
 1 

Efficient Runtime Detection and Toleration of 

Asymmetric Races 
 

Paruj Ratanaworabhan
1
, Martin Burtscher

2
, Darko Kirovski

3
, Benjamin Zorn

3
, Rahul Nagpal

4
, and Karthik Pattabiraman

5
 

1
Kasetsart University, 

2
Texas State University, 

3
Microsoft Research, 

4
Indian Institute of Science, 

5
University of British Columbia 

 
Abstract - We introduce ToleRace, a runtime system that allows programs to detect and even tolerate asymmetric data races. Asymmetric races are race 

conditions where one thread correctly acquires and releases a lock for a shared variable while another thread improperly accesses the same variable. Tole-

Race provides approximate isolation in the critical sections of lock-based parallel programs by creating a local copy of each shared variable when entering a 

critical section, operating on the local copies, and propagating the appropriate copies upon leaving the critical section. We start by characterizing all possi-

ble interleavings that can cause races and precisely describe the effect of ToleRace in each case. Then, we study the theoretical aspects of an oracle that 

knows exactly what type of interleaving has occurred. Finally, we present software implementations of ToleRace and evaluate them on multithreaded appli-

cations from the SPLASH2 and PARSEC suites. 

 

Index Terms - Debugging aids, dynamic instrumentation, parallel programming, race detection and toleration. 

 

1 Introduction 
This paper tackles data race problems in lock-based parallel 

programs. It focuses on programs written in unsafe languages 

such as C or C++ that use add-on libraries for threading and 

synchronization. At present, a large installed code base of such 

programs exists and programmers continue to write parallel 

code in this paradigm. 

In general, a race is defined as a condition where multiple 

threads access a shared memory location without synchroniza-

tion and there is at least one write among the accesses. With 

proper synchronization, lock-based programs adhere to the da-

ta-race-free model [3] where synchronization operations are 

made explicit by calls to specific library functions, e.g., 

pthread_mutex_lock in POSIX threads (pthreads). In this mod-

el, the hardware appears sequentially consistent with respect to 

the programs even though it may be weakly ordered in reality. 

We are interested in asymmetric races, which occur when 

one thread correctly protects a shared variable using a lock 

while another thread accesses the same variable improperly due 

to a synchronization error (e.g., not taking a lock, taking the 

wrong lock, taking a lock late, etc.). 

 

 
Figure 1. An asymmetric race. 

 

An example of an asymmetric race is shown in Figure 1. 

Here, Thread 1 correctly uses a critical section to protect its 

read accesses to the shared variable gScript. Thread 2 incorrect-

ly updates gScript without a lock, thus creating a race. The race 

occurs infrequently, i.e., only when Thread 2’s update happens 

between the test for NULL and the else part of the conditional 

in Thread 1. Our reasons for focusing on asymmetric races are: 

1. They are common in software development projects. 

This conclusion comes from direct experience with developers 

in software houses like Microsoft. There are two reasons for 

this. First, usually a programmer’s local reasoning about con-

currency, e.g., taking proper locks to protect shared variables, is 

correct. Errors due to taking wrong locks or no locks lie outside 

of the programmer’s code, for example, in third party libraries. 

Given that lock-based programs rely on convention, this phe-

nomenon is understandable. The second reason has to do with 

legacy code. As software evolves, assumptions about a piece of 

code may be invalidated. For instance, a library may have been 

written assuming a single-threaded environment, but later the 

requirements change and multiple threads use it. An expedient 

response to this change is to demand that all clients wrap their 

calls to the library, acquiring locks before entry and releasing 

them on exit. Because this solution requires that all clients be 

changed, races can be introduced when clients fail to follow the 

proper locking discipline. 

 

 
Figure 2. User-defined synchronization. 

 

2. Symmetric races are often benign. 

Because calls to synchronization operations are expensive, pro-

grammers often resort to lightweight user-defined synchroniza-

tion, as shown in Figure 2, where Threads 1 and 2 synchronize 

on the flag variable. In this situation, even though a race occurs 

by definition (the shared variable flag is accessed without ex-

plicit synchronization), it does not harm the program. Naraya-

nasamy et al. [22] show other types of benign symmetric races, 

e.g., redundant writes and disjoint bit manipulation. Their expe-

rience with Windows Vista and Internet Explorer indicates that 

these benign races are rather common.  

This work presents ToleRace, a runtime system that not on-

ly detects asymmetric races but also tolerates them. ToleRace 

allows programs to continue executing in the presence of 

asymmetric races and possibly complete with a well-defined 

semantic. Inspired by the DieHard system [5], which probabilis-

 Thread 1: 

// gScript is shared 

 

Lock(A); 

if (gScript == NULL) { 

   baseScript = default; 

} else { 

 

   baseScript = gScript; 

} 

UnLock(A); 

 

Thread 2: 

 

gScript = NULL; 

 

Thread 1: 

 

K = x; 

flag = true; 

 

Thread 2: 

 

while (flag != true); 

y = K; 

 

// K and flag are declared volatile 
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tically tolerates memory safety errors, ToleRace uses replica-

tion to detect and/or tolerate races. It provides an approximation 

of isolation in critical sections by creating local copies of shared 

variables when a critical section is entered, operating on the 

local copy while in the critical section, detecting conflicting 

changes to shared data when the critical section is exited, and 

propagating the appropriate copy when possible to hide the 

race. 

ToleRace can be compared to transactional memory (TM) 

[14]. The ToleRace mechanism outlined above is analogous to 

constructing a read-write set while executing in a transaction 

with a lazy versioning policy and lazily detecting conflicts to 

the set, i.e., just before the transaction commits. However, To-

leRace is not based on optimistic synchronization as TM is; 

there is no notion of abort-and-rollback, nor is there a need for 

contention management. Whereas handling side effect opera-

tions and nested transactions are still open issues with TM, To-

leRace handles all I/O operations as well as overlapped critical 

sections transparently. While TM can provide isolation and 

tolerates races just as ToleRace does, it is not clear how TM can 

be applied to existing lock-based codes. Converting from lock-

based to transaction-based code is not trivial [7]. 

This paper makes the following contributions: 

• Foundations for run time management of races. We 

present a theoretical framework that investigates all possible 

interactions among safe threads that observe a proper locking 

discipline and unsafe threads that fail to do so. Then, we focus 

on cases where a race occurs, categorize them, and describe our 

race detection and toleration scheme for each category. 

• Precise race detection. ToleRace identifies races that ac-

tually happen at run time. It detects a race when the critical 

section in which the race took place exits and, by design, never 

generates a false positive. 

• Low overhead software implementation. We present 

three software implementations of ToleRace. Our first version 

uses a dynamic instrumentation-based approach and performs 

all analysis at run time. For the second version, we add a static 

program analysis phase to remedy the shortfalls in the first ver-

sion. The third version is radically different from the first two. 

It is based on source-code modifications to implement Tole-

Race. 

 

2 Characterizing Asymmetric Races 
To characterize asymmetric races, we consider all interleavings 

between operations in a correctly synchronized thread and a 

second, unsynchronized thread. We then reduce the interleav-

ings that result in races into four classes and consider how To-

leRace handles each class. We assume that there are two types 

of threads: 

• a safe thread consisting of a single critical section, and 

• a non-safe thread that might access a shared variable outside 

of a critical section or using the wrong lock to guard it. 

Let r, w, and x denote read, write, and don’t-care operations, 

respectively. An x don’t-care can be either a read or write oper-

ation. Let lower case letters represent accesses of non-safe 

threads and upper case letters accesses of safe threads. r+ de-

notes a sequence of at least one read and r* indicates zero or 

more reads. The operators + and * are equally defined for writes 

and don’t-cares. There are only three ways in which a sequence 

of operations from a single thread can interact with a single 

variable: by reading it only (r+), by setting its value regardless 

of its prior (wx*), and by setting its value based upon its prior 

(r+wx*). For the r+wx* sequence, we assume that w is depen-

dent upon the value retrieved by r. 

 

 Definition 1. A race condition represents any one of all 

possible execution interleavings of a set of threads T = 

{T1…TN} where at least one of the threads in T is non-safe and 

at least one is safe, such that the final computation state after 

all threads have executed does not correspond to any case when 

all safe threads in T have executed in isolation. 

 

To understand how the safe and non-safe threads can interact, 

we exhaustively explore all interleavings where the non-safe 

thread T2 executes between operations in the safe thread T1. 

Table 1 tabulates all possible interactions between a safe thread 

T1 and a non-safe thread T2. The safe thread is improperly in-

tercepted by T2 at a position that slices the operations of T1 into 

two parts T1´ and T1´´. The table evaluates the outcomes of this 

interaction exhaustively. We derive the following classification 

theorem from Table 1. 

 

Theorem 1. Race condition cases. A race between two 

threads occurs due to one of the following conditions: 

 

I. XwR = X+ wx* R+X*. This case specifies that any se-

quence of operations by T2 that starts with a write and oc-

curs after one or more arbitrary operations but before a 

read in T1 causes a race. 

II. WrW = R*WX* r+ R*WX*. This case specifies that any 

sequence of reads by T2, when placed in-between two writes 

by T1, results in a race. 

III. RwW = R+X* wx* WX*. When T1 starts with a read fol-

lowed by an arbitrary sequence of operations, and T2 ex-

ecutes any sequence of operations that starts with a write 

just before T1 writes back to this variable, a race will occur. 

IV. XrwX = X+ r+wx* X+. This case specifies that any se-

quence starting with a write based upon a prior by T2 caus-

es a race when interleaved between any two T1 operations. 

 

 With no effect on the generality of the theorem, in all se-

quences we assume that the last operation in T1, which com-

pletes the race condition, is the last operation in the critical 

section. 

 

Proof. Direct result of combining cases from Table 1. □ 

 

There is previous work [18, 26] that also proposes enumera-

tion of possible interleavings. However, it does not focus on 

race toleration as we do. Section 3.1 describes how we employ 

the classification from Table 1 for this purpose. 

 

Theorem 2. Reduction of race conditions. Any race condi-

tion among K>2 threads can always be reduced to one of the I-

IV cases of a race between two threads. 

 

Proof. Consider a single safe thread among K interacting 

threads. The K-1 non-safe threads impart intervening sequences 

of operations r+, wx*, or r+wx* on the safe thread. When these 

three sequences interleave, the resulting sequence still belongs  
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Table 1. Tabulating classes of race instances. Column marked ―race‖ denotes if the schedule T1´T2T1´´ results in a race. 

 
 

to one of the three sequences. As far as the safe thread is con-

cerned, no matter how many non-safe threads interact with it, it 

only observes the resulting intervening sequence. If such a se-

quence is one of the three sequences mentioned, it is as if it 

interacted with just a single non-safe thread, and the resulting 

race instances can be classified by Table 1. 

Now, consider multiple safe threads among the K interact-

ing threads. Because safe threads, by definition, hold consistent 

locking for a given shared variable, only one can be in the criti-

cal section accessing this variable at a given time. This brings 

us back to the first case we just considered and completes the 

proof. □ 

 

3 The ToleRace Oracle 
Having characterized asymmetric races, we now present our 

theoretical framework, the ToleRace Oracle, and describe how 

it handles all the race cases specified in Theorem 1. 

The core of our approach to managing races is to replicate 

the protected shared state so that the thread that acquires a lock 

on the shared state has an exclusive copy (see Figure 3). This 

thread continues reading from and/or writing to this copy until 

it releases the lock. When the lock is released, the ToleRace 

runtime can employ a variety of software and/or hardware me-

chanisms to determine which race, if any, has occurred. Possi-

ble outcomes range from tolerating the race completely to re-

porting that a race has occurred to executing a programmer-

specific handler when an intolerable race is detected. 

 Next, we study the effect of ToleRace on the cases de-

scribed in Theorem 1, assuming an oracle determines which 

race has occurred. 

 

V’=malloc(); 

V”=malloc();

V”=V’=V;

V=f(V,V’,V”)

free(V’); free(V”)

T1

l1(V)

r1(V)

w1(V)

u1(V)

T2

w2(V)

V T1

l1(V)

r1(V’)

w1(V’)

u1(V)

T2V’ V” V

w2(V)

 
(a) Without ToleRace    (b) With ToleRace 

 

Figure 3. ToleRace uses two additional copies of a variable to 

tolerate races. 

 

 Initialization and Finalization: We assume that the binding 

of locks (xV) to shared variables (V) is known before the critical 

section in T1 is entered and that storage for two additional cop-

ies (V', V'') of variable V has been allocated. After the lock is 

released, the storage for the two copies is deallocated. 

 Lock (Entry): When lock xV is acquired by T1, we copy V to 

V' and V'' (V''=V'=V) atomically. 

 Reads and Writes inside the Critical Section: ToleRace 

alters all instructions in the critical section of T1 to use V' in-

stead of V. Thus, V' is the local copy of V for T1 that cannot be 

accessed by other threads due to a race. All other threads such 

as T2 are unchanged and continue using V for all accesses. Copy 

V'' is not accessed by any thread until T1 exits the critical sec-

tion. 

 Unlock (Exit): When T1 exits the critical section by releas-

ing the acquired lock, ToleRace analyzes the content of V', the 

original value V'', and the value V that could have been altered 

by other threads as a consequence of a race. Depending on the 

relationship of the values in {V, V', V''} and knowledge about 

the specific case in Theorem 1 that has occurred, ToleRace 

deploys a resolution function V = f(V, V', V'') that defines the 

value of V after T1 finishes its critical section. The resolution 

function is executed atomically in the oracle ToleRace. 

 

Table 2. Tabulating the outcome of f for each race type. 

 
 

3.1 Tolerating and Detecting Races with the Oracle 

Combining the mechanism outlined above with the exhaustive 

interleavings enumerated in Table 1, we can reason about which 

cases ToleRace will tolerate. Assuming perfect knowledge of 

the specific race case that has occurred, Table 2 summarizes the 

definition of f and indicates the cases that ToleRace correctly 

tolerates. 

Because ToleRace can tolerate only some races of type IV, 

in Table 2 we subdivide this case into three sub-cases: 

IVA: RrwR= R+ r+wx* R+, 

IVB: WrwX= WX* r+wx* X+, and 

IVC: RrwW=XrwX – {RrwR ∪ WrwX} 

 The first column in Table 2 lists the race type based upon 

the classification from Theorem 1, the second column specifies 

whether V is equal to V'' at the point when f is called, the third 

column shows a resolution function f that allows ToleRace to 

tolerate the race, the fourth column indicates whether f provably 

operation interleaving operation interleaving operation interleaving

T1' T2 T1'' race type T1' T2 T1'' race type T1' T2 T1'' race type

R+ r+ R+ false R+ wx* R+ true I R+ r+wx* R+ true IVA

R+ r+ WX* false R+ wx* WX* true III R+ r+wx* WX* true IVC

R+ r+ R+WX* false R+ wx* R+WX* true I R+ r+wx* R+WX* true IVC

WX* r+ R+ false WX* wx* R+ true I WX* r+wx* R+ true IVB

WX* r+ WX* true II WX* wx* WX* false WX* r+wx* WX* true IVB

WX* r+ R+WX* true II WX* wx* R+WX* true I WX* r+wx* R+WX* true IVB

R+WX* r+ R+ false R+WX* wx* R+ true I R+WX* r+wx* R+ true IVC

R+WX* r+ WX* true II R+WX* wx* WX* true III R+WX* r+wx* WX* true IVC

R+WX* r+ R+WX* true II R+WX* wx* R+WX* true I R+WX* r+wx* R+WX* true IVC

race type V = V'' f (V, V', V'') tolerable π

I XwR false V true T1T2

II WrW true V' true T2T1

III RwW false V true T1T2

IVA RrwR false V true T1T2

IVB WrwX false V' true T2T1

IVC RrwW false N/A false N/A
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succeeds in tolerating the race, and the fifth column presents π, 

the schedule of threads that ToleRace’s result represents. Table 

2 shows that the ToleRace oracle tolerates all races with the 

resolution function f defined by Table 2 except sequences of the 

form RrwW. 

 For races of type RrwW, the interleaving of reads and 

writes from T2 breaks the program’s sequential memory consis-

tency. Here, T1 and the interleaved part of T2 both read the val-

ue of the shared variable once T1 has entered the critical sec-

tion, execute in parallel, and then join at the exit of the critical 

section of T1. T1 and T2 see the same value returned by the read, 

which would not be possible if T1 had executed its critical sec-

tion in isolation. 

When the oracle ToleRace is used as a pure race detector, 

i.e., when the resolution function is turned off, we can reason 

about the situations in which it may produce false positives or 

false negatives. The oracle ToleRace inherently generates no 

false positives. When V ≠ V'', an asymmetric race has occurred 

by definition. However, it produces a false negative when: 

a) the last write in the intervening sequence writes the same 

value as the value in V''. This is the so called ABA problem, 

i.e., the intervening sequence writes B and then A after the safe 

thread reads A. From the viewpoint of ToleRace, the clean copy 

appears to be untouched and ToleRace does not report a race. 

Surprisingly, although ToleRace does not detect this case, it 

tolerates it by scheduling the operations from the intervening 

sequence to have come before those of the safe thread. ABA 

will now appear as BAA. 

b) there is a WrW race. ToleRace cannot detect this race 

case, but it again tolerates it. 

 

3.2 Multiple Variables and Nested Critical Sections 

So far, we have considered the oracle ToleRace in a multith-

readed, single-variable, non-nested critical-section context. We 

now extend this framework to handle general cases, which may 

involve multiple variables and nested critical sections. Making 

local copies and executing the resolution function need to be 

done atomically for multiple variables. Nested critical sections 

share their local copies with the outer critical sections. Howev-

er, they have their own resolution function to resolve races for 

their protected variables. When dealing with these general cas-

es, the race toleration mechanism employed in ToleRace may 

lead to inconsistent execution. If this happens, ToleRace pre-

vents the shared variable reordering by acting as a race detector 

only. 

 

Theorem 3. Inconsistent execution. In the general case of tole-

rating asymmetric races involving multiple variables and 

nested critical sections, ToleRace may reorder operations of a 

non-safe thread such that the operations do not follow the orig-

inal program order. If there are data dependencies among the 

operations that must be observed, ToleRace disallows such 

reorderings and reverts to detection mode. 

 

Here we outline the proof of Theorem 3. Note that the de-

pendencies in Theorem 3 refer to data dependences, which oc-

cur when a write to a given variable depends on a read of 

another variable. 

We consider cases I through IVB from Table 2 where Tole-

Race tolerates races without a custom resolution function. To-

leRace can schedule operations from the non-safe thread to 

have come before or after the critical section. Any intervening 

sequence r+ always appears to have come before the critical 

section (race type II) whereas the sequence wx* always appears 

after (race type I and III). For the r+wx* sequence, the schedule 

depends on the race type (after for IVA and before for IVB). 

Consider an asymmetric race involving two variables P and 

Q. Let a non-nested critical section protect both variables in a 

safe thread. In a non-safe thread, let an intervening sequence to 

P come before an intervening sequence to Q in program order, 

but the two can overlap each other. Table 3 enumerates all poss-

ible P and Q intervening combinations from the non-safe 

thread. The first two columns show the nine possible combina-

tions. The third column indicates whether ToleRace reorders 

the intervening operations to P and Q. This follows directly 

from the resolution function in Table 2. For example, in the 

second row of Table 3, there is a reordering to make it appear 

that the Q intervening sequence comes before the P intervening 

sequence since r+ sequences will always be scheduled to appear 

before any critical section operations (case II in Table 2) whe-

reas the reverse is true for wx* sequences (case I and III in Ta-

ble 2). The fourth column specifies whether there is a depen-

dency from P to Q. In general, when there is a write to Q and 

the accesses to P may contain a read, then Q may be dependent 

on P, and, hence, the operations must observe program order. 

The fifth column shows the ToleRace action for each combina-

tion, which can be deduced directly from the result in columns 

3 and 4. ToleRace reverts to detection mode when it determines 

that there may be a dependency among the variables and the 

resolution function allows out-of-order execution. 

 

Table 3. Possible intervening sequences to P and Q. Trailing x* 

and r+ of P sequence may overlap with Q sequence. 

 
 

The oracle ToleRace we have described represents a theo-

retical framework that cannot be fully realized in practice. The 

next three sections describe software implementations that ap-

proximate it. Although the framework permits both software 

and hardware implementations, a software approach may be 

more appealing as it can be deployed immediately. Section 4 

describes an initial implementation that is restricted and sub-

optimal. It serves as a baseline for other implementations to 

benchmark against. Section 5 presents an improved version that 

addresses the shortfalls in the initial version. It approximates 

what would likely be deployed in practice. Section 6 investi-

gates the idealized version of software ToleRace. It assumes an 

oracle compiler and the availability of the program’s source 

code. 

 

P Q
reordered by 

ToleRace

dependency 

from P to Q
ToleRace action

r+ r+ No No Tolerate

wx* r+ Yes No Tolerate

r+wx* r+ If race IVA to P No Tolerate

r+ wx* No maybe Tolerate

wx* wx* No maybe Tolerate

r+wx* wx* No maybe Tolerate

r+ r+wx* No maybe Tolerate

wx* r+wx* If race IVB to Q maybe
Detect if reordered, 

tolerate otherwise

r+wx* r+wx*
If race IVA to P and 

IVB to Q
maybe

Detect if reordered, 

tolerate otherwise
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4 Software ToleRace: A First Version 
This section discusses the initial version of software ToleRace 

that is non-optimal and possesses some inherent restrictions. 

This first version makes all decisions at run time and does not 

perform any static program analysis. It allows us to gauge an 

upper bound on the software ToleRace overhead. In the next 

section, we will present an improved implementation that in-

corporates an additional static analysis phase to generate hints 

for the runtime, allowing it to make better decisions. This im-

proved version has a lower overhead and eliminates all the re-

strictions of the first version. 

We implement ToleRace on top of Pin [20] running on x86 

Linux systems. Our parallel applications are written in C/C++ 

and use the pthreads library for synchronization operations. 

However, we believe the framework described here generalizes 

to other platforms and threading libraries. In the rest of this 

paper, we apply software ToleRace to critical sections in the 

user code whereas critical sections in the library code receive 

no ToleRace protection. We assume that we can readily distin-

guish the two code regions. For example, in an x86/Linux ex-

ecutable compiled to use shared libraries, all routines in the 

.text section are considered user code (see some exceptions in 

Section 5.3.2). Library code is not present at load time and is 

discovered only at run time via the procedure linkage table in 

the .plt section. 

 

4.1 The General Pin-ToleRace Framework 

As the oracle ToleRace has complete knowledge of all the 

shared variables protected by a critical section, it can create the 

local copies as soon as the critical section is entered. Of course, 

such oracle knowledge may not be available in practice due to 

dynamically allocated shared variables. Hence, our Pin-

ToleRace implementation assumes no such knowledge and the 

shared variables associated with a particular critical section are 

always determined on the fly. Pin-ToleRace works directly on 

the executable; no source code is required. The notion of shared 

variables, thus, is redefined to that of shared memory locations. 

We conservatively assume that all memory accesses in a critical 

section touch shared memory locations except for those touch-

ing the thread local stack. We use the term safe memory to refer 

to the region of memory that holds the local copies of the 

shared memory data. 

 The safe memory is initially empty. Once a running thread 

is detected to have entered a critical section, each executed in-

struction with a memory operand touching a shared location is 

instrumented; no instructions outside of critical sections are 

instrumented. The instrumented code is generally referred to as 

the analysis routines. It searches the safe memory region for a 

local copy of the shared memory that is being accessed. If 

found, the memory access is redirected to this copy. If not 

found, the analysis routine creates a new node in the safe mem-

ory. The node records the address, the original value and the 

current value of the shared memory location together with other 

metadata that we describe later. It serves as a local copy of this 

shared location that all subsequent accesses in this critical sec-

tion will consult. When exiting from the critical section, Pin-

ToleRace traverses the nodes in the safe memory region and 

compares the saved original value with the value in the corres-

ponding true memory location. After taking the appropriate 

action to tolerate or detect a race, if any, it frees the nodes. 

 For this first version of Pin-ToleRace, we assume that code 

segments touched while executing in a critical section can be 

reached from outside of critical sections only after they have 

already been instrumented inside of the critical section. We will 

revisit this restriction in Section 5 when we introduce the im-

proved version of Pin-ToleRace. For now, it suffices to say that 

the presence of Pin’s code cache in its dynamic translator en-

gine necessitates this restriction. 

 

4.2 Implementation Details 

This subsection describes the implementation of Pin-ToleRace, 

whose framework is shown in Figure 4. 

 

4.2.1 The Safe Memory Region 

The safe memory contains three main data structures: a thread 

ID (tid) lock mapping table, a safemem header, and a list of 

safemem nodes. The first two structures are required to 

handle condition variables and nested/overlapped critical sec-

tions. If the program has neither, i.e., it contains only non-

nested critical sections, only the safemem list is necessary. 

In a safemem node, the fields origvalue, origaccess-

type, currentvalue, and write_aft_orig_accs are 

used by the resolution function to tolerate races. The lockvar 

field indicates the lock variable protecting a given memory 

location. It is used in conjunction with locklist in the sa-

femem header to correctly resolve races in nested/overlapped 

critical sections. cond_wait_threadlist and share-

dsafemem track the number of outstanding threads waiting to 

be signaled. The tid-lock table associates the ID of a 

thread executing inside of a critical section with the outer lock 

variable. When multiple threads can be inside of a critical sec-

tion at the same time, there will be a sharing of the safemem 

structures as shown in Figure 4. The role of each of these struc-

tures and their associated fields are explained next. 

 

 
 

// Instrumentation Routine 

VOID Instruction(INS ins) { 

  if (call to pthread_mutex_lock && in user code) { 

    Insert analysis routine CSEnter 

  } 

  else if (call to pthread_mutex_unlock && in user code) { 

    Insert analysis routine CSExit, 

    Insert analysis routine for the resolution function 

  } 

  if (CSLevel[PIN_ThreadId()]>=1) { 

    if (non-stack accesses) { 

      Rewrite memory operands 

      Insert analysis routine to redirect the accesses to the safe memory. 

    } 

  } 

} 

 

Figure 4. Pin-ToleRace framework. 

 

4.2.2 Identifying Critical Sections 

A critical section is defined by a mutex variable and a pair of 

pthread_mutex_lock and pthread_mutex_unlock calls with the 

mutex variable as their argument. Pin-ToleRace instruments 

 

locklist

safemem

sharedsafemem

tid

outermost lock 

variable
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lock/unlock calls dynamically. When a lock routine is executed, 

it adds a call to the CSEnter analysis routine. The analysis 

routine increments the CSLevel counter and sets the respec-

tive entry in the tid-lock table by updating it with the 

thread ID and lock variable argument passed to it. The CSLe-

vel counter is a per thread counter that keeps track of the criti-

cal section nesting level. When an unlock call is encountered, a 

call to the CSExit routine is added, which decrements the 

CSLevel counter. A thread is executing inside a critical sec-

tion if its CSLevel counter (CSLevel[tid]) is greater than 

or equal to one. Because Pin-ToleRace is only concerned with 

user code (see earlier definition), we only instrument 

lock/unlock calls in the selected code regions. 

 

4.2.3 Instrumenting Accesses to Shared Memory 

When an instruction is executed, Pin-ToleRace determines 

which thread it belongs to with the PIN_ThreadId() func-

tion. Then, it checks the value of CSLevel[tid] and whether 

the instruction is accessing a shared memory location. Instru-

mentation is enabled only when CSLevel[tid] is greater 

than zero. We ignore operands that access the local stack; all 

other locations are presumed to be shared, which includes all 

truly shared locations as well as some false locations such as 

private heap variables. Pin-ToleRace cannot determine whether 

a particular heap location is shared, and, therefore, conserva-

tively assumes all heap locations to be shared. 

Once we decide that an instruction accesses a shared loca-

tion, we rewrite its memory operand. The operand is converted 

from its current addressing mode to the base register addressing 

mode using one of Pin’s scratch registers. We instrument this 

instruction and pass the effective address of the memory ope-

rand to the analysis routine. The analysis routine determines 

which thread is executing it and searches the corresponding 

safemem linked list using the effective address as the search 

key. If a match is found, the routine returns the address of the 

currentvalue field of the matching node. This address is 

written into the scratch register that is used as the base address 

register for the rewritten operand. If no match is found, the 

analysis routine creates a new node and updates the origva-

lue and currentvalue fields with the true memory value 

obtained by dereferencing the effective address. (This performs 

the V''=V'=V operation.) It then returns the address of the cur-

rentvalue field like in the found case. Although the instru-

mentation routine is a callback routine that is called by multiple 

threads, it does not create a race as it is serialized under Pin. 

Any thread can instrument code as long as it is executing in a 

critical section, and the same instrumented code will apply to 

all other threads. 

 

4.2.4 Critical Section Exit 

Before the call to the unlock routine at the critical section exit, 

we insert a call to an analysis routine that executes the resolu-

tion function. The associated lock variable is passed to this rou-

tine to handle nested critical sections. At this point, we resolve 

all race conditions to the shared memory locations accessed 

within the critical section according to Table 2. Section 4.3 

provides more detail. After the race condition resolution, the 

safemem nodes are freed, provided that the current critical 

section is not nested and that there are no outstanding waits on 

condition variables (cf. Sections 4.2.5 and 4.2.7). 

4.2.5 Nested and Overlapped Critical Sections 

The main component of the safe memory data structure that 

handles nested and overlapped critical sections is the lock-

list in the safemem header. The locklist is main-

tained such that the head of the list always points to the most 

recent lock variable associated with the innermost critical sec-

tion. This approach correctly associates shared memory ac-

cesses with the most recent lock variable acquired. Note that the 

inner mutex lock variable itself cannot be part of the protected 

shared variable under the outer mutex. If it could, the safe 

thread might be left spinning forever on a local copy of the in-

ner lock variable that no other thread can reset (i.e., unlock), 

thus leading to deadlock. 

 A critical section that executes inside another critical sec-

tion never creates a new safemem list; it shares this struc-

ture with the outer critical section(s). If this were not so, the 

inner critical section could access stale memory values as the 

most up to date values may be in another safe memory region. 

 Upon critical section exit, the resolution function selectively 

resolves races for the shared memory locations that are asso-

ciated with the current lock variable. Recall from the previous 

section that the lock mutex variable is passed to the analysis 

routine. We traverse all safemem nodes, check for a match-

ing lockvar value, resolve races for that particular node, and 

delete that node from the safemem list. The corresponding 

node in the lock list is also deleted. At this point, the shared 

memory associated with the matching lockvar becomes glo-

bally visible. If the locklist becomes empty, the safemem 

header is freed and the respective entry in the tid-lock 

table is reclaimed. 

 One subtlety with Pin-ToleRace involves a (non-nested) 

critical section that calls a function that is also called from out-

side any critical section. This creates a situation where the non-

critical code in the called function is executed under a non-

nested critical section whereas the code inside the critical sec-

tions receives an extra nesting level. A problem arises once the 

function’s code is no longer executed under any critical section 

as it may contain accesses to false locations whose addresses 

were redirected by the code instrumentation. Since there is no 

resolution routine, the content of the safe memory is never 

transferred to the true memory locations, which will likely crash 

the program. Our solution to this problem is to put a guard on 

the analysis code that only allows it to perform the safe memory 

access when the CSLevel is greater than zero. Thus, when the 

function is executed outside a critical section, it will access the 

original memory locations. 

 

4.2.6 Routine Calls inside a Critical Section 

Function calls inside a critical section are handled correctly 

with the already described data structures of the safe memory. 

If a call passes a shared memory value on the stack, this shared 

value is correctly obtained from the safe memory region. Or, if 

the called function accesses shared memory locations, its ac-

cesses are redirected to the safe memory. As we want to protect 

only user routines, Pin-ToleRace must distinguish them from 

library routines. Note that Pin itself instruments every instruc-

tion dynamically and has no knowledge if the instruction comes 

from a user or library routine. Shared memory accesses in user 

code need redirection to the safe memory whereas those in li-

brary code need not. Nevertheless, we cannot simply exclude 
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accesses to the safe memory from libraries because a call to a 

library routine can pass pointers to shared variables as argu-

ments. To handle this case, we allow the library code to access 

the existing nodes in the safemem list but disallow the ad-

dition of new nodes to the list. 

 

4.2.7 Handling Condition Variables 

In addition to lock and mutex variables that synchronize threads 

by controlling access to data, the pthreads library also supports 

the use of condition variables to synchronize threads based on a 

data value. A call to pthread_cond_wait with a condition varia-

ble and a mutex variable as arguments atomically unlocks the 

mutex variable and makes the thread wait for the value of the 

condition variable. A call to pthread_cond_signal with the cor-

responding conditional variable wakes up one of the waiting 

threads. These two calls are instrumented with an analysis rou-

tine that increments and decrements, respectively, the global 

wait counter. Our current implementation does not support 

waits on more than a single mutex variable. 

Condition variables complicate ToleRace because they al-

low multiple threads to be in a critical section at the same time. 

When a new thread enters a critical section while some other 

threads are waiting, this new thread cannot simply create its 

own copy of the safe memory. Instead, it must share this copy 

with the waiting threads. Hence, whenever a thread enters the 

critical section and there is an outstanding conditional wait as 

indicated by the wait counter, Pin-ToleRace searches the tid-

lock table for the lock variable, uses the safemem 

header associated with this lock variable, and increments the 

sharedsafemem field in the safemem header. When the 

thread updates or creates a node in the safemem list, it puts 

its tid on the node’s cond_wait_threadlist. When it 

exits the critical section, it checks whether it is the last thread to 

exit, and, if so, follows the normal exit procedure and frees the 

safemem list. Otherwise, it resolves races only on the loca-

tions it touched. If it was the only thread accessing this node, it 

deletes the node from the list. If the node has been accessed by 

multiple threads, the thread resolves any races for the node but 

leaves the node in the list and only deletes its tid from the 

node’s cond_wait_threadlist. If the thread needs to 

copy the value to the true memory, it must also update the 

origvalue field with the currentvalue. This ensures that 

when the remaining threads sharing this node resolve race con-

ditions, they will not signal a false race. 

 

4.3 Tolerating and Detecting Races with Pin-ToleRace 

When Pin-ToleRace performs the resolution function, it knows 

the type of the first access to a shared location as this informa-

tion is recorded in the origaccesstype field when the node 

is created. It also knows whether subsequent accesses to this 

location included a write (write_aft_orig_accs field). 

Therefore, Pin-ToleRace can determine the types of accesses 

that are involved in a race to this shared location. When it com-

pares V with V'' and finds that V ≠ V'', the non-safe interleaving 

thread must contain a write. However, it cannot distinguish 

between the two write sequences, wx* and r+wx*. In some 

environments, the write sequence may be known, which enables 

Pin-ToleRace to tolerate all races that the oracle ToleRace can 

tolerate (see Table 2). In general, however, Pin-ToleRace must 

conservatively assume the worst case interleaving, i.e., r+wx*, 

which prevents it from tolerating type III races. Aside from this 

restriction, it tolerates the same race types as the oracle. 

As a race detector, Pin-ToleRace has the same properties as 

the oracle (cf. Section 3.1) except it introduces an additional 

false negative due to its non-atomic execution of the resolution 

function. This happens when immediately after the comparison 

of V and V'' returns equal, the intervening sequence writes to V. 

Given that the intervention must happen precisely at that mo-

ment, the probability of this occurring should be low. Pin-

ToleRace does tolerate races in this situation. To see this, let us 

revisit Table 2. It is sufficient to consider only race case IV as 

Pin-ToleRace assumes r+wx* for all intervening write se-

quences. In the absence of a race, when the safe thread opera-

tions contain only reads, Pin-ToleRace never writes the local 

copy back; when the operations start with a write, it always 

writes back the local copy. This effectively enforces schedule 

T1T2 and T2T1 and thus tolerates race types IVA and IVB, re-

spectively, if they occurred. Only race type IVC remains prob-

lematic. When dealing with intolerable races, Pin-ToleRace 

reports the race and halts program execution. 

 
4.4 Evaluation 

4.4.1 Benchmarks 

We use 13 applications from the SPLASH2 [27] and PARSEC 

[6] benchmark suites to evaluate Pin-ToleRace. We also devel-

oped three microbenchmarks to stress-test a safe thread’s race 

toleration in the presence of non-safe threads. 

The microbenchmarks are called scalar, static array, and 

dynamic array. The eight programs from the SPLASH2 suite 

were chosen per the minimum set recommended by the suite’s 

guidelines. For each of the eight programs, the default inputs 

were used. However, we increased some of the input sizes to 

lengthen the program run times. We selected the five programs 

from the PARSEC suite that use the pthreads library. They are 

run with the simlarge inputs. 

 

4.4.2 System and Compiler 

All benchmarks, including the microbenchmarks, are compiled 

and run on an Intel 32-bit system (IA-32) with a four-core 2.8 

GHz Pentium4-Xeon CPU with a 4-way associative 16 kB L1 

data cache per core, a 2 MB unified L2 cache, and 2 GB of 

main memory. The operating system is Red Hat Enterprise Li-

nux Release 4 and the compiler is gcc version 3.4.6. We com-

piled the SPLASH2 and PARSEC programs per each suite’s 

guideline with the -O2 and -O3 optimization level, respectively. 

The microbenchmarks use the -O3 optimization level. 

 

4.4.3 Stress Test 

The stress tests demonstrate Pin-ToleRace’s ability to tolerate 

races of the form RwW. In this test, the safe thread performs 

read-increment-write operations on some shared locations while 

the non-safe threads write random values to these locations. 

 In the program scalar, the safe thread increments a single 

shared location from zero to a given number of iterations. The 

entire incrementing loop resides in a single critical section. At 

the same time, several non-safe threads set this memory loca-

tion to their thread ID and then read the value back to compute 

its square. The programs static array and dynamic array perform 

the same function. However, instead of a single shared location,  



 8 

 
     (a)            (b)           (c) 

Figure 5. Normalized execution time of Pin-ToleRace for scalar (a), static array (b) and dynamic array (c) for different iteration 

counts. 

 
the safe thread increments all elements in a static array of size 

10 and all elements in a 5x5 2-D dynamic array allocated on the 

heap, respectively. The non-safe threads write their IDs to all of 

these shared locations. 

For these tests, we know that the non-safe threads will cause 

races that always begin with a write to a shared location. By 

monitoring all shared accesses to the safe memory region, Pin-

ToleRace determines that the safe thread reads and then writes 

to the shared locations. Once it identifies this RwW type race, it 

can tolerate it by scheduling the non-safe thread’s action to 

have happened after the safe thread’s read-increment-write op-

erations. Our test setup uses five non-safe threads and runs the 

three programs with 5M, 7.5M, and 10M iterations. In each 

experiment, we observe the correct values in all shared loca-

tions just before the critical section exit. We also see that after 

exiting from the critical section, the values of these locations 

change to the thread ID of the non-safe thread that ran last. 

Figure 5 reports the overhead of Pin-ToleRace for tolerating 

these RwW races. It is normalized to the run time of the three 

programs under Pin with no instrumentation. We find that the 

overhead is largely constant with respect to the number of itera-

tions. Note that the native and Pin runs of all three programs 

suffer from race conditions while the Pin-ToleRace runs have 

all their races correctly tolerated. 

For all three microbenchmarks, the overhead of Pin-

ToleRace over native is very high—up to 80 times in the dy-

namic array case. The primary reason for this high overhead is 

that we are riding on the Pin overhead. If we measure the over-

head of Pin-ToleRace over Pin, the dynamic array benchmark 

incurs an overhead of about 4.5 times. While this is substantial, 

it should be noted that the microbenchmarks almost always 

execute in a critical section, which is where all the Pin-

ToleRace code resides. Moreover, because the safemem 

nodes are organized as a linked list, the linear search opera-

tion in the presence of many shared locations contributes great-

ly to the overhead. For example, going from scalar to static 

array more than doubles the overhead. In other words, these 

microbenchmarks reflect worst case scenarios as they are al-

ways busy tolerating races inside a critical section. The next 

section shows that real applications have critical section charac-

teristics that lead to a much lower Pin-ToleRace overhead. 

 

4.4.4 Benchmark Applications 

This section characterizes the critical sections of the 13 bench-

marks and discusses the overhead of Pin-ToleRace on these 

programs. 

Critical section characterization: For this study, we com-

piled the 13 benchmarks to use four processors, which corres-

ponds to the number of cores on our evaluation platform. We 

then used Pin to collect the critical section statistics shown in 

Table 4. Note that we only study critical sections that reside in 

the user code, i.e., we exclude all library code. 

 

Table 4. Critical section characteristics. 

 
 

Table 5. Unique locations accessed to possibly shared locations 

per critical section by each thread. 

 
 

The second column of Table 4 shows that the number of 

unique critical sections per benchmark is quite small. radios-

ity tops the list with 36. All but two of the programs have 16 

or fewer critical sections. Only four benchmarks, radiosi-

ty, dedup, facesim, and ferret, contain nested crit-

ical sections. Note that some of these nestings are statically 

non-nested. For example, a call inside a non-nested critical sec-

tion to a function that contains a non-nested critical section 

dynamically results in nesting. The last column shows the total 

number of executed instructions within the critical sections. The 

numbers in this column exclude the instructions of any library 

routines called from the critical sections. All programs except  
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% dynamic 

instrs in CS

cholesky 14 no 11,849 29 < 0.1%

fft 10 no 55 17 < 0.01%

lu 7 no 1,043 17 < 0.01%

radix 9 no 51 17 < 0.01%

barnes 10 no 1,098,771 94 0.18%

ocean 26 no 3,335 17 < 0.01%

radiosity 36 yes 1,739,512 18 0.11%

water-spatial 16 no 853 13 < 0.01%

dedup 7 yes 256,380 600 0.42%

facesim 5 yes 10,161 46 < 0.01%

ferret 4 yes 552,173 690 1.59%

fluidanimate 11 no 4,359,405 13 0.40%

x264 2 no 16,767 11 < 0.01%

unique locations accessed

AVG STD

cholesky 4.78 0.38

fft 1.37 0.04

lu 2.99 0.01

radix 2.82 0.19

barnes 19.13 0.03

ocean 3.00 0.00

radiosity 4.92 0.23

water-spatial 2.62 0.01

dedup 80.87 3.52

facesim 7.70 1.14

ferret 72.89 33.83

fluidanimate 5.00 0.00

x264 2.16 0.02
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Figure 6. Normalized execution time of Pin-ToleRace. 

 

ferret execute less than one percent of their dynamic user 

instructions in critical sections. The fourth column of Table 4 

shows the total number of executed critical sections. The counts 

range from under one hundred in fft and radix to over one 

million in barnes, radiosity, and fluidanimate. The 

average number of instructions executed in user code per criti-

cal section is given in column five. Two benchmarks, dedup 

and ferret, stand out. Both execute over 600 instructions per 

critical section. barnes follows as a distant third at 94. These 

three benchmarks execute loops inside their critical sections. 

The rest of the programs execute fewer than 30 instructions per 

critical section. Nevertheless, some of them have a high total 

dynamic instruction count inside critical sections, notably 

fluidanimate and radiosity whose small critical sec-

tions are being looped over. 

Next, we look at the critical sections from the point of view 

of Pin-ToleRace. Table 5 shows the average number of shared 

memory locations accessed per critical section execution by 

each benchmark. With the exception of ferret, this number 

is very uniform across the running threads as the standard devi-

ations indicate. Nine out of the 13 benchmarks perform fewer 

than five unique locations accessed. With so few accesses, Pin-

ToleRace’s linked list structure in the safe memory should not 

be a performance bottleneck. However, in barnes and espe-

cially in dedup and facesim, the number of unique locations 

accessed to shared locations is quite high. With these programs, 

the linear search through the linked list structure can add consi-

derably to the Pin-ToleRace overhead. Overall, the number of 

unique shared locations accessed seems to be in proportion with 

the number of instructions executed per critical section. 

Pin-ToleRace Performance: This section studies the over-

head of Pin-ToleRace on our benchmark applications. Given 

the results of the previous subsection, we decided to investigate 

two implementations of the safe memory. One uses the linked 

list approach described earlier and the other uses a chained hash 

table with 128 entries. We chose this size to minimize the colli-

sions in dedup and ferret. 

Figure 6 presents the results. The timing measurements are 

normalized to the native run time. Note that this is different 

from the normalization we used for the stress tests. The second 

bar shows the pure Pin overhead without instrumentation for 

each program. The third and fourth bars indicate the overhead 

of Pin-ToleRace with linked list and hash table implementations 

of the safe memory, respectively. On average, Pin-ToleRace 

incurs about a factor of two slowdown relative to the native 

runs. Much of this overhead is an artifact of using Pin; the 

slowdown due to Pin alone is 1.8X. If we consider the overhead 

of Pin-ToleRace relative to the Pin runs, it is only about 24%. 

By adding static analysis (see Section 5) or hardware support, it 

should be possible to reduce the overhead. Note that when a 

program runs under Pin-ToleRace, it effectively runs with a 

race detector. Therefore, the results in Figure 6 include the de-

tection overhead. When an intolerable race is detected, Pin-

ToleRace simply stops the program and reports the race. 

As expected, the hash table implementation of the safe 

memory reduces the Pin-ToleRace overhead of barnes, de-

dup, and ferret. Unfortunately, it increases the overhead of 

all the other programs. The reason is that the chained hash table 

is more expensive to initialize and free than the linked list. With 

the hash table scheme, there is a fixed minimum number of 

entries to process (proportional to the table size) whereas with 

the linked list, there are only as many nodes as there are unique 

shared memory locations. Therefore, the hash table is only at-

tractive when the execution in a critical section can amortize 

this overhead. Recall from the previous section that each of the 

three benchmarks for which the hash table implementation 

works better executes a relatively large number of instructions 

and touches many unique shared memory locations inside the 

critical sections. The remaining benchmarks have small critical 

sections, and each critical section execution does not touch 

many unique shared locations, making the linked list implemen-

tation better suited. 

Note that it is sufficient to measure Pin-ToleRace perfor-

mance with no-race execution since the cost of executing race-

free is always equal to or greater than the cost of tolerating rac-

es. With no-race execution, when there is a write access to a 

shared variable, Pin-ToleRace needs to writes back the local 

copy V’ to the actual shared location V. When it tolerates a 

race, however, sometimes no such write back is necessary since 

the intervening write update by an unsafe thread to V might 

already be legitimate to pass on. 

.  

5 Improving the Initial Pin-ToleRace Version 
This section describes how to implement a more efficient Pin-

ToleRace. The improved version also eliminates the restriction 

mentioned in Section 4.1. 

 

5.1 Inefficiency in Pin-ToleRace 

The sources of inefficiency in the initial Pin-ToleRace can be 

attributed to the following. 

Provision for generality: As the initial Pin-ToleRace as-

sumes no a priori knowledge when encountering a critical sec-

tion, it needs to be conservative and has to provision for the 

general case. Thus, the system creates the full structure of the 
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safe memory every time a critical section is executed. However, 

if a critical section is non-nested and does not have any condi-

tion variables, the tid-lock table and the safemem 

header become unnecessary and introduce two extra levels of 

indirection when accessing the safemem nodes. 

malloc and free operations: As we postpone all the analy-

sis of possibly shared memory locations until run time, our safe 

memory needs to be able to grow dynamically to account for 

those locations that are generated on the fly. It is natural to use 

malloc and, hence, its corresponding free operations for this 

purpose. However, malloc and free are rather heavyweight calls 

and are not easily amortized in small critical sections. Worse 

yet, as these small critical sections are being looped over, the 

call overhead can add up significantly. Ideally, if we can bound 

the number of possibly shared locations, we can resort to a 

stack-based allocation style where the corresponding malloc 

and free operations are reduced to adding and subtracting a 

value from the stack pointer. 

Fixed data structure for the safe memory: With the pre-

vious implementation of Pin-ToleRace, the safe memory data 

structure is fixed throughout the entire run of a program. This 

may not be optimal for an application that contains both short 

and long critical sections. We, therefore, want to selectively 

assign the right safe memory structure to each critical section. 

 

5.2 Inherent Restriction in Pin-ToleRace 

Figure 7 shows a situation where the assumption we made for 

the initial Pin-ToleRace in Section 4.1 may not hold. State-

ments 1 through 4 may get executed inside of a critical section, 

i.e., when cond2 is true, or outside of a critical section, i.e., 

when cond2 is false.  In addition, the function f() may be called 

from within a critical section (line 7) or from without (line 2). 

 

 
Figure 7: An example illustrating how the assumption in the 

first version of Pin-ToleRace may be violated. 

 

The Pin’s code cache poses some complication to the situa-

tion depicted in Figure 7. First, let cond1 be true and cond2 be 

false. Statement 1 through 4 and function f() get executed out-

side of a critical section and their translated execution code is 

stored into the code cache. Then, let cond1 stay the same and 

cond2 become true. The four statements and f() now execute 

inside of the critical section. This time, however, the executed 

code, in particular, the instructions that may access shared 

memory may not get the proper operand rewriting and instru-

mentation. When the runtime system consults the code cache, it 

may find and use instances of the translation of the first execu-

tion, causing incorrect ToleRace operation as the previously 

translated code does not rewrite memory operands and redirect 

accesses of shared memory locations. In general, in the pres-

ence of a code cache, code segments that can potentially be 

executing both inside and outside of critical sections may cause 

incorrect run time behavior in Pin-ToleRace. 

Aliasing caused by indirect calls: Indirect calls inside crit-

ical section may have their targets alias with functions that can 

both be executed inside and outside of critical sections. Fur-

thermore, indirect calls outside of critical sections can also be 

problematic as their targets may alias with code that executes 

inside of critical sections. These scenarios bring back the cor-

rectness issue we have just discussed above. 

 

5.3 Static Program Analysis 

In this section, we discuss static program analysis whose role is 

to generate and pass additional information and hints to the 

runtime systems. Such information will be used to remedy both 

the inefficiencies as well as the restrictions in the first version 

of the Pin-ToleRace. Figure 8 shows a block diagram for the 

static analysis phase. The input program is first passed into a 

call graph construction module. This module produces a graph 

representation of all calls in the program; every function is a 

node in the graph and there is an edge from function X to func-

tion Y if X calls Y. This call graph information together with 

the original program are in turn fed into the second module that 

traverse every critical section in the program. The output from 

this second module is a candidate list of instructions that poten-

tially access shared memory locations inside critical sections. 

These modules and their interactions are described in detail 

below. 

 

 
Figure 8: Static program analysis phase. 

 

5.3.1 Assumptions about the Input Program 

We assume that the program’s executable contains all the user 

code and is available to us. The corresponding source code, 

however, may or may not be available. We assume that the 

program is compiled to use shared libraries. While the library 

source code is not available to us, the library’s function proto-

types are. That is we are fully aware of the interface given to 

the user, i.e., the number and type of parameters for all library 

calls are known. Threading and synchronization libraries 

(pthreads in our case) are also parts of the shared libraries. 

 

5.3.2 Static Call Graph Construction 

Below are the details on how the call graph construction mod-

ule functions. 

Input: The call graph module takes the program’s executa-

ble as its input. 

Processing: We use a two-pass algorithm. During the first 

pass, we traverse the program’s executable and collect target 

addresses and possibly names of the user routines. We obtain 

such information from examining the .text section of the pro-

gram. We eliminate certain routines that are not actually parts 

 1:  while (cond1) { 
2:    f(); 

3:    if (cond2) 

4:      pthread_mutex_lock(&mutex); 

5:    statement 1; 

6:    statement 2; 

7:    f(); 

8:    statement 3; 

9:    statement 4; 

10:   if (cond2) 

11:     pthread_mutex_unlock(&mutex); 

12: } 

 

program’s 

executable 

call graph 

construction 

critical 
section 

traversal possible 
shared 
memory 

accesses 
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of the program, but get put in per operating system requirement, 

for example, call_gmon_start. These target addresses 

become nodes of the call graph to be constructed in the next 

step. In addition, we also gather target addresses and possibly 

names of the shared libraries including pthreads libraries. Such 

information is manifested in the procedure linkage table, which 

is contained in the .plt section of the executable. Note that we 

deal with x86/Linux platforms here; others may have different 

executable formats and conventions. 

After we have collected all the necessary information in the 

first pass, in the second pass, we traverse the .text section to 

build a call graph. We walk each routine in the section one by 

one. For a given routine, we traverse every instruction in the 

routine from start to end in static program order. We search for 

calls to other routines. If a call is found, we check its target and 

create an edge from the current (calling) routine to the called 

routine. When examining each routine, we also gather other 

information required by the analysis in the next module (see 

output below). Note that we only deal with a call whose target 

is known at compile time. We discuss handling of indirect calls 

in Section 5.3.4. 

After the call graph has been constructed, we generate a call 

chain for each routine. A call chain for a particular routine gives 

all the user routines that can be reached by initiating a call to 

the said routine. The chain is generated by traversing the call 

graph given the said routine as the starting node. 

Output: After processing, we have information about each 

routine in the .text section, which represents a user routine. For 

each routine, we are able to tell: 

 its call chain 

 its list of calls to shared libraries 

 its instructions that may access shared memory 

 if it contains indirect calls 

 

5.3.3 Static Critical Section Traversal 

The purpose of this module is to identify all instructions that 

may access shared memory locations and are reachable from 

critical sections. 

Input: The module takes the original program and the out-

put from the call graph construction module as its inputs. 

Processing: At the heart of the processing stage is the criti-

cal section traversal routine. This function gets invoked when a 

call to pthread_mutex_lock routine is found while we traverse 

the .text section of the program. The first action is to advance to 

the next instruction and mark the instruction as visited. It then 

recursively traverses instructions in the critical section. The 

recursion terminates when the routine finds all unlocks to match 

the number of locks found along a possible execution path. 

When we encounter a conditional branch, we traverse the 

fall through path first, check if the branch target instruction has 

been visited, and if not traverse the target path accordingly. For 

the unconditional branch case, we need to only traverse the 

target path if the target instruction has not already been visited. 

In both cases, whenever we encounter a branch target address 

that is less than the current branch address, i.e., a back edge, we 

check if this forms a loop and whether there are instructions 

potentially accessing shared memory locations in the loop. The 

loop analysis information will be used to decide if malloc/free 

calls can be eliminated as well as to select a suitable data struc-

ture for the safe memory (Section 5.3.4.). 

For a critical section that contains calls to user routines, we 

also need to include the candidate instructions from the called 

routines. We first consult the call chain of each called routine. 

Then, we obtain the list of candidate instructions from all rou-

tines in the call chain. The call chain and the list of candidate 

instructions are taken from the output of the previous module. 

Output: After we traverse every critical section in the pro-

gram, we produce a list of addresses of instructions that may 

execute inside of critical sections and access shared memory 

locations. We also obtain the following information about each 

critical section in the program: 

 its list of calls to shared libraries 

 if it contains indirect calls 

 if it may access shared memory inside loops 

 if it contains condition variables 

 if it contains overlapped critical sections 

 if it contains statically nested critical sections 

 if it contains dynamically nested critical sections 

 

5.3.4 Putting It All Together 

This section describes how we use the result of the static pro-

gram analysis to remedy the inefficiency and restrictions in Pin-

ToleRace. First, we address the inefficiency.  

Addressing provisions for generality: This inefficiency is 

caused by uniformly implementing the full safe memory struc-

ture in every critical section. With the analysis, we can tailor 

the safe memory to suit a particular critical section, i.e., each 

critical section implements only the parts of the safe memory 

that are necessary for its correct operation. We need to know 

whether a given critical section contains condition variables, 

overlapped critical sections, or nested critical sections. For ex-

ample, if the critical section contains none of the above, we can 

eliminate the tid-lock table, the safemem header, 

and the lockvar field. This allows us to access the safemem 

node directly without any extra indirection, which should im-

prove the efficiency of the safe memory accesses. 

Eliminating malloc/free calls: Generally, if we can bound 

the number of shared memory locations touched when a given 

critical section is executed, we can use stack-style memory al-

location in place of malloc and free calls. This allows us to re-

place the costly call overhead with simple stack pointer opera-

tions. If the analysis result for a critical section indicates that 

there are no accesses to shared memory locations inside loops, 

the number of locations touched is bounded. With stack-based 

allocation, we preallocate a chunk of memory for every thread 

when it starts. In setting the chunk size, we need to consider all 

the critical sections whose shared memory accesses can be 

bounded, find the maximum number of bound accesses, and set 

the chunk size accordingly. 

Suitable data structure for the safe memory: As pre-

viously noted, for long critical sections, we prefer a hash table 

structure, whereas for short critical sections, a linked-list struc-

ture is more efficient. We approximate these characteristics 

from the analysis result by saying that long critical sections may 

access shared memory inside of loops, whereas short critical 

sections never access shared memory inside of loops. Note that 

we use the same type of analysis here as we did when trying to 

eliminate malloc and free calls. These two optimizations, elimi-

nating malloc/free and using an optimized safe memory struc-

ture, go hand in hand. Whenever we encounter critical sections  
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Figure 9: Normalized execution time for the improved version of Pin-ToleRace. 

 
Figure 10. Normalized execution time of ideal software ToleRace. 

 

that may never loop over shared memory accesses, we eliminate 

malloc/free calls, i.e., using stack-based allocation and choose a 

linked-list structure. Otherwise, we cannot avoid malloc/free 

completely and select a hash table structure. 

 We now turn to the restrictions in the first version of Pin-

ToleRace. All the analysis that we have done enables us to 

solve the situation depicted in Figure 7. We are able to statically 

identify code segments that may execute inside critical sections 

and access shared memory locations. The critical section traver-

sal module performs the analysis intra-procedurally while the 

call graph extends the analysis inter-procedurally, enabling 

whole program analysis. With the static analysis hints, the To-

leRace runtime guarantees correctness even in the presence of 

the Pin’s code cache. It instruments said code segments while 

they execute both inside and outside of critical sections. Note 

that this is in contrast to the initial Pin-ToleRace, which per-

forms instrumentation only when the program executes inside 

of critical sections. 

Handling indirect call aliasing: Because we have identi-

fied the code segments that may execute inside of critical sec-

tions upfront, aliasing from indirect calls executed exclusively 

outside of critical sections is not a problem. If such aliasing 

occurs, the runtime will correctly perform instrumentation at 

the instance the aliasing takes place. 

What if we encounter indirect calls inside of a critical sec-

tion, i.e., the critical section and the routines in its associated 

call chain contain indirect calls? Unfortunately, this situation 

cannot be solved completely with static program analysis. We 

simply do not know the targets of such indirect calls until run 

time. Therefore, any successful solutions to this problem inhe-

rently require the help of the ToleRace runtime. One possible 

solution is to keep track of all (user) routines executed outside 

of critical sections that have been translated by the just-in-time 

compiler. Once an indirect call is reached while executing in-

side a critical section, we instrument an analysis routine to 

search all the routines that have been translated, and, hence, 

reside in the code cache. If there is any aliasing, we flush the 

code cache so that the aliased routine is correctly instrumented. 

 

Table 6: Critical sections with properties given in each column 

for each application.  

 
 

So far, we have been concerned only with indirect call aliasing 

within user code. However, whenever we discover a library call 

that may execute inside of critical sections, we also need to 

worry about indirect call aliasing coming from the library code. 

To tackle this problem, we check if the library call passes func-

tion pointers as callback arguments. If so, we hint to the Tole-

Race runtime to instrument these callback functions to use the 

safe memory. We assume that we have complete knowledge 

about these callback functions (cf. Section 5.3.1) so that we can 

statically identify them. 

 

5.4 Results and Discussion 

Table 6 shows characteristics of the critical sections in each 

benchmark application, i.e., the results from the static program 

analysis described in the previous section. The first column of 

the table gives the total number of critical sections discovered 

statically. This result is compatible with that given in Table 4. 

Apparently, certain critical sections in some applications never 

get executed, for example, we statically found 43 critical sec-
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cholesky 14 0 0 4 0 1 3

fft 10 0 0 7 0 0 1

lu 7 0 0 5 0 0 1

radix 9 0 0 7 0 0 1

barnes 13 0 0 6 0 2 5

ocean 25 0 0 20 0 0 1

radiosity 43 0 0 5 0 1 10

water-spatial 20 0 0 9 0 0 4

dedup 10 0 0 9 0 4 0

facesim 10 1 0 3 0 1 5

ferret 12 0 0 12 0 11 11

fluidanimate 11 0 0 0 0 0 0

x264 2 0 0 2 0 1 0
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tions in radiosity, but only 36 of which are executed (see 

Table 4) with the given input. 

The programs in the two benchmark suites we consider do 

not have indirect calls in critical sections or overlapped critical 

sections. This frees us of worry over indirect call aliasing and 

allows us to get rid of the safemem header structure. Hence, 

the improved Pin-ToleRace version should run more efficiently 

with these benchmarks. Most critical sections in some kernels 

of the SPLASH2 suite, fft, lu, and radix, contain condition 

variables. They are mainly there to support barrier-style syn-

chronization. Similarly, in the PARSEC suite, almost all critical 

sections in dedup and ferret have condition variables. They 

are there to support pipelined-style parallelism. facesim is the 

only benchmark with a statically nested critical section. All 

critical sections in fluidanimte are simple in the sense that 

they are non-nested, do not contain any condition variables, and 

do not have any direct or indirect calls. 

Figure 9 compares the overhead of the improved version of 

Pin-ToleRace against that of the initial version, bare Pin, and 

native execution. Note that the improved and the initial versions 

cannot be compared directly as the latter suffers from some 

restriction whereas the former does not (cf. Section 4.1 and 

5.2). fluidanimate benefits most from the static analysis. 

Since it contains only simple critical sections, we can eliminate 

all the safe memory structures except the safemem nodes 

themselves. In addition, we can bound the shared memory loca-

tions for all the critical sections, allowing us to use stack-based 

allocations in place of malloc. Benchmarks such as fft, lu, 

radix, ocean, water-spatial, and facesim do not get 

significant benefit from the static hints as these programs spend 

very little time in critical sections. 

 

6 Idealized Software ToleRace 
Suppose we have an oracle compiler that knows all the shared 

locations within a critical section. The performance overhead of 

a ToleRace implementation based on such a compiler presents a 

lower bound on what we can achieve in software. (Recall that 

Pin-ToleRace infers all the shared memory locations on-the-fly, 

thus yielding an upper bound.) 

 To mimic the effect of such an oracle compiler, we manual-

ly modified the source code of our benchmarks after carefully 

studying the critical sections and the shared variables in each of 

them. In a few critical sections, we could not precisely mimic 

the effect of the oracle compiler because of shared variables 

that are allocated at run time. In these instances, we instead 

mimic the mechanism used in Pin-ToleRace. Moreover, in 

barnes and radiosity, we only modified frequently ex-

ecuted critical sections that cumulatively account for 99% and 

90% of all dynamic critical section executions, respectively. We 

believe that doing so should not significantly affect the over-

head result. 

After we incorporated ToleRace into the critical sections, 

we recompiled and ran these applications. Figure 10 shows the 

overhead results, which are normalized to the native execution 

time without ToleRace. The ideal software ToleRace incurs a 

6.4% overhead on average across our benchmarks. ferret 

executes inside critical sections more often than the other appli-

cations and has many run time allocated shared variables. Con-

sequently, it incurs the highest overhead. dedup, which has the 

second highest overhead, has similar characteristics. Most of 

the applications, however, incur less than 1% overhead with the 

ideal software ToleRace. 

 
7 Related Work 
Related race-detection research includes both static and dynam-

ic approaches. Static race detection relies on program analysis 

and either assumes existing programming languages (e.g., Java 

[21]) or defines new programming language semantics that help 

improve the static detection of races (e.g., Cyclone [12]). Static 

analysis techniques face several challenges. First, because many 

of the techniques are based on some form of model checking 

[13], they are computationally expensive and issues of scalabili-

ty arise. Second, the conservative and approximate nature of the 

analysis creates the potential for many false positives. RacerX 

[10] and Houdini/rcc [11] address these issues by combining 

traditional static analysis with heuristics and statistical ranking 

to identify the most probable races. One inherent drawback of 

static analysis for race detection is that asymmetric races can 

occur in contexts where the source code for the component con-

taining the error is not available for examination. 

Eraser is a dynamic race detection system based on lock-

sets [25]. Experience with this approach has shown that the 

overhead of maintaining the locksets is high and that false posi-

tives can be problematic. Subsequent approaches extend lock-

sets with happens-before analysis [2]. Combining locksets with 

a happens-before scheme results in higher precision dynamic 

race detectors [8, 9, 23, 28]. Even with refinements, the execu-

tion overhead of these approaches is typically larger than a fac-

tor of two. Previous work focuses primarily on detecting data 

races rather than tolerating them. The ToleRace detection tech-

nique is distinct from the lockset and happens-before algo-

rithms. Focusing only on asymmetric races allows ToleRace to 

take a transaction-like approach to race detection and toleration, 

which significantly reduces the overhead of dynamic race de-

tection. 

Dynamic race detection approaches have also been adopted 

by Intel’s Thread Checker [16] and Sun’s Thread Analyzer 

[15], which are commercial tools capable of locating data races 

in concurrent programs. Both tools suffer from a high memory 

footprint and run time overhead and are, thus, primarily used 

for software testing. 

Atomicity violation is another important class of concurren-

cy errors. It can be addressed statically [4] or dynamically. The 

AVIO system [18] belongs to the latter category and enume-

rates erroneous access interleavings similar to our asymmetric 

race interleavings. However, it only looks at single load/store 

pairs and not sequences of accesses. Without hardware support, 

the overhead of AVIO is very high, which makes it suitable 

only for test environments. The work by Lucia et al. [19] offers 

to tolerate some degree of atomicity violation with implicit 

atomicity by grouping consecutive memory operations into 

atomic blocks. 

Vaziri et al. [26] classify harmful interleavings into 11 cate-

gories, which is more than the six race cases (with case IV sub-

divided) we considered. The extra categories address high-level 

data races at the object granularity, which we do not consider. 

Their approach to race detection requires source-code annota-

tion and targets safe language environments. 

Kiena et al. [17] propose two schemes to dynamically heal 

data races for Java programs. In one scheme, they reduce the 
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probability of races happening by forcing threads that are about 

to cause racy accesses to yield. This is done at the byte-code 

level through yield() calls. In the other scheme, they add extra 

locks to some common code patterns that are likely to result in 

races. 

Concurrent to our work, Rajamani et al. [24] propose a run-

time system called Isolator that enforces isolation through page 

protection. The idea is to protect the pages containing shared 

variables (that are protected by a lock) so that accesses to them 

can be intercepted. Then, accesses to those variables that ob-

serve the proper locking discipline are redirected to a local copy 

of the corresponding page. Any improper access will be to the 

original page and hence raise a page protection fault. Similarly, 

Abadi et al. [1] use page-level protection to guarantee strong 

atomicity in software transactional memory. 

 

8 Conclusions 
This paper introduces ToleRace, a runtime system that uses data 

replication for detecting and tolerating asymmetric races. We 

have presented a theoretical framework as well as three soft-

ware implementations, which we evaluated on 13 real parallel 

applications from the SPLASH2 and the PARSEC suites. 
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