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Abstract 

This paper presents an objective evaluation of 
previously unexplored biometric techniques utilizing 
patterns identifiable in complex oculomotor behavior to 
distinguish individuals. Considered features include: 
saccadic dysmetria, compound saccades, dynamic 
overshoot, and express saccades. Score-level information 
fusion is applied and evaluated by: likelihood ratio, 
support vector machine, and random forest. The results 
suggest that it is possible to obtain equal error rates of 
25% and rank-1 identification rates of 47% using 
score-level fusion by likelihood ratio. 

1. Introduction
Identity is often defined as “the state of having unique

identifying characteristics held by no other person or 
thing” [1]. Biometrics, then, is the rigorous study and 
application of those aspects of identity that may be 
measured and quantified. With initial investigations 
tracing as far back as the mid-19th century [2], the field of 
biometrics has grown to encompass a myriad of physical 
and behavioral traits [3], from fingerprints and facial 
structure,  to speech and handwriting. 

Over the past decade, study of the human visual system 
has shown that eye movements may be utilized to 
uniquely identify individuals in a biometric context [4-7]. 
Consisting of both physical and neurological components 
[8], and due to the minute scale, the accurate replication of 
eye movements outside of a living subject is practically 
infeasible, providing inherent levels of counterfeit- 
resistance and liveness detection that many traditional 
biometrics cannot [9]. 

Further, eye movements may be captured and processed 
in real-time using an unmodified camera [10] through the 
use of modern video-oculography techniques. Not only 
does this make the collection of eye movement data cheap 
and efficient, but the ability to capture iris patterns [11] 
and eye movements [5] with a single sensor allows for 
easy integration into multi-modal biometric systems. 

Though still in its infancy, the field of eye movement 
biometrics is growing rapidly. In the span of a short few 
years, it has been shown that eye movement biometrics: 
can be easily incorporated into multi-modal systems to 
increase the recognition accuracy [12]; provide an inherent 
level of liveness detection and counterfeit-resistance [13]; 
are largely stimulus independent [14], and therefore do not 
require complex data collection procedures; and can be 
readily combined utilizing simple information fusion 
techniques [6]. 

1.1. Previous Research 
“The human visual system exhibits several types of 

basic oculomotor behavior in response to various stimuli. 
In the field of human-computer interaction, fixations and 
saccades are of primary interest. Fixations occur when the 
eye globe is held in a relatively stable position, providing 
heightened visual acuity. Saccades occur when the eye 
globe rotates quickly between points of fixation. The term 
scanpath refers to the spatial path formed by a sequence of 
fixations and saccades.” [14] 

Initial investigations of eye movements as a behavioral 
biometric began in 2004, when Kasprowski and Ober [5] 
examined the first 15 cepstral coefficients of the positional 
signal (a technique common in speech recognition) using 
naïve Bayes classifiers, C4.5 decision trees, SVM 
polynomials, and KNN (k = 3 and k = 7). 

Silver and Biggs [7] followed in 2006, applying a 
probabilistic neural network to combine keystroke 
biometrics with higher-level eye movement features, 
including: fixation count, the 8 most significant fixations, 
mean fixation duration, mean saccade velocity, mean 
saccade duration, and mean vertical position. 

More recently, in 2011, Holland and Komogortsev [4] 
examined a wider range of eye movement features, 
including: fixation count, average fixation duration, 
average vectorial saccade amplitude, average horizontal 
saccade amplitude, average vertical saccade amplitude, 
average vectorial saccade velocity, average vectorial 
saccade peak velocity, velocity waveform indicator, 
scanpath length, scanpath convex hull area, mean-shift 
regions of interest, inflection count, amplitude-duration 
coefficient, and amplitude-peak velocity coefficient. 
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Komogortsev et al. [6] considered the fusion of 
complex eye movement patterns (CEM) and oculomotor 
plant characteristics (OPC) to enhance biometric accuracy. 
The OPC techniques makes use of the saccadic eye 
movement signal to estimate the physical properties of the 
eye according to a mathematical model of human eye 
movements [15]. The combination of CEM and OPC 
biometrics provided a roughly 30% increase in 
authentication accuracy compared to the accuracy of 
individual techniques. 

1.2. Motivation & Hypothesis 
While it has been shown that eye movements are 

applicable as a behavioral biometric, the error rates 
obtained by existing techniques have been less than ideal, 
and fail to measure up to well performing biometric 
techniques. In a multi-modal biometric system, the poor 
error rates of existing eye movement biometrics might 
leave the system open to zero-effort attacks, assuming 
successful spoofing of the other employed modalities. As 
such, it is our goal to investigate techniques that improve 
the overall accuracy of eye movement biometrics, to 
improve the reliability and counterfeit-resistance of these 
techniques. Further, as a relatively unexplored branch of 
the biometric field, there are yet many untested aspects of 
the human visual system that can be employed for the 
biometric purposes. 

We hypothesize that complex oculomotor behavior 
(subconscious corrective behaviors exhibited by the 
human visual system) can be utilized to uniquely identify 
a given individual. In examining this hypothesis we 
evaluate several previously unexplored forms of complex 
oculomotor behavior, including: saccadic dysmetria, 
compound saccades, dynamic overshoot, and express 
saccades. We proceed to investigate common information 
fusion techniques as applied to these features, including 
score-level fusion by: likelihood ratio, linear support 
vector machine, and random forest. 

2. Complex Oculomotor Behavior 
We define complex oculomotor behavior as a subtype 

of basic oculomotor behavior (fixations and saccades). 
Complex oculomotor behavior involves variant forms of 
basic oculomotor behavior, often indicating novel or 
abnormal mechanics. In the current paper, we consider the 
various forms of saccadic dysmetria, compound saccades, 
dynamic overshoot, and express saccades. 

Saccadic dysmetria is a common occurrence, in which a 
saccade undershoots or overshoots the target stimulus [8]. 
Often, if the dysmetria is too large, these saccades are 
followed by one or more small corrective saccades in the 
direction of the target. We identify the type of dysmetria 
based on these characteristics: undershoot, overshoot, 
simple (uncorrected), corrected (1 corrective saccade), and 
multi-corrected (2 or more corrective saccades). 

 
Figure 1: Complex Oculomotor Behavior (x-axis = time in milliseconds; y-axis = position in degrees). 

Arrows represent distance thresholds to accommodate detection of individual COB. 
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Undershoot and overshoot are identified simply by the 
relation of the fixation centroid to the target stimulus, 
where a fixation below the target is identified as 
undershoot and a fixation above the target is identified as 
overshoot. These are further classified as corrected or 
multi-corrected based on the number of fixations that 
occur during the presentation of the target stimulus. 

Compound saccades (also referred to as macrosaccadic 
oscillations [8]) occur as a series of dysmetric saccades 
around a target. As such, we may identify compound 
saccades as a series of two or more corrective saccades 
occurring during a single stimulus, in which the direction 
of movement changes (undershoot-overshoot-undershoot, 
overshoot-undershoot-overshoot, etc.). 

Dynamic overshoot occurs as a small (0.25° to 0.5° 
amplitude), oppositely directed, post-saccadic corrective 
movement [8]. In the current work, the data points that 
describe these post-saccadic movements are typically 
merged with the preceding saccade. As such, we identify 
dynamic overshoot by projecting the absolute distance 
travelled during the saccade onto the centroid of the 
previous fixation; if the projected centroid exceeds the 
post-saccade fixation centroid by more than 0.5° 
(corresponding to a minimum overshoot of 0.25°), we may 
assume that dynamic overshoot occurred. 

Express saccades have an abnormally quick reaction 
time between the appearance of a stimulus and the onset of 
the saccade [8]. Boch and Fischer [16] found that regular 
saccades have a typical latency of 150 milliseconds; as 
such, we identify saccades with latency less than 150 
milliseconds as express saccades. 

3. Methodology 
Existing eye movement datasets, collected by 

Komogortsev et al. [14, 17], were utilized for comparative 
evaluation, with collection methodology presented in the 
following subsections. 

3.1. Apparatus & Software 
Eye movements were recorded using an EyeLink 1000 

eye tracking system [18], with a sampling rate of 1000 Hz, 
spatial accuracy of 0.5°, average calibration accuracy of 
0.7° (SD = 0.5°), and average data validity of 66% (SD = 
36%). A chin rest was employed to improve stability, and 
stimuli were presented on a flat screen monitor positioned 
at a distance of 685 millimeters from each subject, with 
screen dimensions of 640×400 millimeters, and screen 
resolution of 2560×1600 pixels. SVMlight [19], an open 
source implementation of Vapnik’s Support Vector 
Machine [20], was utilized for SVM-based fusion, all 
other algorithms and analysis were implemented and 
performed in MATLAB, and run using a 3.1 GHz 
quad-core CPU with 16 GB memory (DDR3 RAM).  

3.2. Participants 
Eye movement recordings were collected for a total of 

32 subjects (26 male / 6 female), ages 18 – 40 with an 
average age of 23 (SD = 5.4). For each stimulus, 29 of the 
subjects performed 4 recordings each, and 3 of the 
subjects performed 2 recordings each, generating a total of 
122 unique eye movement recordings per stimulus. 

3.3. Procedure 
Each subject generated four eye movement recordings 

for each of two distinct stimuli. The first two recordings 
for each subject were conducted during the same session 
with a 20-minute break between recordings; the second 
two recordings were performed a week later, again with a 
20-minute break between recordings. 

The stimuli employed a technique commonly used to 
evoke a fixed-amplitude saccade at regular intervals [8]. A 
single white dot jumps back and forth on a plain black 
background, eliciting a saccade for each jump. One 
stimulus was designed to evoke 30° horizontal saccades, 
and the other to evoke 20° vertical saccades. These 
distances were chosen due to screen constraints, and the 
complications associated with separating low-amplitude 
saccades (less than 1°). Subjects were instructed to follow 
the white dot with their eyes, with 100 saccades elicited 
per recording. 

Eye movement recordings are parsed to remove invalid 
data points. Recordings are stored in an eye movement 
database, with each record linked to the stimulus, subject, 
and session that generated the recording. The recordings 
are then processed and classified into fixations and 
saccades using an eye movement classification algorithm 
[21], followed by micro-saccade and micro-fixation filters 
respectively. The initial classification algorithm classifies 
individual data points with a velocity greater than 20°/sec 
as belonging to a saccade, with all remaining points 
belonging to fixations. The micro-saccade filter 
re-classifies saccades smaller than 0.5° amplitude as 
fixations, and the micro-fixation filter re-classifies 
fixations of less than 100 milliseconds as saccades. 
Fixation and saccade groups are then merged, identifying 
fixation and saccade-specific features. 

Complex oculomotor behavior is identified from the 
fixations and saccades of each recording based on the 
criteria presented in Section 2, with algorithm thresholds 
defined according to the relevant literature. Eye movement 
recordings are partitioned into training and testing sets, 
and biometric match scores are generated by comparing 
the amount of each complex oculomotor behavior present 
in pairs of recordings using a Gaussian CDF normalized to 
a scale of the unit interval, where x and µ are the metric 
values being compared and σ is the metric-specific 
standard deviation within the training set: 

p = 1 − !
1

σ√2π
! e
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Common information fusion techniques including 
likelihood ratio, linear support vector machine, and 
random forest are applied to the match scores generated 
across the different metrics to generate a single match 
score for each pair of recordings. Error rates are then 
calculated on the testing set for individual metrics and 
fusion techniques under biometric verification and 
identification scenarios. 

Under the verification scenario, each record in the 
testing set is compared to every other record in the testing 
set exactly once, and error rates are calculated from these 
comparisons. Under the identification scenario, every 
record in the testing set is compared to every other record 
in the testing set, and identification rates are calculated 
from the largest match score(s) from each of these 
comparison sets. 

4. Results 
Eye movement recordings were partitioned into training 

and testing sets, by subject, according to a uniformly 
random distribution, with 50% of recordings placed in the 
training set and 50% of recordings placed in the testing 
set. The results presented in the following subsections are 
averaged over 20 random partitions. 

4.1. Match Score Distribution 
The distribution of genuine and imposter match scores 

were smoothed with a kernel smoothing density estimate 
and average across all random partitions. Under ideal 
circumstances, genuine match scores would have a 
distinctly different distribution than the imposter match 
scores of a given algorithm; however, for all COB features 
there was very little separability. To conserve space, and 
due to the high similarity of match score distributions, 
match score distributions are given for a single 
representative COB feature in Figure 2. 

4.2. Randomness & Entropy 
To assess the stability of biometric matching, 

Kolmogorov-Smirnov tests for uniformity and normality 
and Wald-Wolfowitz runs tests for randomness were 
applied to the match scores generated for each metric. As 
well, Shannon entropy was calculated as a measure of 
information density. 

For reference, randomness and entropy values were 
averaged over 1000 iterations for 1000 uniformly and 
normally distributed random numbers. For uniform 
random numbers: 
• Kolmogorov-Smirnov test for uniformity: p = 0.5021 
• Kolmogorov-Smirnov test for normality: p < 0.0001 
• Wald-Wolfowitz runs test for randomness: p = 0.5247 
• Shannon entropy = 7.8019 

For normal random numbers: 
• Kolmogorov-Smirnov test for uniformity: p < 0.0001 
• Kolmogorov-Smirnov test for normality: p = 0.4996 
• Wald-Wolfowitz runs test for randomness: p = 0.5079 
• Shannon entropy = 3.9496 
In all cases, biometric match scores were distinctly 

non-uniform and non-normal, with p < 0.0001. Table 1 
presents Wald-Wolfowitz runs probability and Shannon 
entropy for each metric. 

Metrics 
Runs Entropy 

H V H V 

Simple Undershoot 0.00 0.00 4.94 5.15 
Simple Overshoot 0.00 0.00 5.00 4.72 
Corrected Undershoot 0.00 0.00 5.27 5.09 
Corrected Overshoot 0.00 0.00 4.69 4.41 
Multi-Corrected Undershoot 0.00 0.36 3.69 3.60 
Multi-Corrected Overshoot 0.00 0.07 2.02 2.75 
Compound Saccade 0.00 0.00 4.40 4.35 
Dynamic Overshoot 0.00 0.03 6.00 6.33 
Express Saccade 0.00 0.00 5.39 5.40 
Information Fusion  
Likelihood Ratio 0.00 0.48 4.79 4.78 
Support Vector Machine 0.00 0.04 0.81 0.82 
Random Forest 0.03 0.29 5.00 4.97 

Table 1: Randomness & Entropy. 
 

 
Figure 2: Representative Match Score Distribution. 
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Figure 3: Receiver Operating Characteristic. 



6 

 

 
Figure 4: Cumulative Match Characteristic. 
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4.3. Verification Scenario 
False acceptance rate (FAR) is defined as the rate at 

which imposter match scores exceed the acceptance 
threshold, false rejection rate (FRR) is defined as the rate 
at which genuine match scores fall below the acceptance 
threshold, and true positive rate (TPR) is defined as the 
rate at which genuine match scores exceed the acceptance 
threshold. The equal error rate (EER), shown in Table 3, is 
the rate at which false acceptance rate and false rejection 
rate are equal, and the receiver operating characteristic 
(ROC), shown in Figure 3, plots true positive rate against 
false acceptance rate. 
Metrics Horizontal Vertical 
Simple Undershoot 43% 39% 
Simple Overshoot 39% 45% 
Corrected Undershoot 40% 35% 
Corrected Overshoot 42% 46% 
Multi-Corrected Undershoot 40% 43% 
Multi-Corrected Overshoot 49% 43% 
Compound Saccade 39% 38% 
Dynamic Overshoot 38% 38% 
Express Saccade 39% 35% 
Information Fusion  
Likelihood Ratio 29% 25% 
Support Vector Machine 45% 45% 
Random Forest 35% 30% 

Table 3: Equal Error Rates. 

4.4. Identification Scenario 
Identification rate (IR) is defined as the rate at which 

enrolled subjects are successfully identified as the correct 
individual, where rank-k identification rate is the rate at 
which the correct individual is found within the top k 
matches. The rank-1 identification rate, shown in Table 4, 
is the rate at which the correct individual has the highest 
match score, and the cumulative match characteristic 
(CMC), shown in Figure 4, plots identification rate by 
rank, for all ranks. 
Metrics Horizontal Vertical 
Simple Undershoot 10% 6% 
Simple Overshoot 11% 4% 
Corrected Undershoot 8% 13% 
Corrected Overshoot 13% 11% 
Multi-Corrected Undershoot 10% 4% 
Multi-Corrected Overshoot 9% 6% 
Compound Saccade 9% 10% 
Dynamic Overshoot 10% 9% 
Express Saccade 6% 13% 
Information Fusion  
Likelihood Ratio 42% 47% 
Support Vector Machine 20% 13% 
Random Forest 32% 30% 

Table 4: Rank-1 Identification Rates. 

5. Discussion 
It should be noted in advance that the relatively small 

subject pool employed in the current paper makes it 
difficult to conduct a detailed analysis of the considered 
methods; however, the database size is similar to those 
employed in existing eye movement biometric research, 
and we feel that it is sufficient to draw general 
conclusions. 

From the Kolmogorov-Smirnov tests for normality and 
uniformity, it is apparent that the match scores generated 
for each metric are effectively non-random. Despite this, 
however, the Wald-Wolfowitz runs test indicated a degree 
of randomness in multi-corrected vertical dysmetria, 
which appears to have propagated to both likelihood ratio 
and random forest fusion. In this case, it is likely that there 
was a low amount of multi-corrected vertical dysmetria 
across all recordings, due to the reduced saccadic 
amplitude enforced by screen constraints. Further, low 
Shannon entropy in multi-corrected dysmetria and support 
vector machine fusion indicates a large degree of match 
score clustering in these metrics. 

The match score distributions offer several insights of 
particular interest. It is immediately obvious from the 
match score distributions that there is very little separation 
between genuine and imposter match score distributions 
for any of the considered metrics, with a tendency for the 
density of genuine scores to peak at a lower match score 
than imposter scores. 

From a biometric standpoint, this is less than ideal, as it 
indicates that, on their own, none of these metrics are 
particularly useful as biometric indicators. From a 
physiological standpoint, however, it is interesting to note 
that there is a higher degree of similarity in the amount of 
complex oculomotor behavior performed by different 
subjects than in repeated recordings from a single subject. 
This suggests that the degree of complex oculomotor 
behavior exhibited by normal subjects has a tendency to 
either increase or decrease naturally in a manner that is 
stable across the recorded population. 

Looking at error rates under both verification and 
identification scenarios largely confirms the conclusions 
already drawn from match score distributions; that is, on 
their own, the metrics considered for complex oculomotor 
behavior provide little viability as biometric indicators. 
Yet, the information fusion of COB features provides 
accuracy on par with existing eye movement biometrics 
[4, 5, 7, 15]. While these techniques are not yet accurate 
enough to be useful in a standalone system, eye movement 
biometrics have already been employed to improve the 
accuracy and liveness-detection of multi-modal systems 
[12], providing an error reduction of 19% over a purely 
iris-based system. 

Strangely, and perhaps counter-intuitively, information 
fusion by likelihood ratio outperforms all other techniques 
by a substantial margin. Likelihood ratio fusion constructs 
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Gaussian mixture models of genuine and imposter match 
score distributions in n-dimensional feature space within 
the training set, and produces a single match score for 
each feature vector by calculating the ratio of the genuine 
PDF over the imposter PDF. At first glance, we might 
attribute this to separability in n-dimensional space, but 
this is unlikely given the poor performance of the linear 
support vector machine. 

It is our opinion that this accuracy is achieved primarily 
due to the multivariate nature of Gaussian mixture models. 
This would suggest that while there are not obvious 
differences in the amount of complex oculomotor behavior 
produced by individual subjects, there are distinctive 
patterns in the way that these behaviors change in relation 
to each other. 

6. Conclusion 
This paper has presented an objective evaluation of 

previously unexplored biometric techniques utilizing 
patterns identifiable in complex oculomotor behavior to 
distinguish individuals. Saccadic dysmetria, compound 
saccades, dynamic overshoot, and express saccades were 
evaluated for their efficacy as biometric indicators, and 
score-level information fusion was applied and evaluated 
by: likelihood ratio, linear support vector machine, and 
random forest. 

While the error rates achieved by the considered 
techniques cannot compete with existing biometric 
standards, the results indicate that it is possible to identify 
subjects in a biometric context through the analysis of 
complex oculomotor behavior. Through score-level fusion 
by likelihood ratio, the application of complex oculomotor 
behavior achieved an equal error rate of 25% and rank-1 
identification rate of 47%. As such, it is likely that the 
combination of COB with existing eye movement 
biometrics, such as CEM and OPC, would provide even 
greater performance. 

This work is supported in part by Texas State 
University, NSF CAREER Grant #CNS-1250718 and NSF 
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