND GRUNWALD, D. 2002. A stateless, content-directed data prefetching
mechanism. In Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems. 279–290.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

Future Execution • 25

DUNDAS, J. AND MUDGE, T. 1997. Improving data cache performance by pre-executing instructions
under a cache miss. In Proceedings of the 11th International Conference on Supercomputing.
68–75.

FU, J. W. C., PATEL, J. H., AND JANSSENS, B. L. 1992. Stride directed prefetching in scalar processors.
In Proceedings of the 25th Annual International Symposium on Microarchitecture. 102–110.

GANUSOV, I. 2005. Hardware prefetching based on future execution in chip multiprocessor archi-
tectures. M.S. thesis, Department of Electrical and Computer Engineering, Cornell University,
Ithaca, New York.

GANUSOV, I. AND BURTSCHER, M. 2005. Future execution: A hardware prefetching technique for chip
multiprocessors. In Proceedings of the 14th International Conference on Parallel Architectures and
Compilation Techniques. 350–360.

GOEMAN, B., VANDIERENDONCK, H., AND DE BOSSCHERE, K. 2001. Differential fcm: Increasing value
prediction accuracy by improving table usage efficiency. In Proceedings of the 7th International
Symposium on High-Performance Computer Architecture (HPCA’01).

HTTP://WWW.SPEC.ORG/OSG/CPU2000/.
HU, Z., MARTONOSI, M., AND KAXIRAS, S. 2003. Tcp: Tag correlating prefetchers. In Proceedings of

the 9th International Symposium on High-Performance Computer Architecture. 317.
IBRAHIM, K. Z., BYRD, G. T., AND ROTENBERG, E. 2003. Slipstream execution mode for cmp-based

multiprocessors. In Proceedings of the 9th International Symposium on High-Performance Com-
puter Architecture. 179.

JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using markov predictors. In Proceedings of the
24th Annual International Symposium on Computer Architecture. 252–263.

JOUPPI, N. P. 1990. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture. 364–373.

KIRMAN, N., KIRMAN, M., CHAUDHURI, M., AND MARTINEZ, J. F. 2005. Checkpointed early load re-
tirement. In Proceedings of the 11th International Symposium on High-Performance Computer
Architecture. 16–27.

LAI, A.-C., FIDE, C., AND FALSAFI, B. 2001. Dead-block prediction & dead-block correlating prefetch-
ers. In Proceedings of the 28th Annual International Symposium on Computer Architecture. 144–
154.

LARSON, E., CHATTERJEE, S., AND AUSTIN, T. 2001. Mase: A novel infrastructure for detailed mi-
croarchitectural modeling. In Proceedings of the 2nd International Symposium on Performance
Analysis of Systems and Software. 1–9.

LIPASTI, M. H., WILKERSON, C. B., AND SHEN, J. P. 1996. Value locality and load value prediction.
In Proceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems. 138–147.

LUK, C.-K. 2001. Tolerating memory latency through software-controlled pre-execution in simul-
taneous multithreading processors. In Proceedings of the 28th Annual International Symposium
on Computer Architecture. 40–51.

MOSHOVOS, A., PNEVMATIKATOS, D. N., AND BANIASADI, A. 2001. Slice-processors: an implementation
of operation-based prediction. In Proceedings of the 15th International Conference on Supercom-
puting. 321–334.

MUTLU, O., STARK, J., WILKERSON, C., AND PATT, Y. N. 2003. Runahead execution: An alternative to
very large instruction windows for out-of-order processors. In Proceedings of the 9th International
Symposium on High-Performance Computer Architecture. 129.

PALACHARLA, S. AND KESSLER, R. E. 1994. Evaluating stream buffers as a secondary cache replace-
ment. In Proceedings of the 21st Annual International Symposium on Computer Architecture.
24–33.

RATTNER, J. 2005. Multi-core to the masses. In Proceedings of the 14th International Conference
on Parallel Architectures and Compilation Techniques. 3.

ROTH, A. AND SOHI, G. S. 2001. Speculative data-driven multithreading. In Proceedings of the 7th
International Symposium on High-Performance Computer Architecture. 37.

ROTH, A. AND SOHI, G. S. 2002. A quantitative framework for automated pre-execution thread
selection. In MICRO 35: Proceedings of the 35th Annual ACM/IEEE International Symposium
on Microarchitecture. 430–441.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

P1: IAZ
Acmj211-03 ACM-TRANSACTION November 16, 2006 23:33

26 • I. Ganusov and M. Burtscher

ROTH, A., MOSHOVOS, A., AND SOHI, G. S. 1998. Dependence based prefetching for linked data
structures. In Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 115–126.

SAZEIDES, Y. AND SMITH, J. E. 1997. The predictability of data values. In Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture. 248–258.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large
scale program behavior. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems. 45–57.

SHIVAKUMAR, P. AND JOUPPI, N. P. December 2001. Cacti 3.0: An integrated cache timing, power,
and area model. Tech. Rep. WRL-2001-2, Compaq Western Research Laboratory.

SRINIVASAN, S. T., AKKARY, H., HOLMAN, T., AND LAI, K. 2004. A minimal dual-core speculative multi-
threading architecture. In Proceedings of the IEEE International Conference on Computer Design.
360–367.

SRIVASTAVA, A. AND EUSTACE, A. 1994. Atom: a system for building customized program analysis
tools. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design
and Implementation. ACM Press, New York. 196–205.

ZHOU, H. 2005. Dual-core execution: Building a highly scalable single-thread instruction window.
In Proceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques.

ZHOU, H. AND CONTE, T. M. 2003. Enhancing memory level parallelism via recovery-free value
prediction. In Proceedings of the 17th Annual International Conference on Supercomputing. 326–
335.

ZILLES, C. AND SOHI, G. 2001. Execution-based prediction using speculative slices. In Proceedings
of the 28th Annual International Symposium on Computer Architecture. 2–13.

Received November 2005; revised April 2006; accepted May 2006

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.

