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Abstract 

This paper presents an objective evaluation of 
previously unexplored biometric techniques utilizing 
patterns identifiable in human eye movements to 
distinguish individuals. The distribution of primitive eye 
movement features are compared between eye movement 
recordings using algorithms based on the following 
statistical tests: the Ansari-Bradley test, the Mann-Whitney 
U-test, the two-sample Kolmogorov-Smirnov test, the 
two-sample t-test, and the two-sample Cramér-von Mises 
test. Score-level information fusion is applied and 
evaluated by: weighted mean, support vector machine, 
random forest, and likelihood ratio. The accuracy of each 
comparison/fusion algorithm is evaluated, with results 
suggesting that, on high resolution eye tracking equipment, 
it is possible to obtain equal error rates of 16.5% and 
rank-1 identification rates of 82.6% using the two-sample 
Cramér-von Mises test and score-level information fusion 
by random forest, the highest accuracy results on the 
considered dataset. 

1. Introduction
Biometrics is, in essence, a science of people. Yet,

instead of studying what brings us together, biometrics is 
concerned with what sets us apart [1]. The systematic 
collection of physical and behavioral characteristics for 
the purposes of identification dates as far back as 1858, 
with the collection of handprints to identify workers [2], 
and has since expanded to include such features as: 
fingerprints [3], palm prints, action, hand geometry, facial 
structure [4], signature, speech, gait, and iris patterns [5]. 

Despite this long history, automated biometric systems 
have only become feasible in the recent past [6], and are 
limited by several factors: accuracy, counterfeit-resistance, 
speed, and cost. The human visual system offers a number 
of unique properties that make it an interesting candidate 
in this respect. Eye movements are highly dependent upon 
both physical and neurological properties [7], making 
them highly counterfeit-resistant, and may be recorded and 
processed by an unmodified camera in real-time [8], 
making their application both cheap and efficient. 

1.1. Human Visual System 
The human visual system is composed of two major 

functional units, the oculomotor plant and brainstem 
control [7]. The oculomotor plant consists primarily of the 
eye globe, surrounding tissue, and six extraocular muscles: 
the lateral and medial recti, responsible for horizontal 
rotation; the superior and inferior recti, responsible for 
vertical rotation; and the superior and inferior obliques, 
responsible for torsional rotation. The brainstem control 
innervates extraocular muscles with burst/omnipause 
neurons, causing muscle contractions and relaxations. 

The neuronal control signal is ultimately responsible for 
producing the many and varied human eye movements [9]. 
Among the various eye movement types, fixations and 
saccades are of particular interest. Fixations occur when 
the eye globe is held in a relatively stable position, such 
that the fovea remains centered on an object of interest, 
providing heightened visual acuity; saccades occur when 
the eye globe rotates quickly between points of fixation, 
with very little visual acuity maintained during rotation. 
Over time, fixations and saccade form a spatial path over a 
region, known as the scanpath. 

1.2. Previous Research 
In 2004, Kasprowski and Ober [10] lead the 

investigation of eye movements as biometric indicators. 
Applying techniques commonly used in voice recognition, 
Kasprowski and Ober examined the first 15 cepstral 
coefficients of the positional eye movement signal using 
naïve Bayes classifiers, C4.5 decision trees, SVM 
polynomials, and KNN (k = 3 and k = 7). Average false 
acceptance rate and false rejection rate were reported for 
each technique, but the lack of equal error rates and 
identification rates made it difficult to draw conclusions. 
The best results obtained an average 1% false acceptance 
rate and 23% false rejection rate. 

In 2006, Silver and Biggs [11] investigated a set of 
higher-level eye movement features in conjunction with 
keystroke biometrics. Match scores were derived from 
fixation count, the 8 most significant fixations, average 
fixation duration, average saccade velocity, average 
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saccade duration, and average vertical position, combined 
using a probabilistic neural network. The best results 
obtained an average 66% true positive rate and 98% true 
negative rate, equal error rates and identification rates 
were not provided. 

In 2011, Holland and Komogortsev [12] examined a 
much larger set of high-level eye movement features, 
including: fixation count, average fixation duration, 
average vectorial saccade amplitude, average horizontal 
saccade amplitude, average vertical saccade amplitude, 
average vectorial saccade velocity, average vectorial 
saccade peak velocity, velocity waveform indicator, 
scanpath length, scanpath convex hull area, mean-shift 
regions of interest, inflection count, amplitude-duration 
coefficient, and amplitude-peak velocity coefficient. 
Features were compared using a Gaussian kernel and 
combined with a weighted mean. The best results obtained 
a 27% equal error rate, identification rates were not 
provided. 

In 2012, Rigas et al. [13] evaluated the use of 
graph-based matching on the positional signal of an eye 
movement recording, comparing minimum spanning trees 
using the multivariate Wald-Wolfowitz runs test. The best 
results obtained 70% rank-1 identification rate and 30% 
equal error rate. 

1.3. Motivation & Hypothesis 
Biometric recognition via eye movements is still in its 

infancy, and has not yet reached the level of accuracy 
required to compete with accepted biometric standards. 
While this may be the case, the body of evidence suggests 
that eye movements do convey biometric information that 
may be used to uniquely identify an individual. The 
challenge, then, is to identify those traits that provide the 
highest level of biometric accuracy, and refine the 
techniques used to process them. 

The current work expands on the complex eye 
movement (CEM) framework proposed by Holland and 
Komogortsev [12], which made use of averages and 
aggregate features, and explored only basic fusion 
techniques. We hypothesize that the distribution of 
primitive features inherent in basic eye movements can be 
utilized to uniquely identify a given individual. In 
examining this hypothesis we evaluate several comparison 
algorithms based on statistical tests for comparing 
distributions, including: the two-sample t-test, the 
Ansari-Bradley test, the Mann-Whitney U-test, the 
two-sample Kolmogorov-Smirnov test, and the 
two-sample Cramér-von Mises test. We proceed to 
investigate information fusion techniques including 
score-level fusion by: weighted mean, support vector 
machine, random forest, and likelihood ratio. 

 
Figure 1: Biometric framework diagram. 

2. CEM Biometric Framework 
The biometric techniques described in this paper, shown 

in Figure 1, extend from those described by Holland and 
Komogortsev [14]. The Sensor module processes the eye 
movement signal, the Feature Extraction module 
identifies, filters, and merges individual gaze points into 
fixations and saccades, the Quality Assessment module 
assesses the biometric viability of each recording, the 
Matching module generates training/testing sets and 
compares individual recordings, and the Decision module 
calculates error rates under biometric verification and 
identification scenarios [1]. 

2.1. Sensor Module 
The Sensor module parses individual eye movement 

recordings, combining available left/right eye coordinates 
and removing invalid data points from the eye movement 
signal. Eye movement recordings are stored in memory as 
an eye movement database, with the eye movement signal 
linked to the experiment, trial, and subject that generated 
the recording. 

2.2. Feature Extraction Module 
The Feature Extraction module generates feature 

templates for each record in the eye movement database. 
Eye movement features are primarily composed of 
fixations and saccades. The eye movement signal is parsed 
to identify fixations and saccades using an eye movement 
classification algorithm [15], followed by micro-saccade 
and micro-fixation filters. 
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Fixation and saccade groups are merged, identifying 
fixation-specific and saccade-specific features. Fixation 
features include: start time, duration, horizontal centroid, 
and vertical centroid. Saccade features include: start time, 
duration, horizontal amplitude, vertical amplitude, average 
horizontal velocity, average vertical velocity, horizontal 
peak velocity, and vertical peak velocity. 

2.3. Quality Assessment Module 
The Quality Assessment module identifies the biometric 

viability of the generated feature templates. In this context, 
we utilize the fixation quantitative score, ideal fixation 
quantitative score, fixation qualitative score, and saccade 
quantitative score [16] as tentative measure of the quality 
of features obtained from the recording. It should be 
noted, however, that these measures are currently untested 
in this context, and their evaluation is beyond the scope of 
the current paper. 

2.4. Matching Module 
The Matching module compares individual records, 

generating match scores for various metrics using 
comparison algorithms that operate on feature templates. 
In this case, comparison algorithms operate to compare the 
distribution of fixation- and saccade-based features 
throughout each record. Match scores from each 
comparison algorithm are then combined into a single 
match score with an information fusion algorithm [17]. 

The Matching module partitions records, splitting the 
database into training and testing sets by subject, 
according to a uniformly random distribution. Comparison 
and information fusion thresholds and parameters are 
generated on the training set, while error rates are 
calculated on the testing set. 

2.5. Decision Module 
The Decision module calculates error rates for 

comparison and information fusion under biometric 
verification and identification scenarios. Under the 
verification scenario, each record in the testing set is 
compared to every other record in the testing set exactly 
once, and false acceptance rate and true positive rate are 
calculated at varied acceptance thresholds. Under the 
identification scenario, every record in the testing set is 
compared to every other record in the testing set, and 
identification rates are calculated from the largest match 
score(s) from each of these comparison sets. 

 
Figure 2: Comparative distribution of fixation duration across 

multiple recording sessions. 

3. CEM Biometrics 
In this paper, we are primarily interested in the 

biometric viability of primitive eye movement features: 

M1. Start time (fixation) 
M2. Duration (fixation) 
M3. Horizontal centroid (fixation) 
M4. Vertical centroid (fixation) 
M5. Start time (saccade) 
M6. Duration (saccade) 
M7. Horizontal amplitude (saccade) 
M8. Vertical amplitude (saccade) 
M9. Horizontal mean velocity (saccade) 
M10. Vertical mean velocity (saccade) 
M11. Horizontal peak velocity (saccade) 
M12. Vertical peak velocity (saccade) 

These features accumulate over the course of a 
recording, as the scanpath is generated. By analyzing the 
distribution of these features throughout each recording, as 
shown in Figure 2, we are effectively examining the 
behavior of the scanpath as a whole. At the same time, by 
considering the fixations and saccades that compose the 
scanpath, we remove much of the unavoidable signal noise 
from the raw eye movement signal, and reduce the dataset 
to a computationally manageable size. 



 
  

4 

In order to compare the distribution of primitive eye 
movement features, we employ several statistical tests, 
detailed in Section 3.1, which operate on different aspects 
of the distribution. These statistical tests are applied as a 
comparison algorithm to the distributions of each feature 
separately, generating 12 match scores altogether. The 
information fusion algorithms, described in Section 3.2, 
are applied to the match scores generated by each 
comparison algorithm to produce a single match score 
used for biometric authentication. 

3.1. Comparison Algorithms 
(C1) Two-Sample t-Test 
The two-sample t-test measures the probability that 
observations from two recordings are taken from normal 
distributions with equal mean and variance. 

(C2) Ansari-Bradley Test 
The Ansari-Bradley test measures the probability that 
observations from two recordings with similar median and 
shape are taken from distributions with equivalent 
dispersion. 

(C3) Mann-Whitney U-Test 
The Mann-Whitney U-test measures the probability that 
observations from two recordings are taken from 
continuous distributions with equal median. 

(C4) Two-Sample Kolmogorov-Smirnov Test 
The two-sample Kolmogorov-Smirnov test measures the 
probability that observations from two recordings are 
taken from the same continuous distribution, measuring 
the distance between empirical distributions. 

(C5) Two-Sample Cramér-von Mises Test 
The two-sample Cramér-von Mises test measures the 
probability that observations from two recordings are 
taken from the same continuous distribution, measuring 
the goodness-of-fit between empirical distributions. 

3.2. Information Fusion Algorithms 
(F1) Weighted Mean 
The weighted mean algorithm combines the match scores 
produced for individual metrics into a single match score 
on the interval [0, 1]. The genuine and imposter match 
score vectors of the training set are used to select 
per-metric weighting which minimizes equal error rate via 
iterative optimization, and the weighted mean produces a 
single match score as a linear combination of the match 
scores for each metric. 

(F2) Support Vector Machine 
The support vector machine algorithm classifies the match 
scores produced for individual metrics into a single match 

score in the set {0, 1}. The support vector machine builds 
a 7th order polynomial on the genuine and imposter match 
score vectors of the training set, and match scores are 
classified by dividing them into categories separated by 
the polynomial on an n-dimensional hyperplane [18]. 

 (F3) Random Forest 
The random forest algorithm combines the match scores 
produced for individual metrics into a single match score 
on the interval [0, 1]. An ensemble of 50 regression trees 
is built on the genuine and imposter match score vectors of 
the training set, and the random forest calculates the 
combined match score based on a set of conditional rules 
and probabilities [19]. 

(F4) Likelihood Ratio 
The likelihood ratio algorithm combines the match scores 
produced for individual metrics into a single match score 
on the interval [0, ∞). The genuine and imposter match 
score vectors of the training set are modeled using 
Gaussian mixture models, and the likelihood ratio is 
calculated as the ratio of the genuine probability density 
over the imposter probability density [20]. 

4. Methodology 
Previous research has shown that minor variations in 

eye tracking specifications, such as spatial accuracy and 
temporal resolution, can have a substantial impact on the 
biometric viability of eye movements [14]. Therefore, to 
properly evaluate the proposed techniques, it was deemed 
necessary to examine biometric accuracy on both high- 
and low-resolution eye tracking systems. Existing eye 
movement datasets, collected by Komogortsev et al. [14, 
21], were utilized for comparative evaluation, with 
collection methodology in the following subsections. The 
high-resolution dataset is freely available via [21]; the 
low-resolution dataset is not currently available to the 
research community, but there are plans to release it in the 
near future. 

4.1. Apparatus & Software 
High-resolution eye movements were recorded using an 

EyeLink 1000 eye tracking system [22], with a temporal 
resolution of 1000 Hz, vendor-reported spatial accuracy of 
0.5°, average calibration accuracy of 0.7° (SD = 0.5), and 
average data validity of 66% (SD = 36%). Stimuli were 
presented on a flat screen monitor positioned at a distance 
of 685 millimeters from each subject, with screen 
dimensions of 640×400 millimeters, and screen resolution 
of 2560×1600 pixels. 

Low-resolution eye movements were recorded using a 
modified version of the open-source ITU Gaze Tracker 
software [23] and PlayStation Eye Camera [24], with a 
temporal resolution of 75 Hz and average calibration 
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accuracy of 1.1° (SD = 0.8). Average data validity is not 
reportable, as it was not possible to detect when the eye 
tracker began tracking an area of the image other than the 
subject pupil (i.e. rim of the glasses, eyelashes, hair). 
Stimuli were presented on a flat screen monitor positioned 
at a distance of 540 millimeters from each subject, with 
screen dimensions of 375×302 millimeters, and screen 
resolution of 1280×1024 pixels. 

In both cases, the pupil was illuminated by infrared 
LED to improve eye tracking accuracy, and a chin rest 
was employed to improve stability. Stimulus presentation 
was consistent across experiments, with only minor 
changes required for varied screen dimensions. All 
algorithms and data analysis were implemented and 
performed in MATLAB. 

4.2. Participants 
High-resolution eye movement data was collected for a 

total of 32 subjects (26 males, 6 females), ages 18 – 40 
with an average age of 23 (SD = 5.4). 29 of the subjects 
performed 4 recordings each, and 3 of the subjects 
performed 2 recordings each, generating a total of 122 
unique eye movement recordings. 

Low-resolution eye movement data was collected for a 
total of 173 subjects (117 males, 56 females), ages 18 – 49 
with an average age of 23 (SD = 5.3). 169 of the subjects 
performed 2 recordings each, and 3 of the subjects 
performed 1 recording each, generating a total of 341 
unique eye movement recordings. 

4.3. Procedure 
Eye movement recordings were generated on both 

high-resolution and low-resolution eye tracking systems 
using a textual stimulus pattern. The text of the stimulus 
was taken from Lewis Carroll’s poem, “The Hunting of 
the Snark,” chosen for its difficult and nonsensical 
content, forcing readers to progress slowly and carefully 
through the text. 

For each recording session, subjects were limited to 1 
minute of reading. To reduce learning effects, subjects 
were given a different excerpt from the text for each 
recording session and each excerpt was selected to ensure 
that line lengths and the difficulty of material were 
consistent. As well, excerpts were selected to require 
approximately 1 minute of active reading. 

Eye movements were processed with the biometric 
framework described in Section 2, with eye movement 
classification thresholds: velocity threshold of 20°/sec, 
micro-saccade threshold of 0.5°, and micro-fixation 
threshold of 100 milliseconds. Feature extraction was 
performed across all eye movement recordings, while 
matching and information fusion were performed 
according to the methods described in Section 3. To assess 

biometric accuracy, error rates were calculated under both 
verification and identification scenarios. 

5. Results 
Eye movement recordings were partitioned, by subject, 

into training and testing sets according to a uniformly 
random distribution with a ratio of 1:1, such that no 
subject had recordings in both the training and testing sets. 
Experimental results are averaged over 80 random 
partitions for each metric, and 20 random partitions for 
each fusion algorithm. Scores for the best performing 
algorithms are highlighted for readability. 

5.1. Verification Scenario 
False acceptance rate is defined as the rate at which 

imposter scores exceed the acceptance threshold, false 
rejection rate is defined as the rate at which genuine scores 
fall below the acceptance threshold, and true positive rate 
is defined as the rate at which genuine scores exceed the 
acceptance threshold. The equal error rate, given in Table 
1, is the rate at which false acceptance rate and false 
rejection rate are equal, and the receiver operating 
characteristic, shown in Figure 3 for the best performing 
fusion methods, plots true positive rate against false 
acceptance rate. 

5.2. Identification Scenario 
Identification rate is defined as the rate at which 

enrolled subjects are successfully identified as the correct 
individual, where rank-k identification rate is the rate at 
which the correct individual is found within the top k 
matches. The rank-1 identification rate, given in Table 2, 
is the rate at which the correct individual has the highest 
match score, and the cumulative match characteristic, 
shown in Figure 4 for the best performing fusion methods, 
plots identification rate by rank across all ranks, where the 
maximum rank is equivalent to the available comparisons. 

6. Discussion 
Of the considered comparison algorithms, the 

Kolmogorov-Smirnov and Cramér-von Mises tests have a 
clear advantage in terms of accuracy. While the two are 
practically equivalent on the high-resolution dataset, the 
Kolmogorov-Smirnov test appears to hold up better on the 
low-resolution dataset, based on receiver operating and 
cumulative match characteristics. Despite this, the 
Cramér-von Mises test provided the overall lowest equal 
error rate (16.5%) on the high-resolution dataset. 
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Figure 3a: Receiver Operating Characteristic (High-Resolution). Figure 4a: Cumulative Match Characteristic (High-Resolution). 

  
Figure 3b: Receiver Operating Characteristic (Low-Resolution). Figure 4b: Cumulative Match Characteristic (Low-Resolution). 
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Of the considered information fusion algorithms, a clear 
distinction is less evident. On the high-resolution dataset, 
the random forest algorithm provided both the lowest 
equal error rate (16.5%) and the highest rank-1 
identification rate (83.7%), with a clear advantage in every 
category. Unfortunately, the random forest algorithm did 
not maintain this advantage when tested on the 
low-resolution dataset; and, in fact, was clearly less 
accurate than fusion by weighted mean and likelihood 
ratio in terms of equal error rate. It should be noted that, 
because the support vector machine applied classification 
rather than regression, equal error rates in this case were 
rough approximations; even so, the support vector 
machine was the worst performing fusion method. 

While these results do not yet represent a realistic 
alternative to existing biometric standards, such as 
fingerprint recognition, they do provide a substantial 
improvement in the biometric viability of eye movements, 
as compared to existing research.  Further, less accurate 
eye movement biometrics have been employed to improve 
the accuracy and liveness detection of multi-modal 
systems [25]. The fairest comparison with existing work is 
to the results reported by Holland and Komogortsev [14], 
which made use of equivalent datasets, obtaining equal 
error rates of 27% on the high-resolution dataset and 24% 
on the low-resolution dataset; however, these results may 
suffer from overfitting, as training and testing were 
conducted on the full dataset, without partitioning. 

For comparison, error rates were recalculated using the 
techniques described in [14], and the updated biometric 
framework described in Section 2. With random splitting 
by subject, averaged over 20 partitions, previous CEM 
techniques achieved a 28.5% equal error rate and 37.5% 
rank-1 identification rate on the high-resolution dataset, 
and 32.9% equal error rate and 3.7% rank-1 identification 
rate on the low-resolution dataset. The techniques 
proposed in the current paper reduce equal error rate by 
approximately 42% on the high-resolution dataset and 
22% on the low-resolution dataset, and increase rank-1 
identification rate by 223% on the high-resolution dataset 
and 441% on the low-resolution dataset. This is 
unquestionably a massive improvement. 

Differences in eye tracking specifications and subject 
pool make it difficult to compare these results with similar 
work in eye movement biometrics. Moreover, to our 
knowledge, much of the early work in this context did not 
provide equal error rates or rank-1 identification rates to 
compare against. Recently, Rigas et al. [13] achieved 
30.0% equal error rate and 70.2% rank-1 identification 
rate on a pool of 15 subjects, using an eye tracking system 
with 0.25° spatial accuracy and a sampling rate of 50 Hz. 
Previous research [14] has shown that spatial accuracy 
plays a much greater role in biometric accuracy than does 
sampling rate, and for this reason we are inclined to 
consider the recordings as being high-resolution, but 
realistically this dataset does not fit either category neatly. 

Metric 
High-Resolution Dataset 

 

Metric 
High-Resolution Dataset 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 
M1 33.5% 34.0% 34.8% 32.9% 34.3% M1 15.4% 13.8% 14.6% 15.4% 16.6% 
M2 27.6% 37.3% 24.5% 23.0% 22.4% M2 17.6% 6.6% 19.6% 41.9% 48.7% 
M3 42.7% 47.1% 42.4% 38.5% 39.4% M3 10.9% 7.8% 5.9% 10.7% 14.9% 
M4 42.8% 47.6% 41.9% 44.0% 41.7% M4 9.8% 7.7% 9.1% 12.5% 10.4% 
M5 33.9% 33.8% 34.8% 33.3% 33.9% M5 16.9% 10.2% 16.4% 15.8% 15.6% 
M6 43.3% 38.1% 31.9% 27.4% 27.6% M6 12.9% 9.9% 10.0% 37.9% 37.9% 
M7 44.8% 30.8% 38.5% 26.3% 25.7% M7 5.7% 12.3% 6.4% 36.7% 34.7% 
M8 43.2% 38.3% 36.5% 30.5% 30.9% M8 6.8% 13.7% 14.3% 28.3% 31.5% 
M9 36.4% 35.1% 35.8% 29.1% 27.2% M9 12.2% 14.3% 14.5% 44.0% 42.2% 
M10 45.5% 40.2% 39.0% 33.2% 33.7% M10 6.5% 11.2% 11.2% 20.2% 23.7% 
M11 42.0% 50.0% 29.6% 25.9% 25.5% M11 5.6% 12.6% 14.4% 43.3% 48.5% 
M12 45.1% 40.3% 37.4% 28.8% 30.4% M12 4.4% 12.1% 13.2% 27.1% 27.7% 
F1 30.6% 35.9% 24.4% 21.5% 19.4% F1 24.2% 17.4% 33.4% 61.4% 64.8% 
F2 39.9% 35.4% 30.4% 26.6% 25.6% F2 11.8% 13.3% 16.7% 29.1% 29.9% 
F3 26.9% 24.3% 21.2% 17.9% 16.5% F3 48.2% 57.0% 76.0% 83.7% 82.6% 
F4 30.6% 30.3% 25.9% 18.2% 20.1% F4 34.3% 32.0% 47.1% 72.0% 70.6% 

Metric 
Low-Resolution Dataset 

Metric 
Low-Resolution Dataset 

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 
M1 45.8% 42.8% 46.4% 43.6% 44.5% M1 1.4% 1.2% 1.0% 2.2% 2.0% 
M2 35.5% 41.7% 34.6% 33.8% 33.2% M2 1.8% 2.0% 0.5% 3.2% 3.4% 
M3 50.0% 41.6% 50.0% 50.0% 44.5% M3 0.0% 1.6% 0.2% 1.9% 0.9% 
M4 44.3% 46.3% 46.0% 44.4% 46.0% M4 0.2% 0.5% 0.7% 0.4% 0.5% 
M5 47.2% 41.8% 47.6% 43.7% 44.7% M5 1.5% 0.9% 1.3% 2.2% 2.0% 
M6 42.8% 45.1% 39.2% 37.5% 36.8% M6 0.7% 1.5% 1.6% 2.8% 1.2% 
M7 34.7% 41.3% 35.1% 30.7% 30.2% M7 2.0% 1.2% 2.6% 5.4% 6.7% 
M8 43.4% 42.2% 39.4% 34.3% 35.2% M8 1.8% 0.6% 1.0% 4.3% 5.5% 
M9 33.9% 41.4% 34.7% 31.5% 30.0% M9 3.5% 1.2% 1.5% 8.5% 8.2% 
M10 43.7% 42.8% 38.4% 39.2% 36.8% M10 2.8% 1.2% 1.4% 2.6% 4.2% 
M11 41.9% 40.6% 36.1% 30.3% 30.8% M11 1.0% 2.5% 2.0% 9.9% 9.4% 
M12 44.2% 39.1% 41.3% 32.0% 31.7% M12 0.6% 1.2% 1.3% 4.9% 5.8% 
F1 33.7% 39.5% 34.8% 26.7% 28.2% F1 2.9% 2.8% 3.9% 15.4% 16.3% 
F2 37.5% 38.6% 33.2% 25.6% 26.7% F2 0.9% 1.1% 1.5% 2.0% 2.8% 
F3 39.7% 41.8% 38.6% 32.6% 31.8% F3 2.8% 2.0% 4.7% 14.2% 12.9% 
F4 35.6% 39.5% 35.8% 26.2% 27.0% F4 6.1% 3.2% 4.9% 14.0% 12.6% 

Table 1: Equal Error Rates. Table 2: Rank-1 Identification Rates. 
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It should be noted, that while the recent EMVIC 
competition [26] has produced higher identification rates, 
there are several issues with the data collection procedures 
and database partitioning that make the results suspect. 
Specifically, the use of uncalibrated eye tracking data in 
two of the four major datasets may have introduced 
artifacts into the eye movement recordings, and the use of 
a single non-random partition with subject crossover may 
have caused overfitting. For reference, the uncalibrated 
datasets achieved rank-1 identification rates of 97.6% and 
95.1% on a mid-resolution eye tracker (250 Hz, 
unreported accuracy), while the calibrated datasets 
achieved rank-1 identification rates of 58.6% and 66.7% 
on a high-resolution eye tracker (1000 Hz, 0.5° accuracy). 

7. Conclusion 
This paper has presented an objective evaluation of 

previously unexplored biometric techniques utilizing 
patterns identifiable in human eye movements to 
distinguish individuals. The distribution of primitive eye 
movement features were compared between eye 
movement recordings using algorithms based on the 
following statistical tests: the two-sample t-test, the 
Ansari-Bradley test, the Mann-Whitney U-test, the 
two-sample Kolmogorov-Smirnov test, and the 
two-sample Cramér-von Mises test. Score-level 
information fusion was applied and evaluated by: 
weighted mean, support vector machine, random forest, 
and likelihood ratio. 

Based on the results, we found that on high-resolution 
eye tracking equipment, it is possible to obtain equal error 
rates of 16.5% and rank-1 identification rates of 82.6% 
using the two-sample Cramér-von Mises test and 
score-level fusion by random forest. Unfortunately, these 
techniques scale poorly for low-resolution eye tracking 
equipment, receiving an equal error rate of 26.2% and 
rank-1 identification rate of 14.0% using the two-sample 
Kolmogorov-Smirnov test and fusion by likelihood ratio. 
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