
 1

Efficient Runtime Detection and Toleration of

Asymmetric Races

Paruj Ratanaworabhan
1
, Martin Burtscher

2
, Darko Kirovski

3
, Benjamin Zorn

3
, Rahul Nagpal

4
, and Karthik Pattabiraman

5

1
Kasetsart University,

2
Texas State University,

3
Microsoft Research,

4
Indian Institute of Science,

5
University of British Columbia

Abstract - We introduce ToleRace, a runtime system that allows programs to detect and even tolerate asymmetric data races. Asymmetric races are race

conditions where one thread correctly acquires and releases a lock for a shared variable while another thread improperly accesses the same variable. Tole-

Race provides approximate isolation in the critical sections of lock-based parallel programs by creating a local copy of each shared variable when entering a

critical section, operating on the local copies, and propagating the appropriate copies upon leaving the critical section. We start by characterizing all possi-

ble interleavings that can cause races and precisely describe the effect of ToleRace in each case. Then, we study the theoretical aspects of an oracle that

knows exactly what type of interleaving has occurred. Finally, we present software implementations of ToleRace and evaluate them on multithreaded appli-

cations from the SPLASH2 and PARSEC suites.

Index Terms - Debugging aids, dynamic instrumentation, parallel programming, race detection and toleration.

1 Introduction
This paper tackles data race problems in lock-based parallel

programs. It focuses on programs written in unsafe languages

such as C or C++ that use add-on libraries for threading and

synchronization. At present, a large installed code base of such

programs exists and programmers continue to write parallel

code in this paradigm.

In general, a race is defined as a condition where multiple

threads access a shared memory location without synchroniza-

tion and there is at least one write among the accesses. With

proper synchronization, lock-based programs adhere to the da-

ta-race-free model [3] where synchronization operations are

made explicit by calls to specific library functions, e.g.,

pthread_mutex_lock in POSIX threads (pthreads). In this mod-

el, the hardware appears sequentially consistent with respect to

the programs even though it may be weakly ordered in reality.

We are interested in asymmetric races, which occur when

one thread correctly protects a shared variable using a lock

while another thread accesses the same variable improperly due

to a synchronization error (e.g., not taking a lock, taking the

wrong lock, taking a lock late, etc.).

Figure 1. An asymmetric race.

An example of an asymmetric race is shown in Figure 1.

Here, Thread 1 correctly uses a critical section to protect its

read accesses to the shared variable gScript. Thread 2 incorrect-

ly updates gScript without a lock, thus creating a race. The race

occurs infrequently, i.e., only when Thread 2’s update happens

between the test for NULL and the else part of the conditional

in Thread 1. Our reasons for focusing on asymmetric races are:

1. They are common in software development projects.

This conclusion comes from direct experience with developers

in software houses like Microsoft. There are two reasons for

this. First, usually a programmer’s local reasoning about con-

currency, e.g., taking proper locks to protect shared variables, is

correct. Errors due to taking wrong locks or no locks lie outside

of the programmer’s code, for example, in third party libraries.

Given that lock-based programs rely on convention, this phe-

nomenon is understandable. The second reason has to do with

legacy code. As software evolves, assumptions about a piece of

code may be invalidated. For instance, a library may have been

written assuming a single-threaded environment, but later the

requirements change and multiple threads use it. An expedient

response to this change is to demand that all clients wrap their

calls to the library, acquiring locks before entry and releasing

them on exit. Because this solution requires that all clients be

changed, races can be introduced when clients fail to follow the

proper locking discipline.

Figure 2. User-defined synchronization.

2. Symmetric races are often benign.

Because calls to synchronization operations are expensive, pro-

grammers often resort to lightweight user-defined synchroniza-

tion, as shown in Figure 2, where Threads 1 and 2 synchronize

on the flag variable. In this situation, even though a race occurs

by definition (the shared variable flag is accessed without ex-

plicit synchronization), it does not harm the program. Naraya-

nasamy et al. [22] show other types of benign symmetric races,

e.g., redundant writes and disjoint bit manipulation. Their expe-

rience with Windows Vista and Internet Explorer indicates that

these benign races are rather common.

This work presents ToleRace, a runtime system that not on-

ly detects asymmetric races but also tolerates them. ToleRace

allows programs to continue executing in the presence of

asymmetric races and possibly complete with a well-defined

semantic. Inspired by the DieHard system [5], which probabilis-

 Thread 1:

// gScript is shared

Lock(A);

if (gScript == NULL) {

 baseScript = default;

} else {

 baseScript = gScript;

}

UnLock(A);

Thread 2:

gScript = NULL;

Thread 1:

K = x;

flag = true;

Thread 2:

while (flag != true);

y = K;

// K and flag are declared volatile

 2

tically tolerates memory safety errors, ToleRace uses replica-

tion to detect and/or tolerate races. It provides an approximation

of isolation in critical sections by creating local copies of shared

variables when a critical section is entered, operating on the

local copy while in the critical section, detecting conflicting

changes to shared data when the critical section is exited, and

propagating the appropriate copy when possible to hide the

race.

ToleRace can be compared to transactional memory (TM)

[14]. The ToleRace mechanism outlined above is analogous to

constructing a read-write set while executing in a transaction

with a lazy versioning policy and lazily detecting conflicts to

the set, i.e., just before the transaction commits. However, To-

leRace is not based on optimistic synchronization as TM is;

there is no notion of abort-and-rollback, nor is there a need for

contention management. Whereas handling side effect opera-

tions and nested transactions are still open issues with TM, To-

leRace handles all I/O operations as well as overlapped critical

sections transparently. While TM can provide isolation and

tolerates races just as ToleRace does, it is not clear how TM can

be applied to existing lock-based codes. Converting from lock-

based to transaction-based code is not trivial [7].

This paper makes the following contributions:

• Foundations for run time management of races. We

present a theoretical framework that investigates all possible

interactions among safe threads that observe a proper locking

discipline and unsafe threads that fail to do so. Then, we focus

on cases where a race occurs, categorize them, and describe our

race detection and toleration scheme for each category.

• Precise race detection. ToleRace identifies races that ac-

tually happen at run time. It detects a race when the critical

section in which the race took place exits and, by design, never

generates a false positive.

• Low overhead software implementation. We present

three software implementations of ToleRace. Our first version

uses a dynamic instrumentation-based approach and performs

all analysis at run time. For the second version, we add a static

program analysis phase to remedy the shortfalls in the first ver-

sion. The third version is radically different from the first two.

It is based on source-code modifications to implement Tole-

Race.

2 Characterizing Asymmetric Races
To characterize asymmetric races, we consider all interleavings

between operations in a correctly synchronized thread and a

second, unsynchronized thread. We then reduce the interleav-

ings that result in races into four classes and consider how To-

leRace handles each class. We assume that there are two types

of threads:

• a safe thread consisting of a single critical section, and

• a non-safe thread that might access a shared variable outside

of a critical section or using the wrong lock to guard it.

Let r, w, and x denote read, write, and don’t-care operations,

respectively. An x don’t-care can be either a read or write oper-

ation. Let lower case letters represent accesses of non-safe

threads and upper case letters accesses of safe threads. r+ de-

notes a sequence of at least one read and r* indicates zero or

more reads. The operators + and * are equally defined for writes

and don’t-cares. There are only three ways in which a sequence

of operations from a single thread can interact with a single

variable: by reading it only (r+), by setting its value regardless

of its prior (wx*), and by setting its value based upon its prior

(r+wx*). For the r+wx* sequence, we assume that w is depen-

dent upon the value retrieved by r.

 Definition 1. A race condition represents any one of all

possible execution interleavings of a set of threads T =

{T1…TN} where at least one of the threads in T is non-safe and

at least one is safe, such that the final computation state after

all threads have executed does not correspond to any case when

all safe threads in T have executed in isolation.

To understand how the safe and non-safe threads can interact,

we exhaustively explore all interleavings where the non-safe

thread T2 executes between operations in the safe thread T1.

Table 1 tabulates all possible interactions between a safe thread

T1 and a non-safe thread T2. The safe thread is improperly in-

tercepted by T2 at a position that slices the operations of T1 into

two parts T1´ and T1´´. The table evaluates the outcomes of this

interaction exhaustively. We derive the following classification

theorem from Table 1.

Theorem 1. Race condition cases. A race between two

threads occurs due to one of the following conditions:

I. XwR = X+ wx* R+X*. This case specifies that any se-

quence of operations by T2 that starts with a write and oc-

curs after one or more arbitrary operations but before a

read in T1 causes a race.

II. WrW = R*WX* r+ R*WX*. This case specifies that any

sequence of reads by T2, when placed in-between two writes

by T1, results in a race.

III. RwW = R+X* wx* WX*. When T1 starts with a read fol-

lowed by an arbitrary sequence of operations, and T2 ex-

ecutes any sequence of operations that starts with a write

just before T1 writes back to this variable, a race will occur.

IV. XrwX = X+ r+wx* X+. This case specifies that any se-

quence starting with a write based upon a prior by T2 caus-

es a race when interleaved between any two T1 operations.

 With no effect on the generality of the theorem, in all se-

quences we assume that the last operation in T1, which com-

pletes the race condition, is the last operation in the critical

section.

Proof. Direct result of combining cases from Table 1. □

There is previous work [18, 26] that also proposes enumera-

tion of possible interleavings. However, it does not focus on

race toleration as we do. Section 3.1 describes how we employ

the classification from Table 1 for this purpose.

Theorem 2. Reduction of race conditions. Any race condi-

tion among K>2 threads can always be reduced to one of the I-

IV cases of a race between two threads.

Proof. Consider a single safe thread among K interacting

threads. The K-1 non-safe threads impart intervening sequences

of operations r+, wx*, or r+wx* on the safe thread. When these

three sequences interleave, the resulting sequence still belongs

 3

Table 1. Tabulating classes of race instances. Column marked ―race‖ denotes if the schedule T1´T2T1´´ results in a race.

to one of the three sequences. As far as the safe thread is con-

cerned, no matter how many non-safe threads interact with it, it

only observes the resulting intervening sequence. If such a se-

quence is one of the three sequences mentioned, it is as if it

interacted with just a single non-safe thread, and the resulting

race instances can be classified by Table 1.

Now, consider multiple safe threads among the K interact-

ing threads. Because safe threads, by definition, hold consistent

locking for a given shared variable, only one can be in the criti-

cal section accessing this variable at a given time. This brings

us back to the first case we just considered and completes the

proof. □

3 The ToleRace Oracle
Having characterized asymmetric races, we now present our

theoretical framework, the ToleRace Oracle, and describe how

it handles all the race cases specified in Theorem 1.

The core of our approach to managing races is to replicate

the protected shared state so that the thread that acquires a lock

on the shared state has an exclusive copy (see Figure 3). This

thread continues reading from and/or writing to this copy until

it releases the lock. When the lock is released, the ToleRace

runtime can employ a variety of software and/or hardware me-

chanisms to determine which race, if any, has occurred. Possi-

ble outcomes range from tolerating the race completely to re-

porting that a race has occurred to executing a programmer-

specific handler when an intolerable race is detected.

 Next, we study the effect of ToleRace on the cases de-

scribed in Theorem 1, assuming an oracle determines which

race has occurred.

V’=malloc();

V”=malloc();

V”=V’=V;

V=f(V,V’,V”)

free(V’); free(V”)

T1

l1(V)

r1(V)

w1(V)

u1(V)

T2

w2(V)

V T1

l1(V)

r1(V’)

w1(V’)

u1(V)

T2V’ V” V

w2(V)

(a) Without ToleRace (b) With ToleRace

Figure 3. ToleRace uses two additional copies of a variable to

tolerate races.

 Initialization and Finalization: We assume that the binding

of locks (xV) to shared variables (V) is known before the critical

section in T1 is entered and that storage for two additional cop-

ies (V', V'') of variable V has been allocated. After the lock is

released, the storage for the two copies is deallocated.

 Lock (Entry): When lock xV is acquired by T1, we copy V to

V' and V'' (V''=V'=V) atomically.

 Reads and Writes inside the Critical Section: ToleRace

alters all instructions in the critical section of T1 to use V' in-

stead of V. Thus, V' is the local copy of V for T1 that cannot be

accessed by other threads due to a race. All other threads such

as T2 are unchanged and continue using V for all accesses. Copy

V'' is not accessed by any thread until T1 exits the critical sec-

tion.

 Unlock (Exit): When T1 exits the critical section by releas-

ing the acquired lock, ToleRace analyzes the content of V', the

original value V'', and the value V that could have been altered

by other threads as a consequence of a race. Depending on the

relationship of the values in {V, V', V''} and knowledge about

the specific case in Theorem 1 that has occurred, ToleRace

deploys a resolution function V = f(V, V', V'') that defines the

value of V after T1 finishes its critical section. The resolution

function is executed atomically in the oracle ToleRace.

Table 2. Tabulating the outcome of f for each race type.

3.1 Tolerating and Detecting Races with the Oracle

Combining the mechanism outlined above with the exhaustive

interleavings enumerated in Table 1, we can reason about which

cases ToleRace will tolerate. Assuming perfect knowledge of

the specific race case that has occurred, Table 2 summarizes the

definition of f and indicates the cases that ToleRace correctly

tolerates.

Because ToleRace can tolerate only some races of type IV,

in Table 2 we subdivide this case into three sub-cases:

IVA: RrwR= R+ r+wx* R+,

IVB: WrwX= WX* r+wx* X+, and

IVC: RrwW=XrwX – {RrwR ∪ WrwX}

 The first column in Table 2 lists the race type based upon

the classification from Theorem 1, the second column specifies

whether V is equal to V'' at the point when f is called, the third

column shows a resolution function f that allows ToleRace to

tolerate the race, the fourth column indicates whether f provably

operation interleaving operation interleaving operation interleaving

T1' T2 T1'' race type T1' T2 T1'' race type T1' T2 T1'' race type

R+ r+ R+ false R+ wx* R+ true I R+ r+wx* R+ true IVA

R+ r+ WX* false R+ wx* WX* true III R+ r+wx* WX* true IVC

R+ r+ R+WX* false R+ wx* R+WX* true I R+ r+wx* R+WX* true IVC

WX* r+ R+ false WX* wx* R+ true I WX* r+wx* R+ true IVB

WX* r+ WX* true II WX* wx* WX* false WX* r+wx* WX* true IVB

WX* r+ R+WX* true II WX* wx* R+WX* true I WX* r+wx* R+WX* true IVB

R+WX* r+ R+ false R+WX* wx* R+ true I R+WX* r+wx* R+ true IVC

R+WX* r+ WX* true II R+WX* wx* WX* true III R+WX* r+wx* WX* true IVC

R+WX* r+ R+WX* true II R+WX* wx* R+WX* true I R+WX* r+wx* R+WX* true IVC

race type V = V'' f (V, V', V'') tolerable π

I XwR false V true T1T2

II WrW true V' true T2T1

III RwW false V true T1T2

IVA RrwR false V true T1T2

IVB WrwX false V' true T2T1

IVC RrwW false N/A false N/A

 4

succeeds in tolerating the race, and the fifth column presents π,

the schedule of threads that ToleRace’s result represents. Table

2 shows that the ToleRace oracle tolerates all races with the

resolution function f defined by Table 2 except sequences of the

form RrwW.

 For races of type RrwW, the interleaving of reads and

writes from T2 breaks the program’s sequential memory consis-

tency. Here, T1 and the interleaved part of T2 both read the val-

ue of the shared variable once T1 has entered the critical sec-

tion, execute in parallel, and then join at the exit of the critical

section of T1. T1 and T2 see the same value returned by the read,

which would not be possible if T1 had executed its critical sec-

tion in isolation.

When the oracle ToleRace is used as a pure race detector,

i.e., when the resolution function is turned off, we can reason

about the situations in which it may produce false positives or

false negatives. The oracle ToleRace inherently generates no

false positives. When V ≠ V'', an asymmetric race has occurred

by definition. However, it produces a false negative when:

a) the last write in the intervening sequence writes the same

value as the value in V''. This is the so called ABA problem,

i.e., the intervening sequence writes B and then A after the safe

thread reads A. From the viewpoint of ToleRace, the clean copy

appears to be untouched and ToleRace does not report a race.

Surprisingly, although ToleRace does not detect this case, it

tolerates it by scheduling the operations from the intervening

sequence to have come before those of the safe thread. ABA

will now appear as BAA.

b) there is a WrW race. ToleRace cannot detect this race

case, but it again tolerates it.

3.2 Multiple Variables and Nested Critical Sections

So far, we have considered the oracle ToleRace in a multith-

readed, single-variable, non-nested critical-section context. We

now extend this framework to handle general cases, which may

involve multiple variables and nested critical sections. Making

local copies and executing the resolution function need to be

done atomically for multiple variables. Nested critical sections

share their local copies with the outer critical sections. Howev-

er, they have their own resolution function to resolve races for

their protected variables. When dealing with these general cas-

es, the race toleration mechanism employed in ToleRace may

lead to inconsistent execution. If this happens, ToleRace pre-

vents the shared variable reordering by acting as a race detector

only.

Theorem 3. Inconsistent execution. In the general case of tole-

rating asymmetric races involving multiple variables and

nested critical sections, ToleRace may reorder operations of a

non-safe thread such that the operations do not follow the orig-

inal program order. If there are data dependencies among the

operations that must be observed, ToleRace disallows such

reorderings and reverts to detection mode.

Here we outline the proof of Theorem 3. Note that the de-

pendencies in Theorem 3 refer to data dependences, which oc-

cur when a write to a given variable depends on a read of

another variable.

We consider cases I through IVB from Table 2 where Tole-

Race tolerates races without a custom resolution function. To-

leRace can schedule operations from the non-safe thread to

have come before or after the critical section. Any intervening

sequence r+ always appears to have come before the critical

section (race type II) whereas the sequence wx* always appears

after (race type I and III). For the r+wx* sequence, the schedule

depends on the race type (after for IVA and before for IVB).

Consider an asymmetric race involving two variables P and

Q. Let a non-nested critical section protect both variables in a

safe thread. In a non-safe thread, let an intervening sequence to

P come before an intervening sequence to Q in program order,

but the two can overlap each other. Table 3 enumerates all poss-

ible P and Q intervening combinations from the non-safe

thread. The first two columns show the nine possible combina-

tions. The third column indicates whether ToleRace reorders

the intervening operations to P and Q. This follows directly

from the resolution function in Table 2. For example, in the

second row of Table 3, there is a reordering to make it appear

that the Q intervening sequence comes before the P intervening

sequence since r+ sequences will always be scheduled to appear

before any critical section operations (case II in Table 2) whe-

reas the reverse is true for wx* sequences (case I and III in Ta-

ble 2). The fourth column specifies whether there is a depen-

dency from P to Q. In general, when there is a write to Q and

the accesses to P may contain a read, then Q may be dependent

on P, and, hence, the operations must observe program order.

The fifth column shows the ToleRace action for each combina-

tion, which can be deduced directly from the result in columns

3 and 4. ToleRace reverts to detection mode when it determines

that there may be a dependency among the variables and the

resolution function allows out-of-order execution.

Table 3. Possible intervening sequences to P and Q. Trailing x*

and r+ of P sequence may overlap with Q sequence.

The oracle ToleRace we have described represents a theo-

retical framework that cannot be fully realized in practice. The

next three sections describe software implementations that ap-

proximate it. Although the framework permits both software

and hardware implementations, a software approach may be

more appealing as it can be deployed immediately. Section 4

describes an initial implementation that is restricted and sub-

optimal. It serves as a baseline for other implementations to

benchmark against. Section 5 presents an improved version that

addresses the shortfalls in the initial version. It approximates

what would likely be deployed in practice. Section 6 investi-

gates the idealized version of software ToleRace. It assumes an

oracle compiler and the availability of the program’s source

code.

P Q
reordered by

ToleRace

dependency

from P to Q
ToleRace action

r+ r+ No No Tolerate

wx* r+ Yes No Tolerate

r+wx* r+ If race IVA to P No Tolerate

r+ wx* No maybe Tolerate

wx* wx* No maybe Tolerate

r+wx* wx* No maybe Tolerate

r+ r+wx* No maybe Tolerate

wx* r+wx* If race IVB to Q maybe
Detect if reordered,

tolerate otherwise

r+wx* r+wx*
If race IVA to P and

IVB to Q
maybe

Detect if reordered,

tolerate otherwise

 5

4 Software ToleRace: A First Version
This section discusses the initial version of software ToleRace

that is non-optimal and possesses some inherent restrictions.

This first version makes all decisions at run time and does not

perform any static program analysis. It allows us to gauge an

upper bound on the software ToleRace overhead. In the next

section, we will present an improved implementation that in-

corporates an additional static analysis phase to generate hints

for the runtime, allowing it to make better decisions. This im-

proved version has a lower overhead and eliminates all the re-

strictions of the first version.

We implement ToleRace on top of Pin [20] running on x86

Linux systems. Our parallel applications are written in C/C++

and use the pthreads library for synchronization operations.

However, we believe the framework described here generalizes

to other platforms and threading libraries. In the rest of this

paper, we apply software ToleRace to critical sections in the

user code whereas critical sections in the library code receive

no ToleRace protection. We assume that we can readily distin-

guish the two code regions. For example, in an x86/Linux ex-

ecutable compiled to use shared libraries, all routines in the

.text section are considered user code (see some exceptions in

Section 5.3.2). Library code is not present at load time and is

discovered only at run time via the procedure linkage table in

the .plt section.

4.1 The General Pin-ToleRace Framework

As the oracle ToleRace has complete knowledge of all the

shared variables protected by a critical section, it can create the

local copies as soon as the critical section is entered. Of course,

such oracle knowledge may not be available in practice due to

dynamically allocated shared variables. Hence, our Pin-

ToleRace implementation assumes no such knowledge and the

shared variables associated with a particular critical section are

always determined on the fly. Pin-ToleRace works directly on

the executable; no source code is required. The notion of shared

variables, thus, is redefined to that of shared memory locations.

We conservatively assume that all memory accesses in a critical

section touch shared memory locations except for those touch-

ing the thread local stack. We use the term safe memory to refer

to the region of memory that holds the local copies of the

shared memory data.

 The safe memory is initially empty. Once a running thread

is detected to have entered a critical section, each executed in-

struction with a memory operand touching a shared location is

instrumented; no instructions outside of critical sections are

instrumented. The instrumented code is generally referred to as

the analysis routines. It searches the safe memory region for a

local copy of the shared memory that is being accessed. If

found, the memory access is redirected to this copy. If not

found, the analysis routine creates a new node in the safe mem-

ory. The node records the address, the original value and the

current value of the shared memory location together with other

metadata that we describe later. It serves as a local copy of this

shared location that all subsequent accesses in this critical sec-

tion will consult. When exiting from the critical section, Pin-

ToleRace traverses the nodes in the safe memory region and

compares the saved original value with the value in the corres-

ponding true memory location. After taking the appropriate

action to tolerate or detect a race, if any, it frees the nodes.

 For this first version of Pin-ToleRace, we assume that code

segments touched while executing in a critical section can be

reached from outside of critical sections only after they have

already been instrumented inside of the critical section. We will

revisit this restriction in Section 5 when we introduce the im-

proved version of Pin-ToleRace. For now, it suffices to say that

the presence of Pin’s code cache in its dynamic translator en-

gine necessitates this restriction.

4.2 Implementation Details

This subsection describes the implementation of Pin-ToleRace,

whose framework is shown in Figure 4.

4.2.1 The Safe Memory Region

The safe memory contains three main data structures: a thread

ID (tid) lock mapping table, a safemem header, and a list of

safemem nodes. The first two structures are required to

handle condition variables and nested/overlapped critical sec-

tions. If the program has neither, i.e., it contains only non-

nested critical sections, only the safemem list is necessary.

In a safemem node, the fields origvalue, origaccess-

type, currentvalue, and write_aft_orig_accs are

used by the resolution function to tolerate races. The lockvar

field indicates the lock variable protecting a given memory

location. It is used in conjunction with locklist in the sa-

femem header to correctly resolve races in nested/overlapped

critical sections. cond_wait_threadlist and share-

dsafemem track the number of outstanding threads waiting to

be signaled. The tid-lock table associates the ID of a

thread executing inside of a critical section with the outer lock

variable. When multiple threads can be inside of a critical sec-

tion at the same time, there will be a sharing of the safemem

structures as shown in Figure 4. The role of each of these struc-

tures and their associated fields are explained next.

// Instrumentation Routine

VOID Instruction(INS ins) {

 if (call to pthread_mutex_lock && in user code) {

 Insert analysis routine CSEnter

 }

 else if (call to pthread_mutex_unlock && in user code) {

 Insert analysis routine CSExit,

 Insert analysis routine for the resolution function

 }

 if (CSLevel[PIN_ThreadId()]>=1) {

 if (non-stack accesses) {

 Rewrite memory operands

 Insert analysis routine to redirect the accesses to the safe memory.

 }

 }

}

Figure 4. Pin-ToleRace framework.

4.2.2 Identifying Critical Sections

A critical section is defined by a mutex variable and a pair of

pthread_mutex_lock and pthread_mutex_unlock calls with the

mutex variable as their argument. Pin-ToleRace instruments

locklist

safemem

sharedsafemem

tid

outermost lock

variable

0 xxxxxx

1 0x3deeaabb

2 0x3f112244

3 0x3deeaabb

: :

: :

N xxxxxx

0x3deeaabb
1Safe Memory Region

tid-lock table

safemem header

safemem list

cond_wait_threadlist

next

lockvar

write_aft_orig_accs

currentvalue

origaccesstype

origvalue

address

 6

lock/unlock calls dynamically. When a lock routine is executed,

it adds a call to the CSEnter analysis routine. The analysis

routine increments the CSLevel counter and sets the respec-

tive entry in the tid-lock table by updating it with the

thread ID and lock variable argument passed to it. The CSLe-

vel counter is a per thread counter that keeps track of the criti-

cal section nesting level. When an unlock call is encountered, a

call to the CSExit routine is added, which decrements the

CSLevel counter. A thread is executing inside a critical sec-

tion if its CSLevel counter (CSLevel[tid]) is greater than

or equal to one. Because Pin-ToleRace is only concerned with

user code (see earlier definition), we only instrument

lock/unlock calls in the selected code regions.

4.2.3 Instrumenting Accesses to Shared Memory

When an instruction is executed, Pin-ToleRace determines

which thread it belongs to with the PIN_ThreadId() func-

tion. Then, it checks the value of CSLevel[tid] and whether

the instruction is accessing a shared memory location. Instru-

mentation is enabled only when CSLevel[tid] is greater

than zero. We ignore operands that access the local stack; all

other locations are presumed to be shared, which includes all

truly shared locations as well as some false locations such as

private heap variables. Pin-ToleRace cannot determine whether

a particular heap location is shared, and, therefore, conserva-

tively assumes all heap locations to be shared.

Once we decide that an instruction accesses a shared loca-

tion, we rewrite its memory operand. The operand is converted

from its current addressing mode to the base register addressing

mode using one of Pin’s scratch registers. We instrument this

instruction and pass the effective address of the memory ope-

rand to the analysis routine. The analysis routine determines

which thread is executing it and searches the corresponding

safemem linked list using the effective address as the search

key. If a match is found, the routine returns the address of the

currentvalue field of the matching node. This address is

written into the scratch register that is used as the base address

register for the rewritten operand. If no match is found, the

analysis routine creates a new node and updates the origva-

lue and currentvalue fields with the true memory value

obtained by dereferencing the effective address. (This performs

the V''=V'=V operation.) It then returns the address of the cur-

rentvalue field like in the found case. Although the instru-

mentation routine is a callback routine that is called by multiple

threads, it does not create a race as it is serialized under Pin.

Any thread can instrument code as long as it is executing in a

critical section, and the same instrumented code will apply to

all other threads.

4.2.4 Critical Section Exit

Before the call to the unlock routine at the critical section exit,

we insert a call to an analysis routine that executes the resolu-

tion function. The associated lock variable is passed to this rou-

tine to handle nested critical sections. At this point, we resolve

all race conditions to the shared memory locations accessed

within the critical section according to Table 2. Section 4.3

provides more detail. After the race condition resolution, the

safemem nodes are freed, provided that the current critical

section is not nested and that there are no outstanding waits on

condition variables (cf. Sections 4.2.5 and 4.2.7).

4.2.5 Nested and Overlapped Critical Sections

The main component of the safe memory data structure that

handles nested and overlapped critical sections is the lock-

list in the safemem header. The locklist is main-

tained such that the head of the list always points to the most

recent lock variable associated with the innermost critical sec-

tion. This approach correctly associates shared memory ac-

cesses with the most recent lock variable acquired. Note that the

inner mutex lock variable itself cannot be part of the protected

shared variable under the outer mutex. If it could, the safe

thread might be left spinning forever on a local copy of the in-

ner lock variable that no other thread can reset (i.e., unlock),

thus leading to deadlock.

 A critical section that executes inside another critical sec-

tion never creates a new safemem list; it shares this struc-

ture with the outer critical section(s). If this were not so, the

inner critical section could access stale memory values as the

most up to date values may be in another safe memory region.

 Upon critical section exit, the resolution function selectively

resolves races for the shared memory locations that are asso-

ciated with the current lock variable. Recall from the previous

section that the lock mutex variable is passed to the analysis

routine. We traverse all safemem nodes, check for a match-

ing lockvar value, resolve races for that particular node, and

delete that node from the safemem list. The corresponding

node in the lock list is also deleted. At this point, the shared

memory associated with the matching lockvar becomes glo-

bally visible. If the locklist becomes empty, the safemem

header is freed and the respective entry in the tid-lock

table is reclaimed.

 One subtlety with Pin-ToleRace involves a (non-nested)

critical section that calls a function that is also called from out-

side any critical section. This creates a situation where the non-

critical code in the called function is executed under a non-

nested critical section whereas the code inside the critical sec-

tions receives an extra nesting level. A problem arises once the

function’s code is no longer executed under any critical section

as it may contain accesses to false locations whose addresses

were redirected by the code instrumentation. Since there is no

resolution routine, the content of the safe memory is never

transferred to the true memory locations, which will likely crash

the program. Our solution to this problem is to put a guard on

the analysis code that only allows it to perform the safe memory

access when the CSLevel is greater than zero. Thus, when the

function is executed outside a critical section, it will access the

original memory locations.

4.2.6 Routine Calls inside a Critical Section

Function calls inside a critical section are handled correctly

with the already described data structures of the safe memory.

If a call passes a shared memory value on the stack, this shared

value is correctly obtained from the safe memory region. Or, if

the called function accesses shared memory locations, its ac-

cesses are redirected to the safe memory. As we want to protect

only user routines, Pin-ToleRace must distinguish them from

library routines. Note that Pin itself instruments every instruc-

tion dynamically and has no knowledge if the instruction comes

from a user or library routine. Shared memory accesses in user

code need redirection to the safe memory whereas those in li-

brary code need not. Nevertheless, we cannot simply exclude

 7

accesses to the safe memory from libraries because a call to a

library routine can pass pointers to shared variables as argu-

ments. To handle this case, we allow the library code to access

the existing nodes in the safemem list but disallow the ad-

dition of new nodes to the list.

4.2.7 Handling Condition Variables

In addition to lock and mutex variables that synchronize threads

by controlling access to data, the pthreads library also supports

the use of condition variables to synchronize threads based on a

data value. A call to pthread_cond_wait with a condition varia-

ble and a mutex variable as arguments atomically unlocks the

mutex variable and makes the thread wait for the value of the

condition variable. A call to pthread_cond_signal with the cor-

responding conditional variable wakes up one of the waiting

threads. These two calls are instrumented with an analysis rou-

tine that increments and decrements, respectively, the global

wait counter. Our current implementation does not support

waits on more than a single mutex variable.

Condition variables complicate ToleRace because they al-

low multiple threads to be in a critical section at the same time.

When a new thread enters a critical section while some other

threads are waiting, this new thread cannot simply create its

own copy of the safe memory. Instead, it must share this copy

with the waiting threads. Hence, whenever a thread enters the

critical section and there is an outstanding conditional wait as

indicated by the wait counter, Pin-ToleRace searches the tid-

lock table for the lock variable, uses the safemem

header associated with this lock variable, and increments the

sharedsafemem field in the safemem header. When the

thread updates or creates a node in the safemem list, it puts

its tid on the node’s cond_wait_threadlist. When it

exits the critical section, it checks whether it is the last thread to

exit, and, if so, follows the normal exit procedure and frees the

safemem list. Otherwise, it resolves races only on the loca-

tions it touched. If it was the only thread accessing this node, it

deletes the node from the list. If the node has been accessed by

multiple threads, the thread resolves any races for the node but

leaves the node in the list and only deletes its tid from the

node’s cond_wait_threadlist. If the thread needs to

copy the value to the true memory, it must also update the

origvalue field with the currentvalue. This ensures that

when the remaining threads sharing this node resolve race con-

ditions, they will not signal a false race.

4.3 Tolerating and Detecting Races with Pin-ToleRace

When Pin-ToleRace performs the resolution function, it knows

the type of the first access to a shared location as this informa-

tion is recorded in the origaccesstype field when the node

is created. It also knows whether subsequent accesses to this

location included a write (write_aft_orig_accs field).

Therefore, Pin-ToleRace can determine the types of accesses

that are involved in a race to this shared location. When it com-

pares V with V'' and finds that V ≠ V'', the non-safe interleaving

thread must contain a write. However, it cannot distinguish

between the two write sequences, wx* and r+wx*. In some

environments, the write sequence may be known, which enables

Pin-ToleRace to tolerate all races that the oracle ToleRace can

tolerate (see Table 2). In general, however, Pin-ToleRace must

conservatively assume the worst case interleaving, i.e., r+wx*,

which prevents it from tolerating type III races. Aside from this

restriction, it tolerates the same race types as the oracle.

As a race detector, Pin-ToleRace has the same properties as

the oracle (cf. Section 3.1) except it introduces an additional

false negative due to its non-atomic execution of the resolution

function. This happens when immediately after the comparison

of V and V'' returns equal, the intervening sequence writes to V.

Given that the intervention must happen precisely at that mo-

ment, the probability of this occurring should be low. Pin-

ToleRace does tolerate races in this situation. To see this, let us

revisit Table 2. It is sufficient to consider only race case IV as

Pin-ToleRace assumes r+wx* for all intervening write se-

quences. In the absence of a race, when the safe thread opera-

tions contain only reads, Pin-ToleRace never writes the local

copy back; when the operations start with a write, it always

writes back the local copy. This effectively enforces schedule

T1T2 and T2T1 and thus tolerates race types IVA and IVB, re-

spectively, if they occurred. Only race type IVC remains prob-

lematic. When dealing with intolerable races, Pin-ToleRace

reports the race and halts program execution.

4.4 Evaluation

4.4.1 Benchmarks

We use 13 applications from the SPLASH2 [27] and PARSEC

[6] benchmark suites to evaluate Pin-ToleRace. We also devel-

oped three microbenchmarks to stress-test a safe thread’s race

toleration in the presence of non-safe threads.

The microbenchmarks are called scalar, static array, and

dynamic array. The eight programs from the SPLASH2 suite

were chosen per the minimum set recommended by the suite’s

guidelines. For each of the eight programs, the default inputs

were used. However, we increased some of the input sizes to

lengthen the program run times. We selected the five programs

from the PARSEC suite that use the pthreads library. They are

run with the simlarge inputs.

4.4.2 System and Compiler

All benchmarks, including the microbenchmarks, are compiled

and run on an Intel 32-bit system (IA-32) with a four-core 2.8

GHz Pentium4-Xeon CPU with a 4-way associative 16 kB L1

data cache per core, a 2 MB unified L2 cache, and 2 GB of

main memory. The operating system is Red Hat Enterprise Li-

nux Release 4 and the compiler is gcc version 3.4.6. We com-

piled the SPLASH2 and PARSEC programs per each suite’s

guideline with the -O2 and -O3 optimization level, respectively.

The microbenchmarks use the -O3 optimization level.

4.4.3 Stress Test

The stress tests demonstrate Pin-ToleRace’s ability to tolerate

races of the form RwW. In this test, the safe thread performs

read-increment-write operations on some shared locations while

the non-safe threads write random values to these locations.

 In the program scalar, the safe thread increments a single

shared location from zero to a given number of iterations. The

entire incrementing loop resides in a single critical section. At

the same time, several non-safe threads set this memory loca-

tion to their thread ID and then read the value back to compute

its square. The programs static array and dynamic array perform

the same function. However, instead of a single shared location,

 8

 (a) (b) (c)

Figure 5. Normalized execution time of Pin-ToleRace for scalar (a), static array (b) and dynamic array (c) for different iteration

counts.

the safe thread increments all elements in a static array of size

10 and all elements in a 5x5 2-D dynamic array allocated on the

heap, respectively. The non-safe threads write their IDs to all of

these shared locations.

For these tests, we know that the non-safe threads will cause

races that always begin with a write to a shared location. By

monitoring all shared accesses to the safe memory region, Pin-

ToleRace determines that the safe thread reads and then writes

to the shared locations. Once it identifies this RwW type race, it

can tolerate it by scheduling the non-safe thread’s action to

have happened after the safe thread’s read-increment-write op-

erations. Our test setup uses five non-safe threads and runs the

three programs with 5M, 7.5M, and 10M iterations. In each

experiment, we observe the correct values in all shared loca-

tions just before the critical section exit. We also see that after

exiting from the critical section, the values of these locations

change to the thread ID of the non-safe thread that ran last.

Figure 5 reports the overhead of Pin-ToleRace for tolerating

these RwW races. It is normalized to the run time of the three

programs under Pin with no instrumentation. We find that the

overhead is largely constant with respect to the number of itera-

tions. Note that the native and Pin runs of all three programs

suffer from race conditions while the Pin-ToleRace runs have

all their races correctly tolerated.

For all three microbenchmarks, the overhead of Pin-

ToleRace over native is very high—up to 80 times in the dy-

namic array case. The primary reason for this high overhead is

that we are riding on the Pin overhead. If we measure the over-

head of Pin-ToleRace over Pin, the dynamic array benchmark

incurs an overhead of about 4.5 times. While this is substantial,

it should be noted that the microbenchmarks almost always

execute in a critical section, which is where all the Pin-

ToleRace code resides. Moreover, because the safemem

nodes are organized as a linked list, the linear search opera-

tion in the presence of many shared locations contributes great-

ly to the overhead. For example, going from scalar to static

array more than doubles the overhead. In other words, these

microbenchmarks reflect worst case scenarios as they are al-

ways busy tolerating races inside a critical section. The next

section shows that real applications have critical section charac-

teristics that lead to a much lower Pin-ToleRace overhead.

4.4.4 Benchmark Applications

This section characterizes the critical sections of the 13 bench-

marks and discusses the overhead of Pin-ToleRace on these

programs.

Critical section characterization: For this study, we com-

piled the 13 benchmarks to use four processors, which corres-

ponds to the number of cores on our evaluation platform. We

then used Pin to collect the critical section statistics shown in

Table 4. Note that we only study critical sections that reside in

the user code, i.e., we exclude all library code.

Table 4. Critical section characteristics.

Table 5. Unique locations accessed to possibly shared locations

per critical section by each thread.

The second column of Table 4 shows that the number of

unique critical sections per benchmark is quite small. radios-

ity tops the list with 36. All but two of the programs have 16

or fewer critical sections. Only four benchmarks, radiosi-

ty, dedup, facesim, and ferret, contain nested crit-

ical sections. Note that some of these nestings are statically

non-nested. For example, a call inside a non-nested critical sec-

tion to a function that contains a non-nested critical section

dynamically results in nesting. The last column shows the total

number of executed instructions within the critical sections. The

numbers in this column exclude the instructions of any library

routines called from the critical sections. All programs except

scalar

0

0.2

0.4

0.6

0.8

1

1.2

5M 7.5M 10M

Native Pin Pin-Tolerace

static array

0

0.5

1

1.5

2

2.5

3

5M 7.5M 10M

Native Pin Pin-Tolerace

dynamic array

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5M 7.5M 10M

Native Pin Pin-Tolerace

unique

nested

CS

total

executed

dynamic

number of

instrs per

CS (user)

% dynamic

instrs in CS

cholesky 14 no 11,849 29 < 0.1%

fft 10 no 55 17 < 0.01%

lu 7 no 1,043 17 < 0.01%

radix 9 no 51 17 < 0.01%

barnes 10 no 1,098,771 94 0.18%

ocean 26 no 3,335 17 < 0.01%

radiosity 36 yes 1,739,512 18 0.11%

water-spatial 16 no 853 13 < 0.01%

dedup 7 yes 256,380 600 0.42%

facesim 5 yes 10,161 46 < 0.01%

ferret 4 yes 552,173 690 1.59%

fluidanimate 11 no 4,359,405 13 0.40%

x264 2 no 16,767 11 < 0.01%

unique locations accessed

AVG STD

cholesky 4.78 0.38

fft 1.37 0.04

lu 2.99 0.01

radix 2.82 0.19

barnes 19.13 0.03

ocean 3.00 0.00

radiosity 4.92 0.23

water-spatial 2.62 0.01

dedup 80.87 3.52

facesim 7.70 1.14

ferret 72.89 33.83

fluidanimate 5.00 0.00

x264 2.16 0.02

 9

Figure 6. Normalized execution time of Pin-ToleRace.

ferret execute less than one percent of their dynamic user

instructions in critical sections. The fourth column of Table 4

shows the total number of executed critical sections. The counts

range from under one hundred in fft and radix to over one

million in barnes, radiosity, and fluidanimate. The

average number of instructions executed in user code per criti-

cal section is given in column five. Two benchmarks, dedup

and ferret, stand out. Both execute over 600 instructions per

critical section. barnes follows as a distant third at 94. These

three benchmarks execute loops inside their critical sections.

The rest of the programs execute fewer than 30 instructions per

critical section. Nevertheless, some of them have a high total

dynamic instruction count inside critical sections, notably

fluidanimate and radiosity whose small critical sec-

tions are being looped over.

Next, we look at the critical sections from the point of view

of Pin-ToleRace. Table 5 shows the average number of shared

memory locations accessed per critical section execution by

each benchmark. With the exception of ferret, this number

is very uniform across the running threads as the standard devi-

ations indicate. Nine out of the 13 benchmarks perform fewer

than five unique locations accessed. With so few accesses, Pin-

ToleRace’s linked list structure in the safe memory should not

be a performance bottleneck. However, in barnes and espe-

cially in dedup and facesim, the number of unique locations

accessed to shared locations is quite high. With these programs,

the linear search through the linked list structure can add consi-

derably to the Pin-ToleRace overhead. Overall, the number of

unique shared locations accessed seems to be in proportion with

the number of instructions executed per critical section.

Pin-ToleRace Performance: This section studies the over-

head of Pin-ToleRace on our benchmark applications. Given

the results of the previous subsection, we decided to investigate

two implementations of the safe memory. One uses the linked

list approach described earlier and the other uses a chained hash

table with 128 entries. We chose this size to minimize the colli-

sions in dedup and ferret.

Figure 6 presents the results. The timing measurements are

normalized to the native run time. Note that this is different

from the normalization we used for the stress tests. The second

bar shows the pure Pin overhead without instrumentation for

each program. The third and fourth bars indicate the overhead

of Pin-ToleRace with linked list and hash table implementations

of the safe memory, respectively. On average, Pin-ToleRace

incurs about a factor of two slowdown relative to the native

runs. Much of this overhead is an artifact of using Pin; the

slowdown due to Pin alone is 1.8X. If we consider the overhead

of Pin-ToleRace relative to the Pin runs, it is only about 24%.

By adding static analysis (see Section 5) or hardware support, it

should be possible to reduce the overhead. Note that when a

program runs under Pin-ToleRace, it effectively runs with a

race detector. Therefore, the results in Figure 6 include the de-

tection overhead. When an intolerable race is detected, Pin-

ToleRace simply stops the program and reports the race.

As expected, the hash table implementation of the safe

memory reduces the Pin-ToleRace overhead of barnes, de-

dup, and ferret. Unfortunately, it increases the overhead of

all the other programs. The reason is that the chained hash table

is more expensive to initialize and free than the linked list. With

the hash table scheme, there is a fixed minimum number of

entries to process (proportional to the table size) whereas with

the linked list, there are only as many nodes as there are unique

shared memory locations. Therefore, the hash table is only at-

tractive when the execution in a critical section can amortize

this overhead. Recall from the previous section that each of the

three benchmarks for which the hash table implementation

works better executes a relatively large number of instructions

and touches many unique shared memory locations inside the

critical sections. The remaining benchmarks have small critical

sections, and each critical section execution does not touch

many unique shared locations, making the linked list implemen-

tation better suited.

Note that it is sufficient to measure Pin-ToleRace perfor-

mance with no-race execution since the cost of executing race-

free is always equal to or greater than the cost of tolerating rac-

es. With no-race execution, when there is a write access to a

shared variable, Pin-ToleRace needs to writes back the local

copy V’ to the actual shared location V. When it tolerates a

race, however, sometimes no such write back is necessary since

the intervening write update by an unsafe thread to V might

already be legitimate to pass on.

.

5 Improving the Initial Pin-ToleRace Version
This section describes how to implement a more efficient Pin-

ToleRace. The improved version also eliminates the restriction

mentioned in Section 4.1.

5.1 Inefficiency in Pin-ToleRace

The sources of inefficiency in the initial Pin-ToleRace can be

attributed to the following.

Provision for generality: As the initial Pin-ToleRace as-

sumes no a priori knowledge when encountering a critical sec-

tion, it needs to be conservative and has to provision for the

general case. Thus, the system creates the full structure of the

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

cholesky fft lu radix barnes ocean radiosity water-

spatial

dedup facesim ferret fluidanimate x264 GMEAN

Native w/ Pin w/ Pin-ToleRace w/ Hash Pin-ToleRace

 10

safe memory every time a critical section is executed. However,

if a critical section is non-nested and does not have any condi-

tion variables, the tid-lock table and the safemem

header become unnecessary and introduce two extra levels of

indirection when accessing the safemem nodes.

malloc and free operations: As we postpone all the analy-

sis of possibly shared memory locations until run time, our safe

memory needs to be able to grow dynamically to account for

those locations that are generated on the fly. It is natural to use

malloc and, hence, its corresponding free operations for this

purpose. However, malloc and free are rather heavyweight calls

and are not easily amortized in small critical sections. Worse

yet, as these small critical sections are being looped over, the

call overhead can add up significantly. Ideally, if we can bound

the number of possibly shared locations, we can resort to a

stack-based allocation style where the corresponding malloc

and free operations are reduced to adding and subtracting a

value from the stack pointer.

Fixed data structure for the safe memory: With the pre-

vious implementation of Pin-ToleRace, the safe memory data

structure is fixed throughout the entire run of a program. This

may not be optimal for an application that contains both short

and long critical sections. We, therefore, want to selectively

assign the right safe memory structure to each critical section.

5.2 Inherent Restriction in Pin-ToleRace

Figure 7 shows a situation where the assumption we made for

the initial Pin-ToleRace in Section 4.1 may not hold. State-

ments 1 through 4 may get executed inside of a critical section,

i.e., when cond2 is true, or outside of a critical section, i.e.,

when cond2 is false. In addition, the function f() may be called

from within a critical section (line 7) or from without (line 2).

Figure 7: An example illustrating how the assumption in the

first version of Pin-ToleRace may be violated.

The Pin’s code cache poses some complication to the situa-

tion depicted in Figure 7. First, let cond1 be true and cond2 be

false. Statement 1 through 4 and function f() get executed out-

side of a critical section and their translated execution code is

stored into the code cache. Then, let cond1 stay the same and

cond2 become true. The four statements and f() now execute

inside of the critical section. This time, however, the executed

code, in particular, the instructions that may access shared

memory may not get the proper operand rewriting and instru-

mentation. When the runtime system consults the code cache, it

may find and use instances of the translation of the first execu-

tion, causing incorrect ToleRace operation as the previously

translated code does not rewrite memory operands and redirect

accesses of shared memory locations. In general, in the pres-

ence of a code cache, code segments that can potentially be

executing both inside and outside of critical sections may cause

incorrect run time behavior in Pin-ToleRace.

Aliasing caused by indirect calls: Indirect calls inside crit-

ical section may have their targets alias with functions that can

both be executed inside and outside of critical sections. Fur-

thermore, indirect calls outside of critical sections can also be

problematic as their targets may alias with code that executes

inside of critical sections. These scenarios bring back the cor-

rectness issue we have just discussed above.

5.3 Static Program Analysis

In this section, we discuss static program analysis whose role is

to generate and pass additional information and hints to the

runtime systems. Such information will be used to remedy both

the inefficiencies as well as the restrictions in the first version

of the Pin-ToleRace. Figure 8 shows a block diagram for the

static analysis phase. The input program is first passed into a

call graph construction module. This module produces a graph

representation of all calls in the program; every function is a

node in the graph and there is an edge from function X to func-

tion Y if X calls Y. This call graph information together with

the original program are in turn fed into the second module that

traverse every critical section in the program. The output from

this second module is a candidate list of instructions that poten-

tially access shared memory locations inside critical sections.

These modules and their interactions are described in detail

below.

Figure 8: Static program analysis phase.

5.3.1 Assumptions about the Input Program

We assume that the program’s executable contains all the user

code and is available to us. The corresponding source code,

however, may or may not be available. We assume that the

program is compiled to use shared libraries. While the library

source code is not available to us, the library’s function proto-

types are. That is we are fully aware of the interface given to

the user, i.e., the number and type of parameters for all library

calls are known. Threading and synchronization libraries

(pthreads in our case) are also parts of the shared libraries.

5.3.2 Static Call Graph Construction

Below are the details on how the call graph construction mod-

ule functions.

Input: The call graph module takes the program’s executa-

ble as its input.

Processing: We use a two-pass algorithm. During the first

pass, we traverse the program’s executable and collect target

addresses and possibly names of the user routines. We obtain

such information from examining the .text section of the pro-

gram. We eliminate certain routines that are not actually parts

 1: while (cond1) {
2: f();

3: if (cond2)

4: pthread_mutex_lock(&mutex);

5: statement 1;

6: statement 2;

7: f();

8: statement 3;

9: statement 4;

10: if (cond2)

11: pthread_mutex_unlock(&mutex);

12: }

program’s

executable

call graph

construction

critical
section

traversal possible
shared
memory

accesses

 11

of the program, but get put in per operating system requirement,

for example, call_gmon_start. These target addresses

become nodes of the call graph to be constructed in the next

step. In addition, we also gather target addresses and possibly

names of the shared libraries including pthreads libraries. Such

information is manifested in the procedure linkage table, which

is contained in the .plt section of the executable. Note that we

deal with x86/Linux platforms here; others may have different

executable formats and conventions.

After we have collected all the necessary information in the

first pass, in the second pass, we traverse the .text section to

build a call graph. We walk each routine in the section one by

one. For a given routine, we traverse every instruction in the

routine from start to end in static program order. We search for

calls to other routines. If a call is found, we check its target and

create an edge from the current (calling) routine to the called

routine. When examining each routine, we also gather other

information required by the analysis in the next module (see

output below). Note that we only deal with a call whose target

is known at compile time. We discuss handling of indirect calls

in Section 5.3.4.

After the call graph has been constructed, we generate a call

chain for each routine. A call chain for a particular routine gives

all the user routines that can be reached by initiating a call to

the said routine. The chain is generated by traversing the call

graph given the said routine as the starting node.

Output: After processing, we have information about each

routine in the .text section, which represents a user routine. For

each routine, we are able to tell:

 its call chain

 its list of calls to shared libraries

 its instructions that may access shared memory

 if it contains indirect calls

5.3.3 Static Critical Section Traversal

The purpose of this module is to identify all instructions that

may access shared memory locations and are reachable from

critical sections.

Input: The module takes the original program and the out-

put from the call graph construction module as its inputs.

Processing: At the heart of the processing stage is the criti-

cal section traversal routine. This function gets invoked when a

call to pthread_mutex_lock routine is found while we traverse

the .text section of the program. The first action is to advance to

the next instruction and mark the instruction as visited. It then

recursively traverses instructions in the critical section. The

recursion terminates when the routine finds all unlocks to match

the number of locks found along a possible execution path.

When we encounter a conditional branch, we traverse the

fall through path first, check if the branch target instruction has

been visited, and if not traverse the target path accordingly. For

the unconditional branch case, we need to only traverse the

target path if the target instruction has not already been visited.

In both cases, whenever we encounter a branch target address

that is less than the current branch address, i.e., a back edge, we

check if this forms a loop and whether there are instructions

potentially accessing shared memory locations in the loop. The

loop analysis information will be used to decide if malloc/free

calls can be eliminated as well as to select a suitable data struc-

ture for the safe memory (Section 5.3.4.).

For a critical section that contains calls to user routines, we

also need to include the candidate instructions from the called

routines. We first consult the call chain of each called routine.

Then, we obtain the list of candidate instructions from all rou-

tines in the call chain. The call chain and the list of candidate

instructions are taken from the output of the previous module.

Output: After we traverse every critical section in the pro-

gram, we produce a list of addresses of instructions that may

execute inside of critical sections and access shared memory

locations. We also obtain the following information about each

critical section in the program:

 its list of calls to shared libraries

 if it contains indirect calls

 if it may access shared memory inside loops

 if it contains condition variables

 if it contains overlapped critical sections

 if it contains statically nested critical sections

 if it contains dynamically nested critical sections

5.3.4 Putting It All Together

This section describes how we use the result of the static pro-

gram analysis to remedy the inefficiency and restrictions in Pin-

ToleRace. First, we address the inefficiency.

Addressing provisions for generality: This inefficiency is

caused by uniformly implementing the full safe memory struc-

ture in every critical section. With the analysis, we can tailor

the safe memory to suit a particular critical section, i.e., each

critical section implements only the parts of the safe memory

that are necessary for its correct operation. We need to know

whether a given critical section contains condition variables,

overlapped critical sections, or nested critical sections. For ex-

ample, if the critical section contains none of the above, we can

eliminate the tid-lock table, the safemem header,

and the lockvar field. This allows us to access the safemem

node directly without any extra indirection, which should im-

prove the efficiency of the safe memory accesses.

Eliminating malloc/free calls: Generally, if we can bound

the number of shared memory locations touched when a given

critical section is executed, we can use stack-style memory al-

location in place of malloc and free calls. This allows us to re-

place the costly call overhead with simple stack pointer opera-

tions. If the analysis result for a critical section indicates that

there are no accesses to shared memory locations inside loops,

the number of locations touched is bounded. With stack-based

allocation, we preallocate a chunk of memory for every thread

when it starts. In setting the chunk size, we need to consider all

the critical sections whose shared memory accesses can be

bounded, find the maximum number of bound accesses, and set

the chunk size accordingly.

Suitable data structure for the safe memory: As pre-

viously noted, for long critical sections, we prefer a hash table

structure, whereas for short critical sections, a linked-list struc-

ture is more efficient. We approximate these characteristics

from the analysis result by saying that long critical sections may

access shared memory inside of loops, whereas short critical

sections never access shared memory inside of loops. Note that

we use the same type of analysis here as we did when trying to

eliminate malloc and free calls. These two optimizations, elimi-

nating malloc/free and using an optimized safe memory struc-

ture, go hand in hand. Whenever we encounter critical sections

 12

Figure 9: Normalized execution time for the improved version of Pin-ToleRace.

Figure 10. Normalized execution time of ideal software ToleRace.

that may never loop over shared memory accesses, we eliminate

malloc/free calls, i.e., using stack-based allocation and choose a

linked-list structure. Otherwise, we cannot avoid malloc/free

completely and select a hash table structure.

 We now turn to the restrictions in the first version of Pin-

ToleRace. All the analysis that we have done enables us to

solve the situation depicted in Figure 7. We are able to statically

identify code segments that may execute inside critical sections

and access shared memory locations. The critical section traver-

sal module performs the analysis intra-procedurally while the

call graph extends the analysis inter-procedurally, enabling

whole program analysis. With the static analysis hints, the To-

leRace runtime guarantees correctness even in the presence of

the Pin’s code cache. It instruments said code segments while

they execute both inside and outside of critical sections. Note

that this is in contrast to the initial Pin-ToleRace, which per-

forms instrumentation only when the program executes inside

of critical sections.

Handling indirect call aliasing: Because we have identi-

fied the code segments that may execute inside of critical sec-

tions upfront, aliasing from indirect calls executed exclusively

outside of critical sections is not a problem. If such aliasing

occurs, the runtime will correctly perform instrumentation at

the instance the aliasing takes place.

What if we encounter indirect calls inside of a critical sec-

tion, i.e., the critical section and the routines in its associated

call chain contain indirect calls? Unfortunately, this situation

cannot be solved completely with static program analysis. We

simply do not know the targets of such indirect calls until run

time. Therefore, any successful solutions to this problem inhe-

rently require the help of the ToleRace runtime. One possible

solution is to keep track of all (user) routines executed outside

of critical sections that have been translated by the just-in-time

compiler. Once an indirect call is reached while executing in-

side a critical section, we instrument an analysis routine to

search all the routines that have been translated, and, hence,

reside in the code cache. If there is any aliasing, we flush the

code cache so that the aliased routine is correctly instrumented.

Table 6: Critical sections with properties given in each column

for each application.

So far, we have been concerned only with indirect call aliasing

within user code. However, whenever we discover a library call

that may execute inside of critical sections, we also need to

worry about indirect call aliasing coming from the library code.

To tackle this problem, we check if the library call passes func-

tion pointers as callback arguments. If so, we hint to the Tole-

Race runtime to instrument these callback functions to use the

safe memory. We assume that we have complete knowledge

about these callback functions (cf. Section 5.3.1) so that we can

statically identify them.

5.4 Results and Discussion

Table 6 shows characteristics of the critical sections in each

benchmark application, i.e., the results from the static program

analysis described in the previous section. The first column of

the table gives the total number of critical sections discovered

statically. This result is compatible with that given in Table 4.

Apparently, certain critical sections in some applications never

get executed, for example, we statically found 43 critical sec-

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

cholesky fft lu radix barnes ocean radiosity water-

spatial

dedup facesim ferret fluidanimate x264 GMEAN

native Pin initial Pin-ToleRace improved Pin-ToleRace

0%

20%

40%

60%

80%

100%

120%

140%

160%

cholesky fft lu radix barnes ocean radiosity water-

spatial

dedup facesim ferret fluidanimate x264 GMEAN

Native w/ Ideal ToleRace

applications total
statically

nested

statically

overlapped

condition

variables

indirect

calls

shared

mem.

accesses

in loops

user

routine

calls

cholesky 14 0 0 4 0 1 3

fft 10 0 0 7 0 0 1

lu 7 0 0 5 0 0 1

radix 9 0 0 7 0 0 1

barnes 13 0 0 6 0 2 5

ocean 25 0 0 20 0 0 1

radiosity 43 0 0 5 0 1 10

water-spatial 20 0 0 9 0 0 4

dedup 10 0 0 9 0 4 0

facesim 10 1 0 3 0 1 5

ferret 12 0 0 12 0 11 11

fluidanimate 11 0 0 0 0 0 0

x264 2 0 0 2 0 1 0

 13

tions in radiosity, but only 36 of which are executed (see

Table 4) with the given input.

The programs in the two benchmark suites we consider do

not have indirect calls in critical sections or overlapped critical

sections. This frees us of worry over indirect call aliasing and

allows us to get rid of the safemem header structure. Hence,

the improved Pin-ToleRace version should run more efficiently

with these benchmarks. Most critical sections in some kernels

of the SPLASH2 suite, fft, lu, and radix, contain condition

variables. They are mainly there to support barrier-style syn-

chronization. Similarly, in the PARSEC suite, almost all critical

sections in dedup and ferret have condition variables. They

are there to support pipelined-style parallelism. facesim is the

only benchmark with a statically nested critical section. All

critical sections in fluidanimte are simple in the sense that

they are non-nested, do not contain any condition variables, and

do not have any direct or indirect calls.

Figure 9 compares the overhead of the improved version of

Pin-ToleRace against that of the initial version, bare Pin, and

native execution. Note that the improved and the initial versions

cannot be compared directly as the latter suffers from some

restriction whereas the former does not (cf. Section 4.1 and

5.2). fluidanimate benefits most from the static analysis.

Since it contains only simple critical sections, we can eliminate

all the safe memory structures except the safemem nodes

themselves. In addition, we can bound the shared memory loca-

tions for all the critical sections, allowing us to use stack-based

allocations in place of malloc. Benchmarks such as fft, lu,

radix, ocean, water-spatial, and facesim do not get

significant benefit from the static hints as these programs spend

very little time in critical sections.

6 Idealized Software ToleRace
Suppose we have an oracle compiler that knows all the shared

locations within a critical section. The performance overhead of

a ToleRace implementation based on such a compiler presents a

lower bound on what we can achieve in software. (Recall that

Pin-ToleRace infers all the shared memory locations on-the-fly,

thus yielding an upper bound.)

 To mimic the effect of such an oracle compiler, we manual-

ly modified the source code of our benchmarks after carefully

studying the critical sections and the shared variables in each of

them. In a few critical sections, we could not precisely mimic

the effect of the oracle compiler because of shared variables

that are allocated at run time. In these instances, we instead

mimic the mechanism used in Pin-ToleRace. Moreover, in

barnes and radiosity, we only modified frequently ex-

ecuted critical sections that cumulatively account for 99% and

90% of all dynamic critical section executions, respectively. We

believe that doing so should not significantly affect the over-

head result.

After we incorporated ToleRace into the critical sections,

we recompiled and ran these applications. Figure 10 shows the

overhead results, which are normalized to the native execution

time without ToleRace. The ideal software ToleRace incurs a

6.4% overhead on average across our benchmarks. ferret

executes inside critical sections more often than the other appli-

cations and has many run time allocated shared variables. Con-

sequently, it incurs the highest overhead. dedup, which has the

second highest overhead, has similar characteristics. Most of

the applications, however, incur less than 1% overhead with the

ideal software ToleRace.

7 Related Work
Related race-detection research includes both static and dynam-

ic approaches. Static race detection relies on program analysis

and either assumes existing programming languages (e.g., Java

[21]) or defines new programming language semantics that help

improve the static detection of races (e.g., Cyclone [12]). Static

analysis techniques face several challenges. First, because many

of the techniques are based on some form of model checking

[13], they are computationally expensive and issues of scalabili-

ty arise. Second, the conservative and approximate nature of the

analysis creates the potential for many false positives. RacerX

[10] and Houdini/rcc [11] address these issues by combining

traditional static analysis with heuristics and statistical ranking

to identify the most probable races. One inherent drawback of

static analysis for race detection is that asymmetric races can

occur in contexts where the source code for the component con-

taining the error is not available for examination.

Eraser is a dynamic race detection system based on lock-

sets [25]. Experience with this approach has shown that the

overhead of maintaining the locksets is high and that false posi-

tives can be problematic. Subsequent approaches extend lock-

sets with happens-before analysis [2]. Combining locksets with

a happens-before scheme results in higher precision dynamic

race detectors [8, 9, 23, 28]. Even with refinements, the execu-

tion overhead of these approaches is typically larger than a fac-

tor of two. Previous work focuses primarily on detecting data

races rather than tolerating them. The ToleRace detection tech-

nique is distinct from the lockset and happens-before algo-

rithms. Focusing only on asymmetric races allows ToleRace to

take a transaction-like approach to race detection and toleration,

which significantly reduces the overhead of dynamic race de-

tection.

Dynamic race detection approaches have also been adopted

by Intel’s Thread Checker [16] and Sun’s Thread Analyzer

[15], which are commercial tools capable of locating data races

in concurrent programs. Both tools suffer from a high memory

footprint and run time overhead and are, thus, primarily used

for software testing.

Atomicity violation is another important class of concurren-

cy errors. It can be addressed statically [4] or dynamically. The

AVIO system [18] belongs to the latter category and enume-

rates erroneous access interleavings similar to our asymmetric

race interleavings. However, it only looks at single load/store

pairs and not sequences of accesses. Without hardware support,

the overhead of AVIO is very high, which makes it suitable

only for test environments. The work by Lucia et al. [19] offers

to tolerate some degree of atomicity violation with implicit

atomicity by grouping consecutive memory operations into

atomic blocks.

Vaziri et al. [26] classify harmful interleavings into 11 cate-

gories, which is more than the six race cases (with case IV sub-

divided) we considered. The extra categories address high-level

data races at the object granularity, which we do not consider.

Their approach to race detection requires source-code annota-

tion and targets safe language environments.

Kiena et al. [17] propose two schemes to dynamically heal

data races for Java programs. In one scheme, they reduce the

 14

probability of races happening by forcing threads that are about

to cause racy accesses to yield. This is done at the byte-code

level through yield() calls. In the other scheme, they add extra

locks to some common code patterns that are likely to result in

races.

Concurrent to our work, Rajamani et al. [24] propose a run-

time system called Isolator that enforces isolation through page

protection. The idea is to protect the pages containing shared

variables (that are protected by a lock) so that accesses to them

can be intercepted. Then, accesses to those variables that ob-

serve the proper locking discipline are redirected to a local copy

of the corresponding page. Any improper access will be to the

original page and hence raise a page protection fault. Similarly,

Abadi et al. [1] use page-level protection to guarantee strong

atomicity in software transactional memory.

8 Conclusions
This paper introduces ToleRace, a runtime system that uses data

replication for detecting and tolerating asymmetric races. We

have presented a theoretical framework as well as three soft-

ware implementations, which we evaluated on 13 real parallel

applications from the SPLASH2 and the PARSEC suites.

References
[1] M. Abadi, T. Harris, and M. Mehrara, Transactional memory with

strong atomicity using off-the-shelf memory protection hardware,
ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Raleigh, NC, 2009, pp. 185-196.

[2] S. V. Adve, M. D. Hill, B. P. Miller and R. H. B. Netzer, Detecting
data races on weak memory systems, ISCA '91: Proceedings of the

18th Annual International Symposium on Computer Architecture,

ACM Press, New York, NY, USA, 1991, pp. 234-243.
[3] S. V. Adve, V. S. Pai, P. Ranganathan and A.-S. H., Recent Ad-

vances in Memory Consistency Models for Hardware Shared-

Memory Multiprocessors, Proceedings of the IEEE, special issue
on distributed shared-memory, 87 (1999), pp. 445-455.

[4] R. Agarwal, A. Sasturkar, L. Wang and S. Stoller, Optimized Run-
Time Race Detection and Atomicity Checking Using Partial Dis-

covered Types, Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering, 2005, pp. 233-
242.

[5] E. D. Berger and B. G. Zorn, DieHard: probabilistic memory safety

for unsafe languages, ACM SIGPLAN Notices, 41 (2006), pp.
158-168.

[6] C. Bienia, S. Kumar, J. Singh and K. Li, The PARSEC Benchmark

Suite: Characterization and Architectural Implications, Princeton
University Technical Report TR-811-08, Princeton University,

2008.

[7] C. Blundell, C. Lewis and M. Martin, Deconstructing Transaction-
al Semantics: The Subtleties of Atomicity, Fourth Annual Workshop

on Duplicating, Deconstructing, and Debunking, Madison, Wis-

consin, 2005.
[8] R. Callahan and J.-D. Choi, Hybrid Dynamic Data Race Detection,

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ACM Press, New York, NY, 2003.
[9] T. Elmas, S. Qadeer and S. Tasiran, Goldilocks: Efficiently Compu-

ting the Happens-Before Relation Using Locksets, in K. Havelund,

N. Manuel, G. Rosu and B. Wolff, eds., FATES/RV, Springer,
2006, pp. 193-208.

[10] D. R. Engler and K. Ashcraft, RacerX: effective, static detection of

race conditions and deadlocks, SOSP '03: Proceedings of the 20th
ACM Symposium on Operating Systems Principles, 2003, pp. 237-

252.

[11] C. Flanagan and S. N. Freund, Detecting race conditions in large

programs, PASTE '01: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, ACM Press, New York, NY, USA, 2001, pp. 90-96.

[12] D. Grossman, Type-safe multithreading in cyclone, TLDI '03: Pro-
ceedings of the 2003 ACM SIGPLAN International Workshop on

Types in Languages Design and Implementation, ACM Press, New

York, NY, USA, 2003, pp. 13-25.
[13] T. A. Henzinger, R. Jhala and R. Majumdar, Race checking by

context inference, PLDI '04: Proceedings of the ACM SIGPLAN

2004 Conference on Programming Language Design and Imple-
mentation, ACM Press, New York, NY, USA, 2004, pp. 1-13.

[14] M. Herlihy and J. E. B. Moss, Transactional memory: architectural
support for lock-free data structures, ISCA '93: Proceedings of the

20th Annual International Symposium on Computer Architecture,

ACM Press, New York, NY, USA, 1993, pp. 289-300.
[15] http://developers.sun.com/sunstudio/downloads/ssx/tha/.

[16] http://www.intel.com/cd/software/products/asmo-

na/eng/286406.htm.
[17] B. Krena, Z. Letko, R. Tzoref, S. Ur and T. Vojnar, Healing Data

Races On-The-Fly, Proceedings of the 2007 ACM Workshop on

Parallel and Distributed Systems: Testing and Debugging, London,
UK, 2007.

[18] S. Lu, J. Tucek, F. Qin and Y. Zhou, AVIO: detecting atomicity

violations via access interleaving invariants, ASPLOS-XII: Pro-
ceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems,

ACM Press, New York, NY, USA, 2006, pp. 37-48.
[19] B. Lucia, J. Devietti, K. Strauss and L. Ceze, Atom-Aid: Detecting

and Surviving Atomicity Violations, The 35th International Sympo-

sium on Computer Architecture, Beijing, China, 2008.
[20] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.

Wallace, V. J. Reddi and K. Hazelwood, Pin: building customized

program analysis tools with dynamic instrumentation, In Proceed-
ings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation, Chicago, IL, USA, 2005.

[21] M. Naik, A. Aiken and J. Whaley, Effective static race detection
for Java, PLDI '06: Proceedings of the 2006 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation,

ACM Press, New York, NY, USA, 2006, pp. 308-319.
[22] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards and B. Calder,

Automatically Classifying Benign and Harmful Data Races Using

Replay Analysis, International Conference on Programming Lan-
guage Design and Implementation (PLDI), 2007.

[23] E. Pozniansky and A. Schuster, Efficient on-the-fly data race detec-

tion in multithreaded C++ programs, PPoPP '03: Proceedings of
the 9th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, ACM Press, New York, NY, USA, 2003,

pp. 179-190.
[24] S. Rajamani, G. Ramalingam, V. Ranganath and K. Vaswani, ISO-

LATOR: Dynamically Ensuring Isolation in Concurrent Programs,

Proceedings of the Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2009.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. E. Ander-

son, Eraser: A Dynamic Data Race Detector for Multi-Threaded
Programs, SOSP, 1997, pp. 27-37.

[26] M. Vaziri, F. Tip and J. Dolby, Associating Synchronization Con-

straints with Data in an Object-Oriented Language, The 33rd An-
nual Symposium on Principles of Programming Languages, Char-

leston, SC, 2006.

[27] S. Woo, M. Ohara, E. Torrie, J. Singh and A. Gupta, The SPLASH-
2 Programs: Characterization and Methodological Considerations,

In Proceedings of the 22nd International Symposium on Computer

Architecture, Santa Margherita Ligure, Italy, 1995.
[28] Y. Yu, T. Rodeheffer and W. Chen, RaceTrack: efficient detection

of data race conditions via adaptive tracking, SOSP '03: Proceed-
ings of the 20th ACM Symposium on Operating Systems Principles,

Brighton, UK, 2005, pp. 221-234.

http://developers.sun.com/sunstudio/downloads/ssx/tha/
http://www.intel.com/cd/software/products/asmo-na/eng/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/286406.htm

