
SELF OPTIMIZING FINITE STATE MACHINES FOR CONFIDENCE ESTIMATORS

Sandra J. Jackson and Martin Burtscher

Computer Systems Laboratory, Cornell University, Ithaca, NY 14853

ABSTRACT

Modern microprocessors are increasingly relying on

speculation as a key technique for improving perform-

ance and reducing power, temperature and energy. Con-

fidence estimators are necessary to prevent likely mis-

speculations. These confidence estimators are com-

monly realized using a Finite State Machine (FSM)

called a saturating counter.

This paper presents a hardware method that allows

FSMs to dynamically optimize their state transitions

and confidence thresholds to improve CPU perform-

ance by automatically adapting to the current workload.

The technique further allows the FSMs to continuously

adjust to changing program conditions. These adapt-

able, self-optimizing confidence estimators are evalu-

ated as a component in a value predictor on the C pro-

grams from the SPECcpu2000 benchmark suite. On av-

erage, the self-optimizing method achieves a miss rate

reduction of 11% with a maximum of 47%. The self-

optimizing confidence estimator can provide a speedup

of 4%.

1. INTRODUCTION

Modern microprocessors rely more and more upon

speculation techniques for improving performance and

reducing power and energy. Speculation allows the

CPU to forecast a piece of information it does not yet

have, thus avoiding the delay imposed by waiting for

the computation of the information. The CPU must

eventually acquire the actual result, but it can continue

execution with the speculated answer. If a prediction

matches the computed outcome, the CPU saves valu-

able cycle time, power and energy because it can cor-

rectly use the results obtained during the speculation.

However, should the CPU make an incorrect prediction

the necessary recovery actions can be costly because

instructions may need to be re-executed.

The purpose of a confidence estimator (CE) is to re-

duce the penalties incurred by incorrect predictions. As

a program executes, the CE records a history of the

success or failure of past speculations. If the number of

times a prediction was correct is much greater than the

number of times it was wrong, then the CE has a high

confidence that the next prediction can be used without

causing a need for recovery. If the confidence is low,

the CPU discards the prediction and simply waits for

the actual information to become available. Hence, con-

fidence estimation allows the CPU to avoid the cost of

using incorrectly predicted information. This improves

the performance benefit of speculative techniques and

saves power that would have been wasted running with

the wrong information.

Currently, most CEs are realized using Finite State

Machines (FSMs). The most commonly used FSM is

the saturating up-down counter. It counts up for every

prediction that is correct and decreases its value when a

speculation is incorrect. It is saturating because once

the counter has reached the highest value, the counter

does not wrap around to zero when incremented but in-

stead remains at the high value. A similar strategy ap-

plies to the lowest value. The higher the counter value

the more confident the CE is that the next prediction

will be correct.

The saturating up-down counter is commonly used

because it provides reasonable performance across most

programs. However, there are thousands of possible

FSMs, and performance could be improved if an FSM

tailored to the particular workload were used. Unfortu-

nately, this would generally require an exhaustive

search of all possible configurations. Even worse, in

today’s general-purpose processors one does not know

ahead of time which programs will be run, making it

infeasible to pick the best FSM in advance and stati-

cally implement it in hardware.

Genetic algorithms have been shown to find good so-

lutions to problems using an evolutionary approach. A

population of candidate solutions is used as a starting

point, and the fitness of each individual is evaluated.

Based upon these fitnesses a new generation of indi-

viduals is created by combining and changing the can-

didate solutions in the old generation through genetic

operations. The goal is for each new population to be

filled with individuals that are better than the ones in

past generations.

In this paper we present a method inspired by genetic

algorithms that allows a processor’s hardware to auto-

matically optimize the confidence estimators for the

current workload. Our technique is transparent to soft-

ware and employs a variable representation of an FSM

that is implemented in hardware. Since the CE is con-

stantly trying to improve itself during the execution of a

program, it can also continuously adapt to changes in

program behavior.

To evaluate our genetic method, we simulate a load

value predictor [15] with a confidence estimator. We

compare the performance of the genetic confidence es-

timator against the base saturating up-down counter, a

saturating up-down counter with increased capacity,

and a perceptron-based confidence estimator.

There are many types of load value predictors. Since

there are numerous load instructions encountered dur-

ing program execution, it is beneficial to apply predic-

tions to each load instruction separately. This is accom-

plished by including tables of load values whose entries

are indexed using the PC and other information. CEs

are employed, among other things, to differentiate be-

tween entries that yield accurate predictions and entries

that do not.

We evaluate our adaptive, self-optimizing finite state

machine CE using the C programs from the SPEC-

cpu2000 benchmark suite. Our method substantially

reduces the number of times the CE causes the proces-

sor to use a wrong value or not use a value that would

have been correct. On average, the miss rate of the con-

fidence estimator is reduced by 11%. The minimum

miss rate reduction is 4% and the maximum is 47%.

Cycle accurate studies show that our self-optimizing

CE is capable of adding up to 4% of extra speedup.

2. RELATED WORK

As research in speculative methods increased, it became

apparent that, while these methods could offer signifi-

cant benefits, they also had the potential to slow down

program execution if many of the speculations were in-

correct. Grunwald et al. introduced confidence estima-

tion [10] as a way to control the use of incorrect specu-

lations and reduce the negative effects thereof. Calder

et al. examine the use of a saturating counter confidence

estimator and a history-based confidence estimator for

value prediction [6]. It is important for the CE to be ac-

curate; otherwise opportunities to use correct predic-

tions can be missed or incorrect predictions will be

used. Profiling can increase the accuracy of a CE by

using a pattern history and identifying which patterns

are followed by incorrect or correct subsequent predic-

tions [4], [5]. However, the need to profile is usually

undesirable.

Research for improving confidence estimators has

also included using perceptrons as the CE component

[3], [21]. While perceptrons improve prediction accu-

racy, cycle accurate studies show little or no speedup

and actually exhibit a slowdown in some cases [21].

This is a result of the long time the perceptron takes to

make a decision. The method we present in this paper

requires fewer cycles than it would take to make a load

value prediction, and therefore the processor knows

whether to use a value immediately upon a prediction

becoming available.

Methods for adaptable hardware often depend on the

use of programmable hardware devices such as FPGAs;

which can be used in combination with compiler and

other techniques to adapt the existing hardware to the

workload. Lau et al. study the possibility of specializing

hardware to only include those resources that a program

will need during execution [14]. Their approach in-

volves setting up a library of possible architectures and

having the compiler collect statistics for each model

before deciding which one to use. They allow the archi-

tecture to be reprogrammed during execution as the ap-

plication workload changes.

Another adaptable hardware approach involves creat-

ing physical features on a chip but allowing them to be

enabled or disabled. The hardware detects when the

current configuration experiences a decrease in per-

formance and then tries several different configurations.

The configuration that performs the best is then used

until the performance decreases again [1], [2], [22].

Dhodapkar and Smith [7] developed a method to iden-

tify the current working set and select a configuration

that matches the characteristics of that working set.

Fogel et al. first developed evolutionary program-

ming [9]. Their approach represents possible problem

solutions as FSMs. These FSMs were then evolved us-

ing random mutation of state transitions to find better

machines. Holland [11] furthered the application of

evolutionary techniques by creating Genetic Algo-

rithms. This work provided a framework of successful

genetic operations and multiple individual populations.

These developments increased the success of genetic

applications and spurred further research. For example,

Emer and Gloy used genetic programming techniques

to operate on a language describing predictor compo-

nents and functions [8]. Applying genetic operations to

the primitives in this language can automatically gener-

ate better predictors.

Sherwood and Calder designed FSM predictors tai-

lored to specific workloads by profiling the desired

program(s) and locating weaknesses in the existing pre-

dictor strategies [17]. Once a weakness has been identi-

fied, new FSMs may be desired for a whole program, a

group of programs or just a few instructions. Using the

profile information, a pattern definition is formed from

which a language of regular expressions for the predic-

tor history is developed. An FSM is then constructed

from these regular expressions. The FSM can be trans-

lated by a tool and implemented in hardware. This

works well for customized processors since the applica-

tions are known ahead of time. Sherwood and Calder

also examine extending their approach to general-

purpose processors [18].

Our approach is the first, pure hardware implementa-

tion of a genetically evolving problem solution that

does not require intervention from the user or profiling.

Confining the method to hardware adds additional chal-

lenges. It requires hardware sizes to be realistic and the

design must be fast. These restrictions mean, for in-

stance, that we need to deal with an extremely small

population size compared to software genetic methods.

3. IMPLEMENTATION

A finite state machine confidence estimator contains

two specifications, state transitions and the threshold at

which the confidence estimator indicates that the pre-

diction should be used. For example, Figure 1 shows a

correct? correct = 1 correct = 0

state 11 10 01 00 11 10 01 00

next state 11 11 10 01 10 01 00 00
Figure 3: Illustration of how a state transition table can be represented as a string of bits.

2-bit FSM that could be used as a CE. It has a 3-bit in-

put (consisting of the 2-bit current state and the 1-bit

success or failure indication) and a 2-bit output that

specifies the next state. The FSM transitions to a higher

state when it sees a correct prediction. Once it reaches

the highest state it remains there until it sees an incor-

rect prediction. Incorrect predictions cause transitions

to lower states. The threshold specifies the state at and

above which the confidence estimator allows the CPU

to use the value prediction. If the threshold for the FSM

is set at two then if the current state is equal to two or

three the FSM would output a one, indicating that the

predicted value should be used by the processor. The

FSM in Figure 1 is commonly referred to as a saturating

up-down counter.

3

10

2

0 0

1

1

0
1

01

Figure 1: Saturating up-down counter finite state ma-

chine

correct? state

next

state

0 00 00

0 01 00

0 10 01

0 11 10

1 00 01

1 01 10

1 10 11

1 11 11
Figure 2: State transition table for the saturating up-

down counter

Applying genetic operations in hardware requires the

FSM to be represented as a set of bits. The next state

column of the transition table in Figure 2 is the bit rep-

resentation we use to specify the FSM. The last row of

Figure 3 is simply the next state column transposed;

this data can easily be stored in a register and changed

to obtain new FSMs. The next state computation can be

thought of as a lookup into an 8-entry, 2-bit memory.

The bits in the columns “correct?” and “state” form the

3-bit memory address to access the 2-bit data, which is

the next state value. If the bits stored in this memory are

changed, so are the resulting state transitions. Figure 4

shows this operation in hardware, the two multiplexors

simply function as an address decoder.

To find the best machines the threshold should be

varied as well. In order to do this 01, 10, or 11, is pre-

pended onto the bit string designating whether the CE

will indicate to use the value prediction at a threshold of

1, 2, or 3. A threshold of 0, which would correspond to

always using the predicted value, is not necessary be-

cause both always using a value and never using a value

can already be expressed by state transitions that only

lead to high or low confidence states. While different

strings can essentially represent the same machines we

choose this format to simplify the hardware and make it

fast. Figure 5 shows the final FSM in bit string repre-

sentation and highlights the hardware path that com-

pares the threshold bits to the current state to determine

the confidence.

A basic genetic method consists of the following

steps [23]:

1. Create an initial population.

2. Calculate the fitness of each individual.

3. Apply genetic operations to obtain a new popula-

tion.

4. Return to step 2 and repeat.

To genetically evolve better FSMs an initial popula-

tion of FSMs must be created. The initial population is

seeded with FSMs that provide good performance over

a set of programs and that are sufficiently different

from each other. Our initial population includes a satu-

rating up-down counter and three additional FSMs. We

found that a population size of four does not signifi-

cantly limit the quality of the evolved FSMs. A small

population size is essential to an efficient hardware im-

plementation. For each new generation, the FSMs in the

current population produce offspring to form the ma-

chines that will be evaluated in the new population.

A new generation of FSMs is genetically evolved af-

ter every interval of 262,144 (i.e., 2
18

) executed loads.

Since the size of the interval can affect performance we

chose one that performed reasonably over all the

benchmarks. Once the end of an interval is reached the

current population is ranked based on the fitness of

each individual. The fitness of each FSM is continu-

ously incremented whenever that FSM makes a correct

confidence estimation; this requires four counters plus

an interval-length counter. The fitness function used is

the accuracy of the current FSM. The higher the accu-

racy, the more fit the machine is for the current applica-

tion. The best of the four FSMs replicates itself for the

next generation and will be used as the confidence es-

timator in the next interval. The worst machine is re-

moved from the population and cannot be picked as a

parent for any of the three remaining FSMs to be gener-

ated.

Then two FSMs are selected as parents on which to

apply genetic operations to create a new and hopefully

better FSM. Selection is based on fitness, the higher the

fitness of an individual the higher the probability that

individual will be picked as a parent. Once two parents

have been selected a crossover is performed, in which a

random mask is generated from the least significant bits

(LSBs) of the CPU’s cycle counter. The bits that corre-

spond to set bits in the mask are taken from one parent

and the remaining bits from the other parent to form a

new machine.

Next, a mutation is applied to the resulting bits. The

bit to mutate is selected by loading an 18-bit circular

shift register with a one in one bit position and zeros in

the rest. The content of the register is rotated by one bit

position every cycle. When a mutation is required this

18-bit value is xored with the FSM bits, which flips one

bit.

This operation helps introduce variety into the new

population if the machines become too similar. Apply-

ing the mutation operation immediately after the cross-

over also helps avoid exact copies of parents if the same

machine gets selected as both parents. This process is

repeated to create the third and fourth FSMs for the

next generation. Since each individual FSM can be cre-

ated in parallel this will only take a few cycles in hard-

ware.

Unfortunately, the above implementation has a dis-

advantage. There are points during execution when the

saturating up-down counter actually is the best ma-

chine, but it is lost after several generations in which it

was not the best machine. To combat this effect, we

limit the number of genetically evolving machines to

three and replace the fourth machine with a static satu-

rating up-down counter that gets evaluated along with

the other FSMs. This modification requires the addition

of a selector that chooses between using the saturating

up-down counter or the current best genetic FSM as the

confidence estimator. It is important to prevent the satu-

rating up-down counter from making a copy of itself for

the new generation; otherwise two copies of the same

FSM would be evaluated. However, the saturating up-

down counter needs to be included in the parent pool if

it is currently the best machine.

The selector has the potential to further increase the

accuracy if one selector is created per line of the CE.

This is because the fitness of the FSMs is being evalu-

ated globally, over all load instructions; therefore the

resulting machine may not work well for a particular

line. The selector per line allows the CE to take advan-

tage of locality and use whichever machine would be

best for the line being accessed. Figure 6 shows the

storage required for the self-optimizing confidence

1111100 100100010

FSM RegisterCurrent State

>=?

Confidence

high

11

 Input

0

Next State

10

MUX

Address

Decoder

MUX

Figure 4: Hardware used to determine the next state is shown in bold.

11111001 1001000010

FSM RegisterCurrent State

>=?

Confidence

high

MUX

11

 Input
0

Next State

10

MUX

Figure 5: Hardware used to determine the confidence is shown in bold.

estimator with the selector. The stride 2-delta value pre-

dictor [16] storage consists of the str1, str2 and last

value fields. The table entries for conf 0, conf 1, conf 2,

conf 3, and sel are each 2 bits wide. The saturating up-

down counter state is stored in conf 3. Note that the

conf logic block includes the logic seen in Figure 5 and

an additional multiplexor to choose the appropriate

FSM with which to make its decision.

Once the new generation of FSMs is ready, the

hardware must prepare for the next interval. The fitness

registers are reset to zero; there is one fitness register

per FSM. The current state tables for each FSM are not

reset because the tables are large and the new machines

will need warm-up time. Not performing a reset also

allows the best FSM, if it remained the same, and the

saturating up-down counter to avoid a warm-up period.

Upon observing the machines generated over several

benchmarks, we discovered that the FSM CEs would

evolve away from one best machine, only to re-evolve

the same machine again later in the program execution.

This appears to be the result of program phases. Avoid-

ing the need to re-evolve machines seen previously in

the program is achieved by adding a small FSM victim

cache that stores FSMs that have previously been the

fittest machine. FSMs are retrieved from this cache

when a drop in the fitness of the genetically generated

population is detected.

The hardware chooses which victim to select from

the cache by indexing the victim cache with a xor of the

MSBs and LSBs of the saturating up-down counter fit-

ness. The victim FSMs are also stored into the table in

this manner. However, it is undesirable to retrieve a

machine that would have done well in the past interval,

which would occur if the saturating up-down counter’s

fitness from the presently completed interval were used

as the storing index. This is because the FSMs are only

stored into the cache after discovering they are no

longer the best machine. Instead the victim FSMs are

stored using the saturating up-down counter fitness

from two intervals before the point at which they are

stored into the victim cache. This way when the proces-

sor accesses the cache to find an FSM that might per-

form well in the future, it uses the current interval’s

saturating up-down counter fitness.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

predicted value

MUX

predict/don't predict

str1 str2 last value conf 0 conf 1 conf 2 conf 3 sel

index logic

pc

n-bit

2n lines

64-bit value
1-bit

conf logic

2-bit

2-bit 2-bit

1-bit+

Figure 6: The hardware components of a stride 2-delta value predictor with a self optimizing confidence esti-

mator.

Table 1: MASE configuration

Processor Memory Subsystem

Fetch/Issue/Commit Width 4/4/4 Cache Sizes 64KB IL1, 64KB DL1, 1MBDL2

I-window/ROB/LSQ Size 64/128/64 Cache Associativities 2-way L1, 4-way L2

Int/FP Registers 184 Cache Latencies 2 cycles L1, 20 cycles L2

Execution Latencies Alpha 21264 Cache Line Sizes 64B

Branch Predictor 2-level 8K Main Memory Latency >= 400

Value Prediction Hardware Genetic Method Support

Prediction Type stride 2-delta Table Size 2048

Table Size 2048 Line Size 10 bits

Value Prediction Latency 2 cycles CE Latency < 2cycles

This strategy retrieves an FSM from the victim cache

and places it in the population that will be evaluated

during the next interval. However, since only the satu-

rating up-down counter and the best FSM can be used

to make a prediction decision, the victim retrieved can

only be chosen for decision-making starting in the in-

terval following that in which it was re-inserted into the

population.

4. METHODOLOGY

Cycle accurate simulations were performed with a

modified version of MASE [13]. The baseline MASE

architecture was supplemented with a stride 2-delta

value predictor.

Table 1 shows the MASE configuration used in the

cycle accurate studies. Upon encountering an incorrect

value that was used the processor employs a re-execute

strategy to repair the instructions that performed their

computation with the incorrect value. A saturating up-

down counter CE, a quadruple sized saturating up-down

counter CE and a perceptron CE were implemented for

comparison to our self-optimizing CE.

This study utilizes the SPECcpu2000 C benchmark

programs. Experiments use a representative section of

each benchmark determined by SimPoint [19]. Bench-

marks are fast-forwarded to the beginning of the repre-

sentative section and run until the end of the section us-

ing the reference inputs. The sections are 500 million

instructions long.

5. RESULTS

In this section we present cycle accurate performance

results and miss rate reductions comparing the self-

optimizing confidence estimator to the baseline saturat-

ing up-down counter, a saturating up-down counter

with four times the number of lines, and a perceptron

confidence estimator.

5.1 Miss Rate Reduction

The miss rate reductions for the self-optimizing CE are

compared with the best FSM for each program and the

quadruple sized saturating up-down counter in Figure 7.

“Missing” bars in the chart are zero and the baseline is

the saturating up-down counter. Crafty, perlbmk, twolf

and vortex receive the most benefit from the quadruple

sized saturating up-down counter CE, but for most of

these the self-optimizing CE is not far behind. In addi-

tion, there are cases in which the miss-rate reduction of

the quadruple size saturating up-down counter is zero

percent. Clearly, not all the miss predictions result from

destructive aliasing, which would be lessened by in-

creasing the table sizes.

It is also important to notice that in every program

except gzip, both the self-optimizing CE and the self-

optimizing CE with vcache outperform the best static

FSM CE. Obviously, the ability to adapt to changing

program behavior is beneficial. On average, the self-

optimizing CE reduces the miss rate by 9.76%, adding

the victim cache increases the average reduction to

11.86%. The minimum miss rate reduction is 3.97%

and the maximum is 31.7%. The victim cache en-

hancement increases the minimum miss rate reduction

to 6.53% and the maximum to 47.32%, beating the

quadruple sized CE in 9 out of 15 programs and tying

for one program.

The perceptron CE performs very well for most pro-

grams as is shown in Figure 7. The perceptron is able to

learn patterns and beat the self-optimizing CE in all but

2 cases, crafty and twolf, in which the perceptron actu-

ally causes an increase in the miss rate over the saturat-

ing up-down counter. This is something that we have

never observed with the self-optimizing CE. It is also

important to note that the perceptron CE will take more

cycles to make its prediction so the high miss rate re-

ductions may not translate into speedup.

-10%

0%

10%

20%

30%

40%

50%

60%

70%

a
m

m
p

a
rt

b
z
ip

2

c
ra

ft
y

e
q
u
a
k
e

g
a
p

g
c
c

g
z
ip

m
c
f

m
e
s
a

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

a
v
e
ra

g
e

programs

m
is

s
 r

a
te

 r
e
d

u
c
ti

o
n

saturating up-down counter X 4 genetic genetic w/ vcache best perceptron

Figure 7: Miss rate reduction of the self-optimizing CE.

5.2 Cycle Accurate Simulations

The self-optimizing confidence estimator is compared

against the baseline saturating up-down counter, a satu-

rating up-down counter with four times the number of

lines, and a perceptron confidence estimator. To ensure

a fair comparison and realistic sizing of the value pre-

dictor and CE, the stride 2-delta value predictor with a

table size of 2048 was chosen as the value predictor to

be evaluated with the CEs. This type and size of value

predictor was determined to have realistic access times

and hardware sizes by using a modified version of

CACTI [20]. Cycle access times for each of the CEs

were also computed using CACTI.

The perceptron confidence estimator keeps a global

history of the value prediction correctness and applies

the weights it stores to this history. A history size of 8

bits, as is used here, performs best with a weight size of

six and a threshold of 29, as determined by Jimenez and

Lin’s formula [12]. The weight size and history size are

used to determine the number of lines allocated to the

perceptron predictor in order for it to be sized compara-

tively. The perceptron tables take 2 cycles to access

plus an additional 3 cycles to compute the confidence.

The percent increase in the instructions per cycle

(IPC), i.e., the speedup, is shown in Figure 8. The

“missing” bars in mcf, mesa, parser and vpr are zero.

The genetic method is capable of a 4% maximum

speedup. While the perceptron CE shows a greater miss

rate reduction than the self-optimizing CE, that per-

formance does not translate into additional increase in

IPC. This is most likely due to the perceptron’s long

latency to make a decision.

The saturating up-down counter X 4 gives minimal

speed up, ammp shows a negligible slow down proba-

bly due to lines that were experiencing helpful aliasing.

Since all the CEs are sized comparably, simply increas-

ing the size of the CE is not a good solution, a better

use of hardware real estate is made by the other meth-

ods.

The fitness function used in our self-optimizing CE

rewards correct decisions without penalizing incorrect

ones. As a result FSMs may evolve to use a larger por-

tion of both correct and incorrect values counteracting

any speed up seen from an increase in correct values.

This may be why equake and art show slowdowns for

the genetic methods.

6. FUTURE WORK

Some FSMs used in processor design are larger than 2

bits, applying the self-optimizing FSM method to those

larger machines could result in more opportunity for

adaptation. Obtaining reasonable changes in FSM per-

formance might be more difficult for larger machines

because each additional bit greatly increases the num-

ber of FSMs that can exist. Keeping that fact in mind, a

small population size may not be able to evolve larger

machines efficiently.

It might be possible to improve how the victim cache

identifies which FSM to reintroduce into the population

by taking advantage of techniques being developed in

program phase research. This could be especially bene-

ficial if the next phase could be predicted and an appro-

priate machine could be brought in and used immedi-

ately.

Additional possibilities include applying the self-

optimizing FSM to other areas where FSMs are used,

such as branch prediction, cache management, power

control, etc. In areas like branch predictors where the

FSMs are already extremely accurate, adding the stor-

age necessary to implement a genetic method may not

be practical.

7. CONCLUSIONS

We have shown that it is feasible to implement a ge-

-2%

-1%

0%

1%

2%

3%

4%

5%

a
m

m
p

a
rt

b
z
ip

2

c
ra

ft
y

e
q
u
a
k
e

g
a
p

g
c
c

g
z
ip

m
c
f

m
e
s
a

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

a
v
e
ra

g
e

programs

s
p

e
e
d

 u
p

saturating up-down counter X 4 genetic genetic w/ vcache perceptron

Figure 8: Speedup comparison of different CE methods.

netically adaptive method for evolving CEs fully in

hardware. The need to keep the population size small to

maintain manageable hardware sizes does not render a

genetic method useless. Additionally, the hardware im-

plementation allows adaptation to program phases,

which leads to better miss rate reduction than a single

static machine. In fact, our adaptive self-optimizing CE

for value prediction can reduce the miss rate by an av-

erage of 11%, with a maximum reduction of 47% and is

capable of delivering a 4% speedup.

8. ACKNOWLEDGMENT

This work was supported in part by a gift from Intel

Corporation.

9. REFERENCES

[1] D. Albonesi. Dynamic IPC/Clock Rate Optimiza-

tion, Proc. of the 25th Int’l Symposium on Com-

puter Architecture, July 1998.

[2] R. Balasubramonian, D. Albonesi, A. Buyukto-

sunoglu, and S. Dwarkadas, Memory Hierarchy

Reconfiguration for Energy and Performance in

General Purpose Architectures. Proc. of the 33rd

Int’l Symposium on Microarchitecture, Dec. 2000.

[3] M. Black and M. Franklin. Perceptron-based

Confidence Estimation for Value Prediction. Proc.

of the Int’l Conf. on Intelligent Sensing and

Information Processing, 2004.

[4] M. Burtscher and B.G. Zorn. Load Value Predic-

tion Using Prediction Outcome Histories. Univ. of

Colorado at Boulder, Computer Science, Techni-

cal Report CU-CS-873-98. Nov. 1998.

[5] M. Burtscher and B.G. Zorn. Prediction Outcome

History Based Confidence Estimation for Load

Value Prediction. Journal of Instruction-Level

Parallelism, Vol. 1. May 1999.

[6] B. Calder, G. Reinman, D. M. Tullsen. Selective

Value Prediction, Proc. of the 26th Annual Int’l

Symposium on Computer Architecture, pp. 64-74,

May 01-04, 1999, Atlanta, Georgia.

[7] A.S. Dhodapkar and J.E. Smith. Managing Multi-

Configuration Hardware via Dynamic Working

Set Analysis. ACM SIGARCH Computer Architec-

ture News, Volume 30 Issue 2, May 2002.

[8] J. Emer and N. Gloy. A Language for Describing

Predictors and its Application to Automatic Syn-

thesis. Proc. of the 24th Annual Int’l Symposium

on Computer Architecture, June 1997.

[9] L J. Fogel, A.J. Owens and M. J. Walsh. Artificial

Intelligence through Simulated Evolution. Wiley,

1966.

[10] D. Grunwald, A. Klauser, S. Manne, and A.

Pleszkun. Confidence Estimation for Speculation

Control. 25
th

 Int’l Symposium on Computer Archi-

tecture. June 1998.

[11] J.H. Holland. Adaption in Natural and Artificial

Systems, University of Michigan Press, 1975.

[12] D.A. Jimenez and C. Lin. Dynamic Branch Pre-

diction with Perceptrons. Seventh Int’l Symposium

on High Performance Computer Architecture

(HPCA-7), Jan. 2001.

[13] E. Larson, S. Chatterjee, and T. Austin. MASE: A

Novel Infrastructure for Detailed Microarchitec-

tural Modeling. IEEE Int’l Symposium on Per-

formance Analysis of Systems and Software, Nov.

2001.

[14] D. Lau, M. Luttrell, I. Pines, and W.H. Mangione-

Smith. A Framework for Implementing Custom-

ized VLIW Architectures on Programmable

Hardware. Proc. of the 1999 Workshop on Recon-

figurable Computing, WoRC'99, Oct. 1999.

[15] M.H. Lipasti, C.B. Wilkerson, and J.P. Shen.

Value Locality and Load Value Prediction. Proc.

Seventh Int’l Conf. Architectural Support for Pro-

gramming Languages and Operating Systems,

Oct. 1996.

[16] A. Mendelson and F. Gabbay. Speculative Execu-

tion Based on Value Prediction. Technical Report,

Technion 1997.

[17] T. Sherwood and B. Calder. Automated Design of

Finite State Machine Predictors. UCSD Technical

Report, CS2000-0656, June 2000.

[18] T. Sherwood and B. Calder. Automated Design of

Finite State Machine Predictors for Customized

Processors. 28
th

 Annual Intl. Symposium on Com-

puter Architecture, June 2001.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B.

Calder. Automatically Characterizing Large Scale

Program Behavior. Tenth Int’l Conf. on Architec-

tural Support for Programming Languages and

Operating Systems, Oct. 2002.

http://www.cs.ucsd.edu/users/calder/simpoint/.

[20] P. Shivakumar and N.P. Jouppi. Cacti 3.0: An In-

tegrated Cache Timing, Power and Area model.

Technical Report, 2001.

[21] A. Thomas and D. Kaeli. Value Prediction with

Perceptrons. VPW2: Second Value-Prediction and

Value-Based Optimization Workshop, Affiliated

with ASPLOS XI, Oct. 2004.

[22] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau

and X. Ji. Adapting Cache Line Size to Applica-

tion Behavior. Int’l Conf. on Supercomputing,

July 1999.

[23] D. Whitley. A Genetic Algorithm Tutorial. Colo-

rado State Univ., Dept. of Computer Science,

Technical Report CS-93-103. Nov. 10, 1993.

