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Abstract 
 

Memory accesses continue to represent a major 

performance bottleneck and much remains to be done 

to tolerate their latencies.  A large body of work exists 

that presents load-value prediction as an effective 

means to hide some of the memory latency.  To in-

crease the prediction accuracy and hence the perform-

ance, researchers have proposed more complex and 

larger predictor designs. 

This paper re-evaluates load-value predictors and 

examines the tradeoffs between predictor size, latency, 

energy consumption and performance.  We demon-

strate that even though complex predictors deliver the 

highest accuracy, they are unlikely to be implemented 

in hardware because they provide a much worse en-

ergy-performance tradeoff than simpler predictors 

with moderate sizes.   

 

1. Introduction 
 

While processor speeds have been increasing by 

approximately a factor of two every 18 months in 

keeping with Moore’s Law, memory speeds have only 

been improving by about 5% a year.  This has led to a 

speed gap between the memory and the processor that 

doubles every 21 months or so.  Thus processors spend 

more and more time idling because the memory cannot 

serve data sufficiently quickly. 

Many superscalar, out-of-order processors can tol-

erate the latencies for first- and second-level cache hits 

[29] if enough independent instructions are available.  

However, main memory access latencies, which are on 

the order of hundreds of cycles, cannot be hidden and 

cause significant performance degradations.  For the 

SPECcpu2000 benchmark programs running on a mod-

ern, high-performance microprocessor, over half the 

runtime is spent stalling for loads that miss in the sec-

ond-level cache [16].  

To hide some of the negative effects of these stall-

ing loads, load-value prediction has been proposed, 

which allows the dependent instructions to execute 

concurrently with the memory access.  This proved 

possible because loads fetch predictable sequences, 

i.e., they exhibit value locality [10], [17].  However, 

exploiting value locality requires a significant invest-

ment in hardware to achieve modest prediction accura-

cies [17], [25], [30], [31].  Since power/energy con-

sumption constitutes one of the primary design con-

straints of future microprocessors [12], [32], it is no 

longer practical to keep pushing the performance enve-

lope by proposing to add predictors without taking 

energy into consideration. 

Even though several predictors have been proposed, 

it is not immediately obvious which design offers the 

best energy-performance tradeoff.  For example, a 

simple predictor, such as the last-value predictor [10], 

[17], consumes only a fraction of the energy of a hy-

brid predictor [21] of similar size because the former 

accesses only one data array while the latter accesses 

multiple data arrays per prediction.  However, the sim-

pler predictor exhibits worse accuracy than the hybrid.  

This is a problem because when a value is predicted 

incorrectly, the speculation hardware has to perform 

recovery actions that slow down the processor and 

waste energy.  On the other hand, the more complex 

hybrid predictor, which delivers better prediction accu-

racy and coverage, consumes large amounts of energy 

and has a longer access latency.  Long access latencies 

are undesirable since the predictor is on the critical 

path and must deliver its predictions quickly.   

Deciding on a predictor’s size involves a similar di-

lemma.  A small predictor consumes less energy per 

access and has a shorter access latency, but a larger 

size increases the prediction accuracy.  However, as 

pipelines deepen and clock rates increase, access delay 

significantly decreases the maximum size of on-chip 

SRAM arrays, such as value predictors, that can be 

accessed in one cycle [1]. 

In this paper, we assess the impact of five fre-

quently used value predictors, each with six different 

sizes, on the performance and energy consumption of 

the entire microprocessor as opposed to just the predic-



tors themselves.  We were surprised to find that when 

area, processor-wide energy consumption, and table 

access latency are taken into account, simpler predic-

tors represent a better solution than complex predictors 

of similar size.  We also find that making the predictors 

larger than about 20kB is unwise as beyond this point 

the energy consumption increases at a higher rate than 

the performance. 
 

2. Background And Related Work 
 

2.1 Load-Value Predictors 
 

The increasing density of on-die transistors has en-

abled designers and researchers to use aggressive 

speculation techniques to improve instruction through-

put.  One such technique is load-value prediction, 

which breaks true data dependencies between instruc-

tions.  In this section, we describe the five predictors 

that we evaluate in this paper.  They are the most fre-

quently used predictors in the literature. 

The last value predictor (LV) [10], [17], [25] pre-

dicts that a load instruction will load the same value it 

did the previous time it executed.   

The stride 2-delta predictor (ST2D) [25] remembers 

the last value for each load (like LV) but also main-

tains a stride, i.e., the difference between the last two 

loaded values.  To make a prediction, ST2D adds the 

stride to the last value of the load.  When a load is 

completed, ST2D updates the last value but only up-

dates the stride if it encounters the same stride twice in 

a row.  ST2D can predict sequences with zero (like 

LV) and non-zero strides. 

The third-order finite context method predictor 

(FCM3) [24], [25] computes a hash value [20], [21], 

[24] out of the last three loaded values to index the 

predictor’s second-level table.  This table stores the 

values that follow every seen sequence of three values 

(modulo the table size).  Since this table is shared, 

loads can communicate information to one another in 

this predictor.  Hence, after observing a sequence of 

load values, FCM3 can predict any load that loads the 

same sequence.   

The third-order differential finite context method 

predictor (DFCM3) [13] improves on FCM3 by retain-

ing strides instead of absolute values.  This reduces 

aliasing in the second-level table and enables DFCM3 

to predict values it has never seen before.  Thus 

DFCM3 combines the strengths of an FCM and a 

stride predictor at the cost of more elaborate and 

slower hardware.   

Rychlik et al. [21] introduced a hybrid predictor that 

combines a stride and a finite context method predic-

tor.  The component with the highest confidence (see 

next paragraph) makes the prediction.  In case of a tie, 

the FCM is given priority.  The authors showed that 

this hybrid is more effective than either of the compo-

nent predictors. 

Due to the high cost of recovering from mispredic-

tions, confidence estimators are used to dynamically 

inhibit predictions that are likely to be incorrect [8], 

[9], [11], [17], [20], [21], [24], 30].  The bimodal con-

fidence estimator [17], [20], [21], which is frequently 

used, is based on saturating up/down counters with 

four parameters: a maximum, a threshold, a penalty 

and an award.  A prediction is made only if the count is 

above the threshold.  When an unpredictable value is 

encountered, the counter is decremented by the pen-

alty, and on a predictable value, it is incremented by 

the award. 

 

2.2 Sources of Predictor Complexity 
 

The complexity of value predictors stems from pre-

dictor organizations that place multiple levels of logic 

on the critical path to making a prediction. 

Large PC-indexed tables are one such source of 

complexity.  Larger tables take longer to read.  Access-

ing a table with a high latency may cause a prediction 

to arrive too late for it to have a positive impact on 

performance.  Bhargava and John [2] evaluated the 

effect of varying numbers of access ports and varying 

predictor sizes on the table access latency for a hybrid 

predictor.  They found that to maintain high perform-

ance the hybrid has to have at least 4096 entries.  We 

demonstrate in this paper that an ST2D-FCM3 hybrid 

predictor with 4096 entries provides an energy-

performance tradeoff that is no better than a ST2D 

predictor of similar size.  Moreover, Bhargava et al. 

only considered the energy consumption of the predic-

tors themselves, whereas we consider the energy con-

sumption of the entire processor and thus capture the 

negative impact of incorrect predictions on other parts 

of the processor, which can be significant.  Finally our 

study is not limited to a hybrid predictor.  Rather, the 

objective of this paper is to show that complex predic-

tors such as hybrids provide a worse energy-

performance tradeoff than their simpler counterparts. 

Computation is another source of complexity.  

Multi-level predictors, including FCM3 and DFCM3, 

perform complex computations to determine the index 

into the second level.  Hybrid predictors, as well as 

FCM3 and DFCM3, need to extract data from multiple 

tables and ST2D and DFCM3 have to perform addi-

tions to compute the final prediction.  These add more 

delay and energy use to the process of making a pre-

diction.  For example, Jimenez et al. showed that a 

100% accurate branch predictor with a two-cycle la-

tency performs worse than a relatively inaccurate 



branch predictor with single-cycle latency [14].  Unlike 

in much of the previous work, where the computation 

latency has been ignored, we use spice simulations to 

estimate these extra latencies and take them into ac-

count in our simulations.  With this we find that, for 

instance, the simple LV can outperform the complex 

FCM3. 

 

2.3 Sources of Energy Expenditure 
 

Even though load-value prediction does improve 

performance, it contributes to the energy consumption.  

One source is the speculative hardware itself.  To boost 

the prediction accuracy, these hardware structures are 

made as large as possible, which increases their energy 

consumption.  Another significant source of energy 

consumption is the useless activities that are performed 

in other processor components due to mispredicted 

instructions that are later discarded.  A mispredicted 

instruction contributes to the dynamic energy con-

sumption through datapath switching activity until it is 

removed from the pipeline.  A third source is the in-

creased (useful) activity introduced by the speculation.  

Increased speculation reduces the runtime and thus 

may actually lower the energy use.  

Several techniques have been proposed to save 

space and energy, including sharing common predictor 

components in hybrid predictors [7], [19], partitioning 

large predictors into multiple smaller tables [15], [22], 

[23], and using static and dynamic approaches to filter 

out loads that are likely to be predicted incorrectly [3], 

[6], [9].   

Unfortunately, most energy-saving techniques rec-

ommended for value predictors have only focused on 

one source of energy consumption, the predictor itself.  

Moreno et al. [18] analyzed power-related issues with 

value speculation and note that recovery from mispre-

dictions has a significant negative impact on the energy 

consumption.  In our model, we found that when value 

speculation is incorporated into the processor, the total 

increase in energy expenditure of the rename unit, reg-

ister file, load/store queue, functional units, result bus-

ses, instruction window, branch predictor, global clock 

and caches is 3.95 times that of the value predictor.  

Unlike Moreno et al., who advocate a low cost hybrid 

predictor to reduce the energy consumption, we show 

that hybrids and other complex predictors are not a 

good idea in light of energy-performance considera-

tions. 

Our simulations account for the negative effect of 

mispredictions on performance and energy consump-

tion, and report the energy use of the entire processor  

chip, including the first- and second-level caches.  

They also account for any extra computation latency 

required by each predictor. 

 

3. Simulation Methodology 
 

The execution-driven simulator we use is derived 

from the SimpleScalar/Alpha 3.0 tool set [5].  Specifi-

cally, we extended sim-outorder to perform load-value 

prediction and we integrated the simulator with Wattch 

[4] to obtain the energy data.  

We simulate an 8-way superscalar, out-of-order 

CPU with 20 pipeline stages, a 128-entry instruction 

window, a 64-entry load/store buffer, a 32-entry 8-way 

instruction TLB, a 64-entry 8-way data TLB, both with 

a 30-cycle miss penalty, a 64kB, 2-way 2-cycle L1 

instruction cache, a 128kB, 2-way 3-cycle L1 data 

cache, a unified 4MB, 4-way 20-cycle L2 cache, an 

8K-entry hybrid gshare-bimodal branch predictor, six 

integer ALUs, four floating-point adders and two float-

ing-point MULT/DIV units.  The data cache is write-

back and non-blocking with two ports.  The caches 

have a block size of 64 bytes.  It takes 300 cycles to 

access main memory.  We use Wattch’s linear scaling 

to obtain energy results for 0.13µm technology, Vdd = 

1.3V and a clock speed of 2GHz.  Wattch treats leak-

age power as 10% of the dynamic power.  The cache 

and predictor access latencies are obtained with Cacti 

3.2 [26] and the predictor computation latencies (i.e., 

addition) are estimated using Spice simulations, (see 

Section 2.2).   

Each predictor has two ports and includes a bimodal 

confidence estimator (CE) with three-bit saturating 

counters with a threshold of five, a penalty of three and 

an award of one.  Predictions are made after decode, 

and the predictors are updated as soon as the true load 

value is available, there are no speculative updates, and 

an out-of-date prediction is made as long as there are 

pending updates to the same predictor line.  We use the 

re-fetch misprediction recovery scheme [10].  It is 

identical to that used for recovering from branch mis-

predictions.  We chose this mechanism because we 

believe a first value-prediction implementation is likely 

to use the same recovery scheme as branch prediction.  

As an energy-saving optimization, we do not recover 

from wrong predictions that were overwritten with the 

true load value before they were consumed. 

The predictor configurations we investigated are 

shown in Table 1.  For each of the six predictor sizes 

(2kB to 80kB), the table gives the number of entries 

(lines) in the predictor and the access latency in cycles.   

 

 
 



Table 1. Predictor configurations. 
 

(L = LV, S = ST2D, F = FCM3, D = DFCM3, S+F = ST2D+FCM3 hybrid) 

L_2 256 2 L_5 512 2 L_10 1024 2

S_2 256 2 S_5 512 2 S_10 1024 2

F_2 256 3 F_5 512 3 F_10 1024 3

D_2 128 3 D_5 256 3 D_10 512 3

S+F_2 128 3 S+F_5 256 3 S+F_10 512 3

L_20 2048 2 L_40 4096 3 L_80 8192 3

S_20 2048 3 S_40 4096 3 S_80 8192 4

F_20 2048 4 F_40 4096 5 F_80 8192 6

D_20 1024 4 D_40 2048 5 D_80 4096 5

S+F_20 1024 4 S+F_40 2048 5 S+F_80 4096 6

total predictor size ~ 20kB total predictor size ~ 40kB total predictor size ~ 80kB

Predictor 

name

Predictor 

entries

Access 

latency 

(cycles)

total predictor size ~ 2kB total predictor size ~ 5kB total predictor size ~ 10kB

Access 

latency 

(cycles)

Predictor 

entries

Predictor 

name

Predictor 

entries

Access 

latency 

(cycles)

Predictor 

name

 
 

 

 

Six integer (bzip2, gcc, gzip, mcf, twolf, vortex) and 

four floating point (ammp, art, equake, mesa) C pro-

grams from the SPECcpu2000 benchmark suite [27] 

are used for the measurements in this paper.  They 

were compiled on a DEC Alpha 21264A processor 

with the DEC C compiler under the OSF/1 v5.1 operat-

ing system using the “-O3 -arch host” optimization 

flags.  We utilize the reference inputs provided with 

these programs and SimPoint [28] to select a represen-

tative subset (500 million instructions in length) for 

each benchmark program.   

 

4. Experimental Results 
 

4.1 Impact of Predictor Access Latency on Per-

formance 
 

Figure 1 shows the performance of the five predic-

tors, each with sizes ranging from 2kB to 80kB.  We 

report the geometric-mean results across all simulated 

programs.  Ideally, a prediction should be available as 

soon as it is needed.  In our 20-stage pipeline, there are 

four cycles from the time a load prediction is requested 

to the time its result may first be needed by a depend-

ent instruction.  As indicated in Table 1, the actual ac-

cess latencies depend on the size and type of the pre-

dictor and can be as high as six cycles.   

For the single-level predictors (LV and ST2D), the 

access latencies are within four cycles.  Thus, the time 

it takes to read a predictor line has no negative impact 

on the performance.  This is also true for the complex, 

multi-level predictors (FCM3, DFCM3 and ST2D-

FCM3 hybrid) that are 20kB or less in size.  However, 

above 20kB the higher access latencies significantly 

impact the performance of the simulated processor.   

When not modeling the access latency, we observe 

a monotonic increase in performance for each predictor 

type as the predictor size increases, which is in line 

with findings in previous research.  However, it should 

be noted that the rate of increase in performance is 

much lower than the rate of increase in predictor size.  

Both context-method predictors (FCM3 and DFCM3) 

outperform the simpler predictors (LV and ST2D) at 

sizes above 20kB.  Moreover, the ST2D-FCM3 hybrid 

outperforms its unit predictors, albeit only minimally. 

In reality, increasing the number of lines in the pre-

dictor tables lengthens the decode time.  Accounting 

for the extra computation time of the complex predic-

tors further increases their access latencies.  When the 

predictor access latency exceeds the number of cycles 

(four in our case) required to keep a dependent instruc-

tion from stalling, i.e., waiting for a value to make 

forward progress, performance begins to taper off 

(DFCM3 above 20kB) or is diminished (FCM3 and 

hybrid above 20kB).  With realistic latencies, the 80kB 

FCM3 performs worse than its 10kB counterpart.  The 

same is true for the ST2D-FCM3 hybrid.  

We expect these observations to hold for other 

processors as well.  Even though they may have differ-

ent pipeline lengths than our simulated CPU, a similar 

effect will take place above some predictor latency, 

and the large and complex predictors that are the most 

likely to exceed this threshold. 
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Figure 1. Geometric-mean performance using zero and actual access latencies. 

 

 

 

 

4.2 Impact of Predictor Size on Performance 
 

Figure 2 shows the performance (speedup over no 

prediction) of the five predictors sorted by speedup in 

each predictor size category.  Despite the complexity 

of the FCM3 and DFCM3, these predictors do not out-

perform the much simpler predictors in the 2kB and 

5kB categories.  The ST2D delivers better performance 

than the more complex FCM3 when at most 20kB of 

state are allocated to the predictors. 

 

 

The hybrid performs best for size categories up to 

20kB.  Interestingly, above 20kB even LV (the sim-

plest predictor) outperforms the hybrid.  This is due to 

the negative effect of the large access latency of the 

hybrid.  Also, we observe that above 20kB the DFCM3 

performs the best, revealing this predictor’s superiority 

for large sizes.  Unfortunately, due to energy con-

straints such large tables may not be practical for im-

plementation in hardware.  Note that the relatively 

simple ST2D performs well in all categories. 
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Figure 2. Geometric-mean performance with actual access latencies. 
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Figure 3. Geometric-mean speedup and energy consumption with actual access latencies. 

 

 

4.3 Energy Consumption and Performance 
 

With the increasing concern over energy consump-

tion, the addition of any new hardware can only be 

justified by a significant performance improvement.  

Figure 3 shows the performance gain and extra proces-

sor-wide energy consumption for each predictor con-

figuration across all the programs.  Note that we show 

energy consumption for the entire processor and not 

just the predictors.  We chose to show performance and 

energy expenditure separately instead of using metrics 

such as MIPS/Watt, the energy-delay product or the 

energy-delay-squared product for the simple reason 

that different conclusions can be inferred from each of 

these metrics and architects do not seem to agree on 

which metric conveys the best information [33].  Re-

sults for each individual program are provided in Ap-

pendix A.   

For 5kB, 10kB and 20kB, LV and ST2D provide 

more performance gain than energy increase.  This also 

holds true for the 5kB and 10kB DFCM3.  For all other 

configurations, relatively speaking more energy is con-

sumed than performance gained.  Other processors 

would likely result in different percentages but we be-

lieve the trends would be the same.  Beyond 20kB, we 

observe a significant increase in energy consumption 

for all predictor configurations.  This is due to the 

combined effect that above 20kB, the extra perform-

ance gain is marginal while the predictor sizes are mul-

tiple times larger and consume correspondingly more 

energy.   

Note that the extra energy use of the processor with 

load-value prediction includes the energy consumed by 

the predictors as well as that from the resulting specu-

lation activities elsewhere on the chip.  Hence, predic-

tors that are too small (and thus result in many mispre-

dictions) can also waste energy.  This is especially ob-

vious in the 2kB FCM3.  Increasing the predictor size 

reduces the mispredictions and the corresponding 

waste in energy.  However, the energy consumed by 

the predictor itself increases. 

In general, we find that increasing the predictor size 

increases the performance only as long as the access 

latency remains reasonably low.  Even then, a predictor 

cannot be made too large because above some optimal 

size the cost of energy consumption far exceeds the 

performance benefit.  Adding complexity, with the 

goal of improving performance, increases the access 

latency and energy use of the predictor and ultimately 

may well eliminate the potential performance gains.  

Designing the predictor too small increases mispredic-

tions, which negatively impacts performance.  Thus, to 

maximize the energy-performance tradeoff, load-value 

predictors need not be too large, too complex or too 

small.   

 

5. Conclusions 
 

With increasing transistor budgets, aggressive 

speculation has proven to be a viable method to in-

crease throughput and drive performance in high-end 

microprocessors.  These speculation mechanisms usu-

ally require predictors that tend to be large and com-

plex to obtain good performance.  However, with 

power dissipation and energy consumption becoming a 

first-order design constraint, implementation of such 

complex hardware is unappealing.  

In this paper, we take a closer look at load-value 

speculation and show that moderate-sized, simpler 

predictors often provide a better energy-performance 

tradeoff than more complex ones of similar table size.  



We demonstrate that designers can expect good per-

formance from seemingly simple predictors.  We also 

show that a good predictor does not have to be overly 

large.  For instance, we find that a 20kB ST2D pro-

vides a better energy-performance tradeoff than more 

complex and larger predictors.  Adding complexity to 

predictors to increase their performance may have the 

opposite effect.  Thus, in light of energy constraints, 

future research into load-value prediction should step 

away from the trend of increasing predictor complexity 

and size to improve performance.  Rather, we believe 

the focus should be on using simpler predictors and 

enhancing the prediction algorithms.   
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