
Complex Load-Value Predictors: Why We Need Not Bother

Nana B. Sam and Martin Burtscher

Computer Systems Laboratory

Cornell University, Ithaca, NY 14853

{besema, burtscher}@csl.cornell.edu

Abstract

Memory accesses continue to represent a major

performance bottleneck and much remains to be done

to tolerate their latencies. A large body of work exists

that presents load-value prediction as an effective

means to hide some of the memory latency. To in-

crease the prediction accuracy and hence the perform-

ance, researchers have proposed more complex and

larger predictor designs.

This paper re-evaluates load-value predictors and

examines the tradeoffs between predictor size, latency,

energy consumption and performance. We demon-

strate that even though complex predictors deliver the

highest accuracy, they are unlikely to be implemented

in hardware because they provide a much worse en-

ergy-performance tradeoff than simpler predictors

with moderate sizes.

1. Introduction

While processor speeds have been increasing by

approximately a factor of two every 18 months in

keeping with Moore’s Law, memory speeds have only

been improving by about 5% a year. This has led to a

speed gap between the memory and the processor that

doubles every 21 months or so. Thus processors spend

more and more time idling because the memory cannot

serve data sufficiently quickly.

Many superscalar, out-of-order processors can tol-

erate the latencies for first- and second-level cache hits

[29] if enough independent instructions are available.

However, main memory access latencies, which are on

the order of hundreds of cycles, cannot be hidden and

cause significant performance degradations. For the

SPECcpu2000 benchmark programs running on a mod-

ern, high-performance microprocessor, over half the

runtime is spent stalling for loads that miss in the sec-

ond-level cache [16].

To hide some of the negative effects of these stall-

ing loads, load-value prediction has been proposed,

which allows the dependent instructions to execute

concurrently with the memory access. This proved

possible because loads fetch predictable sequences,

i.e., they exhibit value locality [10], [17]. However,

exploiting value locality requires a significant invest-

ment in hardware to achieve modest prediction accura-

cies [17], [25], [30], [31]. Since power/energy con-

sumption constitutes one of the primary design con-

straints of future microprocessors [12], [32], it is no

longer practical to keep pushing the performance enve-

lope by proposing to add predictors without taking

energy into consideration.

Even though several predictors have been proposed,

it is not immediately obvious which design offers the

best energy-performance tradeoff. For example, a

simple predictor, such as the last-value predictor [10],

[17], consumes only a fraction of the energy of a hy-

brid predictor [21] of similar size because the former

accesses only one data array while the latter accesses

multiple data arrays per prediction. However, the sim-

pler predictor exhibits worse accuracy than the hybrid.

This is a problem because when a value is predicted

incorrectly, the speculation hardware has to perform

recovery actions that slow down the processor and

waste energy. On the other hand, the more complex

hybrid predictor, which delivers better prediction accu-

racy and coverage, consumes large amounts of energy

and has a longer access latency. Long access latencies

are undesirable since the predictor is on the critical

path and must deliver its predictions quickly.

Deciding on a predictor’s size involves a similar di-

lemma. A small predictor consumes less energy per

access and has a shorter access latency, but a larger

size increases the prediction accuracy. However, as

pipelines deepen and clock rates increase, access delay

significantly decreases the maximum size of on-chip

SRAM arrays, such as value predictors, that can be

accessed in one cycle [1].

In this paper, we assess the impact of five fre-

quently used value predictors, each with six different

sizes, on the performance and energy consumption of

the entire microprocessor as opposed to just the predic-

tors themselves. We were surprised to find that when

area, processor-wide energy consumption, and table

access latency are taken into account, simpler predic-

tors represent a better solution than complex predictors

of similar size. We also find that making the predictors

larger than about 20kB is unwise as beyond this point

the energy consumption increases at a higher rate than

the performance.

2. Background And Related Work

2.1 Load-Value Predictors

The increasing density of on-die transistors has en-

abled designers and researchers to use aggressive

speculation techniques to improve instruction through-

put. One such technique is load-value prediction,

which breaks true data dependencies between instruc-

tions. In this section, we describe the five predictors

that we evaluate in this paper. They are the most fre-

quently used predictors in the literature.

The last value predictor (LV) [10], [17], [25] pre-

dicts that a load instruction will load the same value it

did the previous time it executed.

The stride 2-delta predictor (ST2D) [25] remembers

the last value for each load (like LV) but also main-

tains a stride, i.e., the difference between the last two

loaded values. To make a prediction, ST2D adds the

stride to the last value of the load. When a load is

completed, ST2D updates the last value but only up-

dates the stride if it encounters the same stride twice in

a row. ST2D can predict sequences with zero (like

LV) and non-zero strides.

The third-order finite context method predictor

(FCM3) [24], [25] computes a hash value [20], [21],

[24] out of the last three loaded values to index the

predictor’s second-level table. This table stores the

values that follow every seen sequence of three values

(modulo the table size). Since this table is shared,

loads can communicate information to one another in

this predictor. Hence, after observing a sequence of

load values, FCM3 can predict any load that loads the

same sequence.

The third-order differential finite context method

predictor (DFCM3) [13] improves on FCM3 by retain-

ing strides instead of absolute values. This reduces

aliasing in the second-level table and enables DFCM3

to predict values it has never seen before. Thus

DFCM3 combines the strengths of an FCM and a

stride predictor at the cost of more elaborate and

slower hardware.

Rychlik et al. [21] introduced a hybrid predictor that

combines a stride and a finite context method predic-

tor. The component with the highest confidence (see

next paragraph) makes the prediction. In case of a tie,

the FCM is given priority. The authors showed that

this hybrid is more effective than either of the compo-

nent predictors.

Due to the high cost of recovering from mispredic-

tions, confidence estimators are used to dynamically

inhibit predictions that are likely to be incorrect [8],

[9], [11], [17], [20], [21], [24], 30]. The bimodal con-

fidence estimator [17], [20], [21], which is frequently

used, is based on saturating up/down counters with

four parameters: a maximum, a threshold, a penalty

and an award. A prediction is made only if the count is

above the threshold. When an unpredictable value is

encountered, the counter is decremented by the pen-

alty, and on a predictable value, it is incremented by

the award.

2.2 Sources of Predictor Complexity

The complexity of value predictors stems from pre-

dictor organizations that place multiple levels of logic

on the critical path to making a prediction.

Large PC-indexed tables are one such source of

complexity. Larger tables take longer to read. Access-

ing a table with a high latency may cause a prediction

to arrive too late for it to have a positive impact on

performance. Bhargava and John [2] evaluated the

effect of varying numbers of access ports and varying

predictor sizes on the table access latency for a hybrid

predictor. They found that to maintain high perform-

ance the hybrid has to have at least 4096 entries. We

demonstrate in this paper that an ST2D-FCM3 hybrid

predictor with 4096 entries provides an energy-

performance tradeoff that is no better than a ST2D

predictor of similar size. Moreover, Bhargava et al.

only considered the energy consumption of the predic-

tors themselves, whereas we consider the energy con-

sumption of the entire processor and thus capture the

negative impact of incorrect predictions on other parts

of the processor, which can be significant. Finally our

study is not limited to a hybrid predictor. Rather, the

objective of this paper is to show that complex predic-

tors such as hybrids provide a worse energy-

performance tradeoff than their simpler counterparts.

Computation is another source of complexity.

Multi-level predictors, including FCM3 and DFCM3,

perform complex computations to determine the index

into the second level. Hybrid predictors, as well as

FCM3 and DFCM3, need to extract data from multiple

tables and ST2D and DFCM3 have to perform addi-

tions to compute the final prediction. These add more

delay and energy use to the process of making a pre-

diction. For example, Jimenez et al. showed that a

100% accurate branch predictor with a two-cycle la-

tency performs worse than a relatively inaccurate

branch predictor with single-cycle latency [14]. Unlike

in much of the previous work, where the computation

latency has been ignored, we use spice simulations to

estimate these extra latencies and take them into ac-

count in our simulations. With this we find that, for

instance, the simple LV can outperform the complex

FCM3.

2.3 Sources of Energy Expenditure

Even though load-value prediction does improve

performance, it contributes to the energy consumption.

One source is the speculative hardware itself. To boost

the prediction accuracy, these hardware structures are

made as large as possible, which increases their energy

consumption. Another significant source of energy

consumption is the useless activities that are performed

in other processor components due to mispredicted

instructions that are later discarded. A mispredicted

instruction contributes to the dynamic energy con-

sumption through datapath switching activity until it is

removed from the pipeline. A third source is the in-

creased (useful) activity introduced by the speculation.

Increased speculation reduces the runtime and thus

may actually lower the energy use.

Several techniques have been proposed to save

space and energy, including sharing common predictor

components in hybrid predictors [7], [19], partitioning

large predictors into multiple smaller tables [15], [22],

[23], and using static and dynamic approaches to filter

out loads that are likely to be predicted incorrectly [3],

[6], [9].

Unfortunately, most energy-saving techniques rec-

ommended for value predictors have only focused on

one source of energy consumption, the predictor itself.

Moreno et al. [18] analyzed power-related issues with

value speculation and note that recovery from mispre-

dictions has a significant negative impact on the energy

consumption. In our model, we found that when value

speculation is incorporated into the processor, the total

increase in energy expenditure of the rename unit, reg-

ister file, load/store queue, functional units, result bus-

ses, instruction window, branch predictor, global clock

and caches is 3.95 times that of the value predictor.

Unlike Moreno et al., who advocate a low cost hybrid

predictor to reduce the energy consumption, we show

that hybrids and other complex predictors are not a

good idea in light of energy-performance considera-

tions.

Our simulations account for the negative effect of

mispredictions on performance and energy consump-

tion, and report the energy use of the entire processor

chip, including the first- and second-level caches.

They also account for any extra computation latency

required by each predictor.

3. Simulation Methodology

The execution-driven simulator we use is derived

from the SimpleScalar/Alpha 3.0 tool set [5]. Specifi-

cally, we extended sim-outorder to perform load-value

prediction and we integrated the simulator with Wattch

[4] to obtain the energy data.

We simulate an 8-way superscalar, out-of-order

CPU with 20 pipeline stages, a 128-entry instruction

window, a 64-entry load/store buffer, a 32-entry 8-way

instruction TLB, a 64-entry 8-way data TLB, both with

a 30-cycle miss penalty, a 64kB, 2-way 2-cycle L1

instruction cache, a 128kB, 2-way 3-cycle L1 data

cache, a unified 4MB, 4-way 20-cycle L2 cache, an

8K-entry hybrid gshare-bimodal branch predictor, six

integer ALUs, four floating-point adders and two float-

ing-point MULT/DIV units. The data cache is write-

back and non-blocking with two ports. The caches

have a block size of 64 bytes. It takes 300 cycles to

access main memory. We use Wattch’s linear scaling

to obtain energy results for 0.13µm technology, Vdd =

1.3V and a clock speed of 2GHz. Wattch treats leak-

age power as 10% of the dynamic power. The cache

and predictor access latencies are obtained with Cacti

3.2 [26] and the predictor computation latencies (i.e.,

addition) are estimated using Spice simulations, (see

Section 2.2).

Each predictor has two ports and includes a bimodal

confidence estimator (CE) with three-bit saturating

counters with a threshold of five, a penalty of three and

an award of one. Predictions are made after decode,

and the predictors are updated as soon as the true load

value is available, there are no speculative updates, and

an out-of-date prediction is made as long as there are

pending updates to the same predictor line. We use the

re-fetch misprediction recovery scheme [10]. It is

identical to that used for recovering from branch mis-

predictions. We chose this mechanism because we

believe a first value-prediction implementation is likely

to use the same recovery scheme as branch prediction.

As an energy-saving optimization, we do not recover

from wrong predictions that were overwritten with the

true load value before they were consumed.

The predictor configurations we investigated are

shown in Table 1. For each of the six predictor sizes

(2kB to 80kB), the table gives the number of entries

(lines) in the predictor and the access latency in cycles.

Table 1. Predictor configurations.

(L = LV, S = ST2D, F = FCM3, D = DFCM3, S+F = ST2D+FCM3 hybrid)

L_2 256 2 L_5 512 2 L_10 1024 2

S_2 256 2 S_5 512 2 S_10 1024 2

F_2 256 3 F_5 512 3 F_10 1024 3

D_2 128 3 D_5 256 3 D_10 512 3

S+F_2 128 3 S+F_5 256 3 S+F_10 512 3

L_20 2048 2 L_40 4096 3 L_80 8192 3

S_20 2048 3 S_40 4096 3 S_80 8192 4

F_20 2048 4 F_40 4096 5 F_80 8192 6

D_20 1024 4 D_40 2048 5 D_80 4096 5

S+F_20 1024 4 S+F_40 2048 5 S+F_80 4096 6

total predictor size ~ 20kB total predictor size ~ 40kB total predictor size ~ 80kB

Predictor

name

Predictor

entries

Access

latency

(cycles)

total predictor size ~ 2kB total predictor size ~ 5kB total predictor size ~ 10kB

Access

latency

(cycles)

Predictor

entries

Predictor

name

Predictor

entries

Access

latency

(cycles)

Predictor

name

Six integer (bzip2, gcc, gzip, mcf, twolf, vortex) and

four floating point (ammp, art, equake, mesa) C pro-

grams from the SPECcpu2000 benchmark suite [27]

are used for the measurements in this paper. They

were compiled on a DEC Alpha 21264A processor

with the DEC C compiler under the OSF/1 v5.1 operat-

ing system using the “-O3 -arch host” optimization

flags. We utilize the reference inputs provided with

these programs and SimPoint [28] to select a represen-

tative subset (500 million instructions in length) for

each benchmark program.

4. Experimental Results

4.1 Impact of Predictor Access Latency on Per-

formance

Figure 1 shows the performance of the five predic-

tors, each with sizes ranging from 2kB to 80kB. We

report the geometric-mean results across all simulated

programs. Ideally, a prediction should be available as

soon as it is needed. In our 20-stage pipeline, there are

four cycles from the time a load prediction is requested

to the time its result may first be needed by a depend-

ent instruction. As indicated in Table 1, the actual ac-

cess latencies depend on the size and type of the pre-

dictor and can be as high as six cycles.

For the single-level predictors (LV and ST2D), the

access latencies are within four cycles. Thus, the time

it takes to read a predictor line has no negative impact

on the performance. This is also true for the complex,

multi-level predictors (FCM3, DFCM3 and ST2D-

FCM3 hybrid) that are 20kB or less in size. However,

above 20kB the higher access latencies significantly

impact the performance of the simulated processor.

When not modeling the access latency, we observe

a monotonic increase in performance for each predictor

type as the predictor size increases, which is in line

with findings in previous research. However, it should

be noted that the rate of increase in performance is

much lower than the rate of increase in predictor size.

Both context-method predictors (FCM3 and DFCM3)

outperform the simpler predictors (LV and ST2D) at

sizes above 20kB. Moreover, the ST2D-FCM3 hybrid

outperforms its unit predictors, albeit only minimally.

In reality, increasing the number of lines in the pre-

dictor tables lengthens the decode time. Accounting

for the extra computation time of the complex predic-

tors further increases their access latencies. When the

predictor access latency exceeds the number of cycles

(four in our case) required to keep a dependent instruc-

tion from stalling, i.e., waiting for a value to make

forward progress, performance begins to taper off

(DFCM3 above 20kB) or is diminished (FCM3 and

hybrid above 20kB). With realistic latencies, the 80kB

FCM3 performs worse than its 10kB counterpart. The

same is true for the ST2D-FCM3 hybrid.

We expect these observations to hold for other

processors as well. Even though they may have differ-

ent pipeline lengths than our simulated CPU, a similar

effect will take place above some predictor latency,

and the large and complex predictors that are the most

likely to exceed this threshold.

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

L
_

2
L

_
5

L
_

1
0

L
_

2
0

L
_

4
0

L
_

8
0

S
_

2
S

_
5

S
_

1
0

S
_

2
0

S
_

4
0

S
_

8
0

F
_

2
F

_
5

F
_

1
0

F
_

2
0

F
_

4
0

F
_

8
0

D
_

2
D

_
5

D
_

1
0

D
_

2
0

D
_

4
0

D
_

8
0

S
+

F
_

2
S

+
F

_
5

S
+

F
_

1
0

S
+

F
_

2
0

S
+

F
_

4
0

S
+

F
_

8
0

s
p

e
e

d
u

p
 r

e
la

ti
v

e
 t

o
 n

o
 p

re
d

ic
ti

o
n

zero access latency
actual access latency

Figure 1. Geometric-mean performance using zero and actual access latencies.

4.2 Impact of Predictor Size on Performance

Figure 2 shows the performance (speedup over no

prediction) of the five predictors sorted by speedup in

each predictor size category. Despite the complexity

of the FCM3 and DFCM3, these predictors do not out-

perform the much simpler predictors in the 2kB and

5kB categories. The ST2D delivers better performance

than the more complex FCM3 when at most 20kB of

state are allocated to the predictors.

The hybrid performs best for size categories up to

20kB. Interestingly, above 20kB even LV (the sim-

plest predictor) outperforms the hybrid. This is due to

the negative effect of the large access latency of the

hybrid. Also, we observe that above 20kB the DFCM3

performs the best, revealing this predictor’s superiority

for large sizes. Unfortunately, due to energy con-

straints such large tables may not be practical for im-

plementation in hardware. Note that the relatively

simple ST2D performs well in all categories.

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

F
_

2
D

_
2

L
_

2
S

_
2

S
+

F
_

2

F
_

5
D

_
5

L
_

5
S

_
5

S
+

F
_

5

L
_

1
0

F
_

1
0

D
_

1
0

S
_

1
0

S
+

F
_

1
0

L
_

2
0

F
_

2
0

S
_

2
0

D
_

2
0

S
+

F
_

2
0

F
_

4
0

S
+

F
_

4
0

L
_

4
0

S
_

4
0

D
_

4
0

F
_

8
0

S
+

F
_

8
0

L
_

8
0

S
_

8
0

D
_

8
0

s
p

e
e

d
u

p
 r

e
la

ti
v

e
 t

o
 n

o
 p

re
d

ic
ti

o
n

Figure 2. Geometric-mean performance with actual access latencies.

1.00

1.02

1.04

1.06

1.08

1.10

1.12

L
_
2

L
_
5

L
_
1
0

L
_
2
0

L
_
4
0

L
_
8
0

S
_
2

S
_
5

S
_
1
0

S
_
2
0

S
_
4
0

S
_
8
0

F
_
2

F
_
5

F
_
1
0

F
_
2
0

F
_
4
0

F
_
8
0

D
_
2

D
_
5

D
_
1
0

D
_
2
0

D
_
4
0

D
_
8
0

S
+

F
_
2

S
+

F
_
5

S
+

F
_
1
0

S
+

F
_
2
0

S
+

F
_
4
0

S
+

F
_
8
0

re
la

ti
v
e
 t

o
 n

o
 p

re
d

ic
ti

o
n

speedup
processor-wide energy

Figure 3. Geometric-mean speedup and energy consumption with actual access latencies.

4.3 Energy Consumption and Performance

With the increasing concern over energy consump-

tion, the addition of any new hardware can only be

justified by a significant performance improvement.

Figure 3 shows the performance gain and extra proces-

sor-wide energy consumption for each predictor con-

figuration across all the programs. Note that we show

energy consumption for the entire processor and not

just the predictors. We chose to show performance and

energy expenditure separately instead of using metrics

such as MIPS/Watt, the energy-delay product or the

energy-delay-squared product for the simple reason

that different conclusions can be inferred from each of

these metrics and architects do not seem to agree on

which metric conveys the best information [33]. Re-

sults for each individual program are provided in Ap-

pendix A.

For 5kB, 10kB and 20kB, LV and ST2D provide

more performance gain than energy increase. This also

holds true for the 5kB and 10kB DFCM3. For all other

configurations, relatively speaking more energy is con-

sumed than performance gained. Other processors

would likely result in different percentages but we be-

lieve the trends would be the same. Beyond 20kB, we

observe a significant increase in energy consumption

for all predictor configurations. This is due to the

combined effect that above 20kB, the extra perform-

ance gain is marginal while the predictor sizes are mul-

tiple times larger and consume correspondingly more

energy.

Note that the extra energy use of the processor with

load-value prediction includes the energy consumed by

the predictors as well as that from the resulting specu-

lation activities elsewhere on the chip. Hence, predic-

tors that are too small (and thus result in many mispre-

dictions) can also waste energy. This is especially ob-

vious in the 2kB FCM3. Increasing the predictor size

reduces the mispredictions and the corresponding

waste in energy. However, the energy consumed by

the predictor itself increases.

In general, we find that increasing the predictor size

increases the performance only as long as the access

latency remains reasonably low. Even then, a predictor

cannot be made too large because above some optimal

size the cost of energy consumption far exceeds the

performance benefit. Adding complexity, with the

goal of improving performance, increases the access

latency and energy use of the predictor and ultimately

may well eliminate the potential performance gains.

Designing the predictor too small increases mispredic-

tions, which negatively impacts performance. Thus, to

maximize the energy-performance tradeoff, load-value

predictors need not be too large, too complex or too

small.

5. Conclusions

With increasing transistor budgets, aggressive

speculation has proven to be a viable method to in-

crease throughput and drive performance in high-end

microprocessors. These speculation mechanisms usu-

ally require predictors that tend to be large and com-

plex to obtain good performance. However, with

power dissipation and energy consumption becoming a

first-order design constraint, implementation of such

complex hardware is unappealing.

In this paper, we take a closer look at load-value

speculation and show that moderate-sized, simpler

predictors often provide a better energy-performance

tradeoff than more complex ones of similar table size.

We demonstrate that designers can expect good per-

formance from seemingly simple predictors. We also

show that a good predictor does not have to be overly

large. For instance, we find that a 20kB ST2D pro-

vides a better energy-performance tradeoff than more

complex and larger predictors. Adding complexity to

predictors to increase their performance may have the

opposite effect. Thus, in light of energy constraints,

future research into load-value prediction should step

away from the trend of increasing predictor complexity

and size to improve performance. Rather, we believe

the focus should be on using simpler predictors and

enhancing the prediction algorithms.

6. Acknowledgment

This work has been supported in part by the Na-

tional Science Foundation (NSF) under Award

#0208567 and by a grant from Intel Corporation.

7. References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, D. Bur-

ger. Clock Rate versus IPC: The End of the Road for

Conventional Microarchitectures. 27th Annual Interna-

tional Symposium on Computer Architecture, 2000, pp.

248-259.

[2] R. Bhargava, L. K. John. Latency and Energy Aware

Value Prediction for High-Frequency Processors. 16th

International Conference on Supercomputing, 2002,

pp. 45-56.

[3] R. Bhargava, L. K. John. Performance and Energy

Impact of Instruction-Level Value Predictor Filtering.

First Value-Prediction Workshop, 2003, pp. 71-78.

[4] D. Brooks, V. Tiwari, M. Martonosi. Wattch: A

Framework for High-Performance Microprocessors.

Seventh International Symposium on High-

Performance Computer Architecture, 2001, pp. 171-

182.

[5] D. Burger, T. M. Austin. The SimpleScalar Tool Set,

version 2.0. ACM SIGARCH Computer Architecture

News, 1997. http://www.simplescalar.com

[6] M. Burtscher, A. Diwan, M. Hauswirth. Static Load

Classification for Improving the Value Predictability of

Data-Cache Misses. ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementa-

tion, 2002, pp. 222-233.

[7] M. Burtscher, B. G. Zorn. Hybridizing and Coalescing

Load Value Predictors. International Conference on

Computer Design, 2000, pp. 81-92.

[8] M. Burtscher, B. G. Zorn. Prediction Outcome His-

tory-based Confidence Estimation for Load Value Pre-

diction. Journal of Instruction-Level Parallelism,

1999. http://jilp.org/vol1/v1paper3.ps

[9] B. Calder, G. Reinman, D. M. Tullsen. Selective

Value Prediction. 26th Annual International Sympo-

sium on Computer Architecture, 1999, pp. 64-74.

[10] F. Gabbay. Speculative Execution Based on Value

Prediction. Technical Report 1080, Department of

Electrical Engineering, Technion-Israel Institue of

Technology, 1996.

[11] F. Gabbay, A. Mendelson. Can Program Profiling

Support Value Prediction? 30th Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, 1997,

pp. 270-280.

[12] R. Gonzalez, M. Horowitz. Energy Dissipation in

General Purpose Microprocessors. IEEE Journal of

Solid-State Circuits, 1996, pp. 1227-1284.

[13] B. Goeman, H. Vandierendonck, K. de Bosschere.

Differential FCM: Increasing Value Prediction Accu-

racy by Improving Table Usage Efficiency. Seventh

International Symposium on High-Performance Com-

puter Architecture, 2001, pp. 207-216.

[14] D. A. Jimenez, S. W. Keckler, C. Lin. The impact of

delay on the design of branch predictors. 33rd Annual

International Symposium on Microarchitecture, 2000,

pp. 67-76.

[15] G. H. Loh. Width-Partitioned Load Value Predictors.

Journal of Instruction-Level Parallelism, 2003, pp. 1-

23.

[16] W. Lin, S. K. Reinhardt, D. Burger. Reducing DRAM

latencies with an integrated memory hierarchy design.

Seventh International Symposium on High Perform-

ance Computer Architecture, 2001, pp. 301-312.

[17] M. H. Lipasti, C. B. Wilkerson, J. P. Shen. Value Lo-

cality and Load Value Prediction. Second Interna-

tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 1996,

pp. 138-147.

[18] R. Moreno, L. Pinuel, S. del Pino, F. Tirado. A Power

Perspective of Value Speculation for Superscalar Mi-

croprocessors. International Conference on Computer

Design, 2000, pp. 147-154.

[19] L. Pinuel, R. A. Moreno, F. Tirado. Implementation of

Hybrid Context Based Value Predictors Using Value

Sequence Classification. Euro-Par, 1999, pp. 1291-

1295.

[20] G. Reinman, B. Calder. Predictive Techniques for

Aggressive Load Speculation. 31st IEEE/ACM Interna-

tional Symposium on Microarchitecture, 1998, pp. 127-

137.

[21] B. Rychlik, J. Faistl, B. Krug, J. P. Shen. Efficacy and

Performance Impact of Value Prediction. International

Conference on Parallel Architectures and Compilation

Techniques, 1998, pp. 148-154.

[22] T. Sato, I. Arita. Table Size Reduction for Data Value

Predictors by Exploiting Narrow Width Values. 14th

International Conference on Supercomputing, 2000,

pp. 196-205.

[23] T. Sato, I. Arita. Low-Cost Value Prediction Using

Frequent Value Locality. Fourth International Sympo-

sium on High Performance Computing, 2002, pp. 106-

119.

[24] Y. Sazeides, J. E. Smith. Implementations of Context

Based Value Predictors. Technical Report ECE-97-8,

University of Wisconsin, Madison, Wisconsin, 1997.

[25] Y. Sazeides, J. E. Smith. The Predictability of Data

Values. Thirteenth IEEE/ACM International Sympo-

sium on Microarchitecture, 1997, pp. 248-258.

[26] P. Shivakumar, N. P. Jouppi. CACTI 3.0: An Inte-

grated Cache Timing, Power and Area Model. Techni-

cal Report 2001/2. Compaq Western Research Labo-

ratory, 2001.

[27] SPECcpu2000 benchmarks.

http://www.spec.org/osg/cpu2000.

[28] T. Sherwood, E. Perelman, G. Hamerly, B. Calder.

Automatically Characterizing Large Scale Program

Behavior. Tenth International Conference on Architec-

tural Support for Programming Languages and Oper-

ating Systems, 2002, pp. 45-57.

[29] S. T. Srinivisan, A. R. Lebeck. Load latency tolerance

in dynamically scheduled processors. Journal of In-

struction Level Parallelism, pp. 1-24, 1999.

[30] K. Wang, M. Franklin. Highly Accurate Data Value

Prediction using Hybrid Predictors. 30th Annual

ACM/IEEE International Symposium on Microarchi-

tecture, 1997, pp. 358-363.

[31] H. Zhou, J. Flanagan, T. M. Conte. Detecting Global

Stride Locality in Value Streams. 30th Annual Interna-

tional Symposium on Computer Architecture, 2003, pp.

324-335.

[32] V. Zyuban, P. M. Kogge. Optimization of High-

Performance Superscalar Architectures for Energy Ef-

ficiency. 2000 International Symposium on Low

Power Electronics and Design, 2000, pp. 196-205.

[33] V. Zyuban, P. Strenski. Unified Methodology for Re-

solving Power-Performance Tradeoffs at the Microar-

chitectural and Circuit Levels. International Sympo-

sium on Low Power Electronics and Design, 2002, pp.

166-171.

A
p

p
en

d
ix

 A
 –

 P
er-b

en
ch

m
a

rk
 sp

eed
u

p
 a

n
d

 p
ro

cesso
r-w

id
e en

erg
y
 co

n
su

m
p

tio
n

1
.0

0

1
.0

2

1
.0

4

1
.0

6

1
.0

8

1
.1

0

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p
e
e
d
u
p

p
ro

c
e
s
s
o
r-w

id
e
 e

n
e
rg

y

F

ig
 A

1
. a

m
m

p

1
.0

0

1
.0

2

1
.0

4

1
.0

6

1
.0

8

1
.1

0

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p

e
e

d
u
p

p
ro

c
e
s
s
o

r-w
id

e
 e

n
e

rg
y

F

ig
 A

2
. a

rt

1
.0

0

1
.0

5

1
.1

0

1
.1

5

1
.2

0

1
.2

5

1
.3

0

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p

e
e

d
u

p

p
ro

c
e

s
s
o

r-w
id

e
 e

n
e

rg
y

F

ig
 A

3
. b

z
ip

2

0
.9

7

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p
e
e
d
u
p

p
ro

c
e
s
s
o

r-w
id

e
 e

n
e
rg

y

;

F
ig

 A
4

. e
q
u
a
k
e

1
.0

0

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

0

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p
e
e
d
u

p
p
ro

c
e
s
s
o
r-w

id
e
 e

n
e
rg

y

F
ig

 A
5

. g
c
c

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p
e

e
d

u
p

p
ro

c
e

s
s
o
r-w

id
e
 e

n
e
rg

yF
ig

 A
6

. g
z
ip

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p
e

e
d

u
p

p
ro

c
e
s
s
o

r-w
id

e
 e

n
e

rg
y

F
ig

 A
7

. m
c
f

0
.9

8

1
.0

0

1
.0

2

1
.0

4

1
.0

6

1
.0

8

1
.1

0

1
.1

2
L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p

e
e

d
u
p

p
ro

c
e

s
s
o

r-w
id

e
 e

n
e

rg
y

F

ig
 A

8
. m

e
s
a

1
.0

0

1
.0

4

1
.0

8

1
.1

2

1
.1

6

1
.2

0

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

s
p
e

e
d

u
p

p
ro

c
e
s
s
o

r-w
id

e
 e

n
e
rg

y

F
ig

 A
9

. tw
o
lf

1
.0

0

1
.0

3

1
.0

6

1
.0

9

1
.1

2

1
.1

5

L_2
L_5

L_10
L_20
L_40
L_80

S_2
S_5

S_10
S_20
S_40
S_80

F_2
F_5

F_10
F_20
F_40
F_80

D_2
D_5

D_10
D_20
D_40
D_80

S+F_2
S+F_5

S+F_10
S+F_20
S+F_40
S+F_80

relative to no prediction

sp
e

e
d

up
pro

ce
sso

r-w
id

e e
ne

rg
y

F

ig
 A

1
0
. v

o
rte

x

