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Abstract—This paper presents an objective evaluation of the 

effects of eye tracking specification and stimulus presentation on 
the biometric viability of complex eye movement patterns (CEM). 
Six spatial accuracy tiers (0.5°, 1.0°, 1.5°, 2.0°, 2.5°, 3.0°), six 
temporal resolution tiers (1000 Hz, 500 Hz, 250 Hz, 120 Hz, 75 
Hz, 30 Hz), and five stimulus types (simple, complex, cognitive, 
textual, random) are evaluated to identify acceptable conditions 
under which to collect eye movement data. The results suggest 
the use of eye tracking equipment capable of at least 0.5° spatial 
accuracy and 250 Hz temporal resolution for biometric purposes, 
while stimulus had little effect on the biometric viability of eye 
movements. 

Index Terms—Biometrics, eye movements, pattern analysis, 
security and protection. 

I. INTRODUCTION 
OU are unique. Physically, mentally, emotionally, there 
is no one on earth quite like you. There are more than 1.4 

million variable nucleotides in the human genome, with 
trillions of possible variations [3]. As humans, we pick up on 
these differences, and assign identity based on them. The 
shape of his nose, the color of her eyes, we notice and respond 
to these traits, often subconsciously. 

Attempts to systematize the collection and comparison of 
these identifying characteristics (biometrics) can be traced 
back as early as 1858, when a civil service employer in India 
began recording handprints to identify workers [5]. Over the 
past century this practice has expanded considerably, 
encompassing fingerprints, palm prints, hand geometry, facial 
structure, signature, speech, and iris patterns [6]; however, 
automated biometric systems have only begun to see 
widespread production and use in the past several decades [7]. 

In a very short time, biometric systems have experienced 
far-reaching adoption in the fields of law enforcement, 
criminal justice, and corporate and personal security. Suspect 
identification, criminal conviction, personalized interfaces, 
and access restriction constitute only a subset of the many and 
varied applications of biometrics in modern society. 
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As humans, we assess these identifying features 
qualitatively, and rather vaguely: “he has a big nose” or “she 
has green eyes.” When we attempt to automate these 
assessments, we are forced to formalize our definitions of 
these traits, assigning quantitative values based on measurable 
characteristics. Unfortunately, something is often lost in 
translation, and automated systems are incapable of assessing 
an entire individual in the same manner that we are able to 
assess each other. 

This leads to a number of factors that must be considered 
when implementing an automated biometric system: accuracy, 
counterfeit-resistance, speed, and cost. For example, a human 
observer might review facial photographs with perfect 
accuracy, but too slowly to be considered useful; or, a 
fingerprint scanner may be implemented with acceptable 
accuracy and speed, but easily fooled by duplicate images. 

The human visual system offers a number of unique and 
novel properties that make it an interesting candidate in this 
respect. Eye movements are dependent upon both the physical 
properties of the oculomotor plant and the neurological 
properties of the brainstem control [8]. This dual aspect makes 
the accurate replication of eye movements practically 
infeasible (if not impossible) outside of a living subject. This, 
in and of itself, provides inherent counterfeit-resistance and 
liveness detection. Further, the ability to record and process 
eye movements in real-time using an unmodified camera [9] 
makes their application both cheap and efficient. 

Open dataset competitions have shown fingerprint 
recognition [2] capable of equal error rates approaching 2% 
under the effects of skin distortion and rotation, while iris 
recognition [10] has shown itself capable of equal error rates 
approaching 1% under multiple environments and sessions. 
Though both of these systems suffer from known spoofing 
vulnerabilities [11], eye movement biometrics can be easily 
integrated into existing iris recognition systems to improve 
accuracy and enhance counterfeit-resistance without the need 
for additional equipment, cost, processing time, or reduction in 
usability [12]. 

Aside from their biometric applications, the study of 
complex eye movement patterns has implications in the fields 
of clinical health and psychology. Eye movements have been 
used to diagnose neurological illness for decades [8], and 
identifying the variability of these metrics in normal human 
subjects is necessary to establish the limits of normal and 
abnormal ocular behavior. 
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A. Previous Research 
Eye movements as a behavioral biometric are as of yet a 

largely underdeveloped branch of the biometric field, the basis 
for which was formed in 1971 when Noton and Stark [13] 
found that the general scanpath exhibited by a subject during 
the first viewing of a pattern was repeated in the initial eye 
movements of roughly 65% of subsequent viewings. There has 
been little research in this area, enough to demonstrate the 
viability of eye movements as a biometric indicator, but too 
little to provide an alternative to existing standards. 

To the best of our knowledge, the first investigation of eye 
movements as a biometric indicator occurred in 2004, when 
Kasprowski and Ober [14] examined the first 15 cepstral 
coefficients of the positional eye movement signal, a 
technique commonly applied in voice recognition. Information 
fusion was performed using naïve Bayes classifiers, C4.5 
decision trees, SVM polynomials, and KNN (k = 3 and k = 7). 
On a dataset of 9 subjects, the described techniques achieved 
an average 1% FAR and 23% FRR. 

Silver and Biggs [15] followed in 2006, investigating a 
larger range of possible features, including: the 8 most 
significant fixations in each recording, fixation count, mean 
fixation duration, mean saccade velocity, mean saccade 
duration, and mean vertical position. Information fusion made 
use of a neural network, but again EER and ROC curves were 
not reported, in favor of average TPP, TNP, and ACC. On a 
dataset of 21 student participants, the described techniques 
achieved an average 66% TPP and 98% TNP. 

Holland and Komogortsev [16] investigated a wide range of 
complex eye movement patterns (CEM-P), in 2011, for their 
viability as biometric indicators, including: fixation count, 
mean fixation duration, mean vectorial saccade amplitude, 
mean horizontal saccade amplitude, mean vertical saccade 
amplitude, mean vectorial saccade velocity, mean vectorial 
saccade peak velocity, velocity waveform indicator (Q), 
scanpath length, scanpath area, regions of interest, inflection 
count, amplitude-duration coefficient, and main sequence 
coefficient. With a subject pool of 32 participants, the 
considered techniques achieved 27% EER. 

Komogortsev et al. [17] examined the use of mathematical 
models of the oculomotor plant (OPC), in an attempt to extract 
the anatomical constants unique to a given individual from the 
observable properties of human eye movements. Over a 
subject pool of 59 participants, the considered techniques 
achieved a minimum HTER of 19%. 

Rigas et al. [18] applied graph-based matching techniques to 
the positional eye movement signal in 2012, comparing 
minimum spanning trees using a multivariate Wald-Wolfowitz 
runs test. On a dataset of 15 subjects, the proposed techniques 
were able to achieved 70% rank-1 IR and 30% EER. 

Most recently, in 2013, Holland and Komogortsev [19] 
improved upon the complex eye movement pattern (CEM-B) 
biometrics originally developed in 2011 [16], comparing the 
distribution of fixations and saccades with statistical 
techniques such as the two-sample t-test, the Ansari-Bradley 
test, the two-sample Kolmogorov-Smirnov test, and the two-
sample Cramér-von Mises test. On a dataset of 32 subjects, the 
proposed techniques achieved 83% rank-1 IR and 17% EER. 

B. Eye Movement Biometrics 
Having existed for less than a decade, the field of eye 

movement biometrics is still in its infancy. Despite this, and 
perhaps because of it, the achievable accuracy and robustness 
has increased at an exponential rate. In just the past year, equal 
error rates have seen a reduction of 63%, from 27% EER to 
17% EER, while rank-1 identification rates have seen an 
increase of 157%, from 53% rank-1 IR to 83% rank-1 IR. 

As a behavioral—rather than physical—biometric, it is 
expected that eye movements may never achieve the level of 
accuracy afforded by physical traits, such as fingerprints and 
iris patterns; however, when considered in the context of 
behavioral biometrics, eye movements are quite promising. 
For example, gait recognition was proposed in the mid-1970s 
[20], but did not begin to achieve reasonable accuracy until the 
early 2000s, with equal error rates ranging from 18-25% [21] 
and rank-1 identification rates ranging from 30-70% [22, 23], 
depending largely on the angle and speed of gait. Similarly, 
face recognition was proposed in the 1960s [24], but was 
largely ignored in a biometric context until the mid-1990s, 
with early work being highly susceptible to aging effects, 
achieving equal error rates of 1-7% [25] and rank-1 
identification rates of 80-90% [26] for images captured within 
a single recording session, which became dramatically 
reduced to equal error rates of 12-23% [25] and rank-1 
identification rates of 30-60% [26] after as little as 1 week 
between enrollment and authentication. 

While eye movements are not yet capable of competing with 
existing biometric standards in standalone systems, as is 
evident in Figure 1, they possess a number of qualities which 
make them ideal for multi-biometric systems. First, diverse 
eye movement biometric techniques can be readily combined 
to increase the overall accuracy of the system; Komogortsev et 
al. [27] showed that a combination of CEM-P and OPC 
techniques increased authentication accuracy by 30% when 

Figure 1. Receiver operating characteristics, reconstructed from the relevant 
literature. Iris [1], Finger [2], and Face [4] represent the best performing 

biometric algorithms from the most recently published NIST competition. 
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compared to individual techniques. Second, because eye 
movement data can be collected from a single image sensor, 
eye movement biometrics can be easily incorporated into 
multi-biometric systems to increase overall accuracy without 
increasing cost or reducing speed; Komogortsev et al. [12] 
showed that incorporating eye movement biometrics into an 
iris recognition system could reduce error rates by up to 19%. 
Finally, the difficulty of accurately replicating human eye 
movements provides inherent liveness detection capabilities; 
Komogortsev and Karpov [28] have shown the OPC technique 
is capable of correctly classifying 80-93% of recordings as 
human or spoof. 

Unfortunately, in much the same way that smudged 
fingerprints and off-angle facial images reduce recognition 
accuracy in their respective systems, the quality of the 
recorded eye movement signal has been shown to reduce the 
accuracy of eye movement biometrics [29]; and in much the 
same way that speed of gait can affect the accuracy of gait 
recognition, it is unclear if the particular pattern of eye 
movements, invoked by a specific stimulus, has a noticeable 
effect on the accuracy. It is for this reason that, in the current 
paper, we examine the effects of environment and stimulus on 
the accuracy of eye movement biometrics, specifically the 
CEM-P technique [16]. 

C. Human Visual System 
The oculomotor plant consists of the eye globe and six 

extraocular muscles: the lateral and medial recti are primarily 
responsible for horizontal rotation; the superior and inferior 
recti are primarily responsible for vertical rotation; and the 
superior and inferior obliques are primarily responsible for 
torsion of the eye globe. The brainstem control involves a 
neuronal control signal, generated by the brain and sent to 
individual extraocular muscles, and is responsible for the 
muscle contractions and relaxations that produce the many and 
varied types of human eye movement [8]. 

Among the various eye movement types exhibited by the 
human visual system, fixations and saccades are of particular 
interest. Fixations occur when the eye globe is held in a 
relatively stable position, such that the fovea remains centered 
on an object of interest, providing heightened visual acuity; 
saccades occur when the eye globe rotates quickly between 
points of fixation, with very little visual acuity maintained 
during rotation. The term scanpath refers to the spatial path 
formed by a sequence of fixations and saccades. Scanpaths 
have been identified with higher-level cognition and applied to 
the study of usability and visual search [30]. 

D. Complex Eye Movement Patterns 
Complex eye movement patterns (CEM-P), presented 

graphically in Figure 2, represent the cognitive strategies 
employed by the brain throughout the guidance of visual 
attention. The human eye is connected to and controlled by a 
complex network of brain regions, sub-regions, and neural 
pathways [8, 31]. Information is transmitted from region to 
region along neural pathways in the form of neural signals, 
which may convey visual field information from the eye or 
control information from the brain. 

The firing rate of individual neural signals (which occur in 
sustained bursts) is dependent on the physical properties of the 

involved neurons and surrounding brain tissue. This neural 
activity may be influenced by the task being performed, which 
can cause variation in baseline firing rates, firing rate profiles, 
and modulations of neuronal activity related to particular 
stimuli and behavioral responses [32]. 

Generally, eye movements are controlled by three major 
brain regions, the thalamus, superior colliculus, and posterior 
parietal cortex [33], where the thalamus is responsible for 
engaging visual attention, the superior colliculus is responsible 
for relocating visual attention, and the posterior parietal cortex 
is responsible for disengaging visual attention; however, this is 
a major simplification of an extremely complex process. The 
human visual system is functionally dependent on the superior 
colliculus, frontal eye fields, lateral intra parietal, posterior 
parietal cortex, and visual cortex areas V1 – V5 [34]. In 
addition, the human visual system is affected by the passive 
properties of tissue surrounding the eye globe, and a myriad of 
subsidiary neural regions and pathways. 

Further, the neuronal control signals responsible for 
innervation of individual extraocular muscles during a saccade 
are generated in two physically separate regions of the brain 
[8]. Specifically, the horizontal saccade component is 
generated by the paramedian pontine reticular formation, 
while the vertical and torsional saccade components are 
generated by the rostral interstitial nucleus of the medial 
longitudinal fasciculus. As well, the omnipause neurons 
responsible for fixation are located in the nucleus raphe 
interpositus, in the midline of the pons. 

At a higher level of abstraction, learned behaviors and 
subconscious memory mechanisms are involved in the 
coordination of eye movements over time, as evidenced by the 
inhibition of return and scanpath theory phenomena. Inhibition 
of return refers to the marked tendency to avoid re-fixation on 
previously examined features during visual search, effecting 
both oculomotor programming and target detection [35], while 
scanpath theory describes the phenomenon in which 
individuals tend to repeat certain scanpath trajectories during 
repeated viewings of a given pattern [13]. 

E. Motivation & Hypothesis 
Despite their limited accuracy, eye movement biometrics 

have been utilized in their current state to increase the 
accuracy and counterfeit-resistance of multi-biometric systems 
[12]. As a relatively unexplored branch of the biometric field, 
whose initial investigations began in 2004 and have received 
little attention from the biometric community since, it is first 
necessary to identify and standardize a set of techniques and 
practices for the collection, processing, and analysis of human 
eye movements as biometric indicators. 

In this paper, we hypothesize that stimulus presentation and 
eye tracking specifications, such as spatial accuracy and 
temporal resolution, may affect the biometric viability of 
complex eye movement patterns. We examined these issues 
previously [29], providing detection error tradeoff and equal 
error rates in a verification scenario. The current paper 
expands greatly on our previous work, adding: an increased 
subject pool; genuine vs. impostor match score distributions; 
d-prime; receiver operating characteristic in a verification 
scenario; cumulative match characteristic and identification 
rate in an identification scenario. 
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Figure 2. Complex Eye Movement Pattern (CEM-P) Biometrics. 

The Scanpath Overlay demonstrates an idealized scanpath segment, where dots indicate points of fixation, and lines indicate saccades. 
The Position Signal (Saccade) and Velocity Signal (Saccade) demonstrate the respective positional and velocity signals for a 4.5° saccade. 

The Amplitude-Duration Relationship demonstrates the tendency for saccade duration (D) to increase linearly with amplitude (A). 
The Main Sequence Relationship demonstrates the tendency for saccadic peak velocity (V) to increase exponentially with amplitude (A). 
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II. METHODOLOGY 
The biometric techniques considered in this paper extend 

from those described by Holland and Komogortsev [29]. 
Three experiments were conducted to investigate the effects of 
environment and stimulus on the biometric viability of 
complex eye movement patterns. The first experiment 
examined the effects of varied stimulus type, the second 
experiment examined the effects of varied spatial accuracy 
and temporal resolution, and the third experiment provided 
data recorded on low-cost eye tracking equipment for cross-
validation purposes. The collected eye movement datasets are 
available as part of the EMDB v2 database [36]. 

A. Participants 
For the first experiment, eye movement data was collected 

for a total of 22 subjects (17 males, 5 females), ages 18 – 46 
with an average age of 28 (SD = 8.7). 17 of the subjects 
performed 16 recordings each, 3 of the subjects performed 15 
recordings each, and 2 of the subjects performed 8 recordings, 
generating a total of 333 unique eye movement recordings. 

For the second experiment, eye movement data was 
collected for a total of 32 subjects (26 males, 6 females), ages 
18 – 40 with an average age of 23 (SD = 5.4). 29 of the 
subjects performed 4 recordings each, and 3 of the subjects 
performed 2 recordings each, generating a total of 122 unique 
eye movement recordings. 

For the third experiment, eye movement data was collected 
for a total of 173 subjects (117 males, 56 females), ages 18 – 
49 with an average age of 23 (SD = 5.3). 158 of the subjects 
performed 8 recordings each, 6 of the subjects performed 7 
recordings each, 7 of the subjects performed 6 recordings 
each, 1 of the subjects performed 3 recordings, and 1 of the 
subjects performed 2 recordings, generating a total of 1353 
unique eye movement recordings. 

The subject pools for each experiment did not overlap. Each 
subject performed multiple recording sessions for each 
stimulus. The number of recording sessions for each subject, 
per stimulus, is presented in the following sub-sections. Texas 
State University’s institutional review board approved the 
study, and all subjects provided informed consent. 

B. Apparatus & Software 
For the first experiment, eye movements were recorded 

using a Tobii TX300 eye tracking system, with a temporal 
resolution of 300 Hz, vendor-reported spatial accuracy of 0.5°, 
and average data validity of 65% (SD = 36%). Stimuli were 
presented on a flat screen monitor positioned at a distance of 
565 mm from each subject, with dimensions of 550×240 mm, 
and screen resolution of 1920×1080 pixels. 

For the second experiment, eye movements were recorded 
using an EyeLink 1000 eye tracking system, with a temporal 
resolution of 1000 Hz, vendor-reported spatial accuracy of 
0.5°, average calibration accuracy of 0.7° (SD = 0.5), and 
average data validity of 95% (SD = 5%). Stimuli were 
presented on a flat screen monitor positioned at a distance of 
685 mm from each subject, with dimensions of 640×400 mm, 
and screen resolution of 2560×1600 pixels. 

For the third experiment, eye movements were recorded 
using a modified version of the open-source ITU Gaze Tracker 
software [9] and PlayStation Eye Camera, with a temporal 

resolution of 75 Hz and average calibration accuracy of 1.1° 
(SD = 0.8). Average data validity is the percentage of gaze 
points reported by the eye tracking system that contained valid 
eye movement data, and is unreportable in this instance as it 
was not possible to detect when the eye tracker began tracking 
an area of the image other than the subject pupil (i.e. rim of 
glasses, eyelashes, hair, etc.). Stimuli were presented on a flat 
screen monitor positioned at a distance of 540 mm from each 
subject, with dimensions of 375×302 mm, and screen 
resolution of 1280×1024 pixels. 

In all cases, the pupil was illuminated by infrared LED to 
improve eye tracking accuracy, and a chin rest was employed 
to improve stability, as shown in Figure 3. Stimulus 
presentation was consistent across all experiments, with only 
minor changes required for varied screen dimensions.  

C. Procedure 
For the first experiment, eye movement recordings were 

generated for four stimulus types and recorded with a 
standard, commercial-grade eye tracking system. Stimuli were 
selected to meet the following criteria: simple pattern, 
complex pattern, cognitive pattern, and textual pattern. 

In theory, the eye movements evoked by each pattern would 
be influenced by different aspects of the human visual system. 
Responses to the simple pattern would be influenced by the 
physical structure of the human visual system; responses to the 
complex pattern would be influenced by subconscious search 
strategies; responses to the cognitive pattern would be 
influenced by conscious search strategies; and responses to the 
textual pattern would be influenced by both conscious and 
subconscious search strategies. 

The simple pattern (SIM) employed a technique used in eye 
movement research to evoke a fixed-amplitude horizontal 
saccade at regular intervals [8]. A small white dot jumps back 
and forth across a plain black background, eliciting a saccade 
for each jump. The distance between jumps was set to 
correspond to 30° of the visual angle, due in part to screen 
constraints, complications separating low-amplitude saccades 
(less than 1°), and variation in the dynamics of high-amplitude 
saccades (greater than 50°). Subjects were instructed to follow 
the white dot with their eyes, with 100 horizontal saccades 
elicited per session, over 8 recording sessions per subject. 

 
Figure 3. Experimental Setup. 
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The complex pattern (COM) employed the Rorschach 
inkblots commonly used in psychological examination, in 
order to provide relatively clean patterns that were likely to 
evoke varied thoughts and emotions in participants. Inkblots 
were selected from the original Rorschach psychodiagnostic 
plates [37] and sized/cropped to fill the screen. Subjects were 
not required to provide verbal feedback, but were instructed to 
examine the images carefully, with 3 rotations of 5 inkblots 
per session, over 2 recording sessions per subject. 

The cognitive pattern (COG) was based loosely on the idea 
of visual passwords [38], with the intention that the user 
would actively select a pattern that represents their unique 
password. Each stimulus image contained 5 or 6 multi-colored 
dots on a black background, and all dots were visible 
throughout the stimulus presentation. Subjects were instructed 
to form a pattern by looking at the dots in a specific order, and 
to remember the order, with 3 rotations of 5 patterns per 
session, over 2 recording sessions per subject. 

The textual pattern (TEX) made use of various excerpts 
from Lewis Carroll’s “The Hunting of the Snark.” The poem 
was chosen for its difficult and nonsensical content, forcing 
readers to progress slowly and carefully through the text. Text 
excerpts were selected to ensure that reading required roughly 
1 minute, line lengths and the difficulty of material was 
consistent, and learning effects did not impact subsequent 
readings. Subjects were given different excerpts for each 
session, over 4 recording sessions per subject. 

For the second experiment, eye movement recordings were 
generated for a single stimulus type and recorded with a high-
quality, commercial-grade eye tracking system. Again the 
textual pattern stimulus was employed, over 4 recording 
sessions per subject. Dithering and downsampling were 
applied (exclusively) to the eye movement recordings to 
artificially reduce spatial accuracy and temporal resolution. 
Dithering reduces spatial accuracy by adding uniformly 
distributed error to the recorded eye movement position; 
considered spatial accuracy tiers from a hardware base of 0.5° 
included: 0.5°, 1.0°, 1.5°, 2.0°, 2.5°, and 3.0°. Downsampling 
reduces the temporal resolution by removing data points to 
lower the average time between points; considered temporal 
resolution tiers from a hardware base of 1000 Hz included: 
1000 Hz, 500 Hz, 250 Hz, 120 Hz, 75 Hz, and 30 Hz. 

For the third experiment, eye movement recordings were 
generated for four stimulus types and recorded with a low-cost 
eye tracking system. The simple pattern, complex pattern, and 
textual pattern stimuli of the first experiment were employed 
to validate previous results, while the worst performing 
stimulus of the first experiment, the cognitive pattern, was 
replaced with a random pattern stimulus. Each stimulus was 
recorded over 2 recording sessions per subject. 

The random pattern (RAN) was similar in presentation to 
the simple pattern stimulus. A small white dot jumps across a 
plain black background in a uniformly distributed random 
pattern, eliciting a saccade for each jump. Subjects were 
instructed to follow the dot with their eyes, with 100 randomly 
directed oblique saccades elicited per session. 

Following the collection of eye movement data, eye 
movement recordings were processed according to the 
biometric framework described previously by Holland and 
Komogortsev [29]. A velocity threshold algorithm (I-VT), 

with documented accuracy [39], classified gaze points with a 
velocity greater than 50°/sec as saccades, a micro-saccade 
filter re-classified saccades with an amplitude less than 0.5° as 
fixations, and a micro-fixation filter re-classified fixations 
with a duration less than 100 milliseconds as saccades. 

Feature extraction was performed across all eye movement 
recordings for the biometric features described in Figure 1. 
Matching was performed for each feature, using a Gaussian 
CDF normalized to a scale of the unit interval to compare 
features between recordings, where σ is the standard deviation 
of the feature within the training set, and both t and µ 
represent the feature values of separate recordings: 

p = 1 −
1

σ 2π
e
!!!
!!!

!

!!
− 1  (1) 

Information fusion applied a weighted average of the scores 
from individual features [40], to improve the overall accuracy 
while making allowance for the accuracy of specific features. 
Iterative optimization was performed on the training set to 
identify suitable per-feature weighting, using the following 
forward search algorithm: 
Algorithm ForwardSearch 
1.   N ← Number of biometric features; 
2.   Weight ← Zero-filled array of size N; 
3.   for i ← 1 to N 
4.       do W ← Weight; 
5.            E ← +Inf; 
6.            for j ← 0 to 100 
7.                do W[i] ← j; 
8.                      T ← Equal error rate with feature weights W; 
9.                      if T < E 
10.                        then Weight[i] ← j; 
11.                                 E ← T; 

III. RESULTS 
For each experiment, database records were partitioned into 

training and testing sets by subject, according to a uniformly 
random distribution with a ratio of 1:1. Results presented in 
the following section are averaged over 20 random partitions. 

A. Component Weighting 
Information fusion made use of a weighted mean to 

combine the match scores generated by individual features 
with weighting calculated on a scale of 0 – 100 according to 
the algorithm described in Section III. Average component 
weightings are provided in Table 1, and signify the relative 
contribution of CEM features for each experiment. 

A one-way ANOVA indicated no significant main effect for 
weighting across stimuli, F(8, 117) = 0.11, p = 0.999; 
however, there was a significant main effect for weighting 
across features, F(13, 112) = 6.55, p < 0.001. 

B. Randomness & Entropy 
In order to assess the stability of biometric matching, three 

statistical tests were performed across the match scores 
generated for each feature, including: Kolmogorov-Smirnov 
tests for uniformity and normality, and Wald-Wolfowitz runs 
tests for randomness. In addition, the Shannon entropy was 
calculated for the match scores generated for each metric, as a 
measure of information density. 



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY – THIS IS PRE-PRINT 
 

7 

For reference, randomness and entropy values were 
averaged over 1000 iterations for 1000 uniformly and 
normally distributed random numbers. For uniform random 
numbers: 

• Kolmogorov-Smirnov test for uniformity: p = 0.5021. 
• Kolmogorov-Smirnov test for normality: p < 0.0001. 
• Wald-Wolfowitz runs test for randomness: p = 0.5247. 
• Shannon entropy = 7.8019 

For normal random numbers: 
• Kolmogorov-Smirnov test for uniformity: p < 0.0001. 
• Kolmogorov-Smirnov test for normality: p = 0.4996. 
• Wald-Wolfowitz runs test for randomness: p = 0.5079. 
• Shannon entropy = 3.9496 

For all testing partitions, all experiments, all stimuli, and all 
features, the calculated match scores are highly non-random. 
In all cases: 

• Kolmogorov-Smirnov test for uniformity: p < 0.0001. 
• Kolmogorov-Smirnov test for normality: p < 0.0001. 
• Wald-Wolfowitz runs test for randomness: p < 0.0001. 

Shannon entropy was slightly more variable, ranging from 
5.1 – 7.9, but altogether relatively stable, with average entropy 

of 7.52 (SD = 0.50). A one-way ANOVA indicated no 
significant main effect for Shannon entropy across stimuli, 
F(8, 126) = 1.67, p = 0.112; however, there was a significant 
main effect for across features, F(14, 120) = 4.88, p < 0.001.  

C. d-Prime 
The d-prime value (dʹ) is a measure of the separation of two 

distributions, and may be applied to the distributions of 
genuine and impostor match scores as a measure of achievable 
error rate tradeoff. The d-prime value of genuine and impostor 
match score distributions for each experiment are given in 
Table 2, according to the following equation, where µ1 and σ1 
indicate the mean and standard deviation, respectively, of 
genuine match scores, and µ2 and σ2 indicate the mean and 
standard deviation, respectively, of impostor match scores: 

d! =
𝜇! − 𝜇!
𝜎!! + 𝜎!!

2

 (2) 

A one-way ANOVA indicated no significant main effect for 
d-prime across stimuli, F(8, 126) = 0.44, p = 0.895; however, 
there was a significant main effect for d-prime across features, 
F(14, 120) = 12.08, p < 0.001. 

CEM 

Experiment / Stimulus Combination 

 

CEM 

Experiment / Stimulus Combination 
1 2 3 1 2 3 

SIM COM COG TEX TEX SIM COM RAN TEX SIM COM COG TEX TEX SIM COM RAN TEX 
1 49 32 9 41 53 6 32 4 31 1 0.90 1.06 0.80 0.91 0.80 0.34 0.69 0.49 0.52 
2 1 17 3 11 87 10 39 38 33 2 0.22 0.65 0.06 0.12 0.85 0.47 0.20 0.57 0.58 
3 3 1 2 6 1 7 2 1 2 3 0.34 0.14 0.59 0.50 0.42 0.53 0.41 0.34 0.30 
4 7 1 9 1 25 3 3 2 3 4 0.36 0.29 0.60 0.52 0.58 0.53 0.40 0.23 0.32 
5 1 2 57 1 2 2 1 2 8 5 0.18 0.31 0.62 0.10 0.30 0.18 0.30 0.18 0.30 
6 30 12 10 40 31 100 45 64 43 6 0.67 0.73 0.53 0.63 0.64 0.79 0.60 0.71 0.57 
7 14 40 22 6 0 48 65 70 56 7 0.35 0.48 0.38 0.38 0.20 0.59 0.49 0.52 0.45 
8 1 1 4 0 2 8 0 3 2 8 0.07 0.01 0.14 0.14 0.10 0.48 0.13 0.29 0.11 
9 5 2 1 0 2 1 4 9 2 9 0.24 0.40 0.28 0.16 0.14 0.20 0.32 0.34 0.17 
10 34 52 14 35 2 24 2 44 8 10 0.52 0.65 0.36 0.41 0.27 0.42 0.33 0.44 0.38 
11 60 17 10 0 3 1 10 1 1 11 0.78 0.79 0.66 0.41 0.37 0.14 0.58 0.20 0.34 
12 2 1 16 1 1 3 2 0 1 12 0.20 0.25 0.27 0.21 0.17 0.25 0.27 0.16 0.26 
13 1 1 1 1 2 2 1 0 2 13 0.35 0.04 0.23 0.11 0.01 0.20 0.02 0.12 0.07 
14 7 11 16 16 17 2 13 1 3 14 0.81 0.73 0.70 0.74 0.72 0.13 0.62 0.23 0.43 

Table 1. Component Weighting. Fusion 0.95 0.73 0.51 0.61 1.05 0.85 0.66 0.70 0.63 

Table 2. d-Prime Values. 

 

CEM 

Experiment / Stimulus Combination 

 

CEM 

Experiment / Stimulus Combination 
1 2 3 1 2 3 

SIM COM COG TEX TEX SIM COM RAN TEX SIM COM COG TEX TEX SIM COM RAN TEX 
1 32% 31% 35% 36% 35% 41% 37% 42% 39% 1 18% 31% 2% 29% 16% 1% 2% 1% 1% 
2 43% 37% 39% 43% 31% 40% 41% 39% 38% 2 22% 6% 10% 32% 18% 2% 3% 2% 1% 
3 42% 48% 41% 40% 40% 41% 42% 46% 42% 3 16% 6% 20% 15% 14% 2% 1% 2% 1% 
4 42% 42% 40% 40% 36% 40% 42% 45% 41% 4 13% 8% 6% 18% 11% 2% 2% 1% 1% 
5 48% 48% 35% 47% 45% 46% 44% 46% 42% 5 16% 12% 20% 5% 9% 2% 1% 1% 2% 
6 37% 33% 37% 36% 37% 35% 37% 36% 38% 6 20% 12% 25% 14% 10% 3% 2% 0% 2% 
7 39% 35% 40% 41% 43% 37% 37% 36% 38% 7 22% 7% 21% 20% 12% 1% 5% 1% 2% 
8 45% 50% 52% 45% 49% 41% 48% 42% 47% 8 18% 0% 4% 7% 8% 2% 1% 1% 0% 
9 52% 39% 44% 46% 46% 44% 44% 42% 47% 9 19% 10% 11% 16% 16% 3% 0% 2% 1% 
10 36% 27% 43% 38% 41% 40% 41% 37% 42% 10 29% 14% 9% 23% 15% 1% 2% 1% 1% 
11 33% 34% 38% 43% 42% 48% 38% 46% 43% 11 23% 12% 9% 13% 10% 0% 2% 1% 1% 
12 46% 43% 46% 47% 47% 43% 43% 47% 44% 12 12% 1% 9% 8% 6% 1% 2% 2% 2% 
13 43% 51% 44% 49% 49% 45% 50% 48% 48% 13 12% 4% 10% 5% 5% 1% 1% 0% 2% 
14 35% 37% 35% 38% 37% 48% 39% 48% 42% 14 23% 10% 6% 17% 14% 1% 2% 1% 1% 

Fusion 31% 33% 37% 37% 28% 34% 36% 35% 36% Fusion 53% 22% 19% 31% 38% 7% 5% 5% 4% 

Table 3. Equal Error Rates. Table 4. Rank-1 Identification Rates. 
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D. Match Score Distribution 
The distribution of genuine and impostor match scores were 

averaged across all random partitions and smoothed with a 
kernel smoothing density estimate. Figure 4 illustrates 
representative match score distributions for the information 
fusion of biometric features across the various experiments.  

E. Verification Scenario 
True positive rate (TPR) is defined as the percentage of 

genuine match scores that exceed the acceptance threshold, 
false acceptance rate (FAR) is defined as the percentage of 
impostor match scores that exceed the acceptance threshold, 
false rejection rate (FRR) is defined as the percentage of 
genuine match scores that fall below the acceptance threshold, 
and equal error rate (EER) is the percentage at which FAR and 
FRR are equal. The receiver operating characteristic (ROC), 
shown in Figure 5, plots TPR against FAR, and Table 3 
provides EER for each experiment. 

A one-way ANOVA indicated no significant main effect for 
EER across stimuli, F(8, 126) = 0.53, p = 0.829; however, 
there was a significant main effect across features, F(14, 120) 
= 11.76, p < 0.001. 

F. Identification Scenario 
Rank-k identification rate (IR) is the percentage of 

individuals for which the correct match is found within the top 
k matches. The cumulative match characteristic (CMC), 
shown in Figure 6, plots IR by rank, and Table 4 provides 
rank-1 identification rates for each experiment. 

A one-way ANOVA indicated a significant main effect for 
rank-1 identification rate across stimuli, F(8, 126) = 21.22, p < 
0.001; however, there was no significant main effect across 
features, F(14, 120) = 1.63, p = 0.079. 
 

IV. DISCUSSION 
In the current paper, we are interested in several related 

topics, the viability of CEM features and techniques in a 
biometric context and the effects of stimulus type, spatial 
accuracy, and temporal resolution on the biometric viability of 
complex eye movement patterns. 

A. Biometric Viability 
From the distribution of genuine vs. impostor match scores, 

we identify a large overlap in all cases. While they represent 
distinct distributions, it is difficult to separate the two. Despite 
this overlap, match scores were highly non-random, as 
indicated by Kolmogorov-Smirnov tests for uniformity and 
normality, and the Wald-Wolfowitz runs test.  

When comparing entropy and d-prime, there appears to be a 
tendency for metrics with lower Shannon entropy to have a 
correspondingly low d-prime. In fact, Shannon entropy and d-
prime were strongly correlated, r(133) = 0.39, p < 0.001. Low 
entropy suggests clustering of match scores around some 
common values, and this clustering may reduce the distance 
between genuine and impostor distributions. 

We notice that the d-prime of information fusion is often 
lower than for individual features. This is a result of feature 
weighting being selected on the training set, and indicates that 
the considered information fusion algorithm does a poor job at 
predicting component weights based on a subset of features. 

When compared to the state-of-the-art in iris (0.0011% EER 
[1]), fingerprint (2.07% EER [2]), and facial geometry (15% 
EER [4]) biometrics, it is obvious that eye movement 
biometrics are not yet suitable for standalone applications; 
however, it is important to remember that, at the time or 
writing, this course of study has existed for less than a decade, 
while many of todays biometric standards have existed for 
over a century [5]. 

B. The Effects of Stimulus Type 
While there were obvious differences between CEM 

features, there was no discernible effect from the stimuli used 
to evoke eye movements. This is confirmed by ANOVA 
results from component weighting, Shannon entropy, d-prime, 
and equal error rates. Receiver operating characteristics and 
cumulative match characteristics lead to similar conclusions. 

In considering the receiver operating characteristics and 
cumulative match characteristics, it is important to note that in 
the 1st experiment the number of recording sessions for each 
stimulus was inconsistent. This lead to variation in the number 
of acceptance/rejection comparisons during the verification 
scenario, and maximum rank during the identification 
scenario. This issue was rectified in the 3rd experiment, and 
the effects are obvious in the respective plots. 

         
Figure 4. Genuine vs. impostor match score distributions. Probability density functions are based on the kernel smoothing density estimate obtained by 
MATLAB’s ksdensity function. The solid line indicates the genuine distribution, and the dotted line indicates the impostor distribution. 



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY – THIS IS PRE-PRINT 
 

9 

 

 

Figure 5. Receiver operating characteristic (ROC) for varied stimulus type, spatial accuracy, and temporal resolution. True positive rate is defined as the 
percentage of genuine match scores that exceed the acceptance threshold, and false acceptance rate is defined as the percentage of impostor match scores that 
exceed the acceptance threshold. 
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Figure 6. Cumulative match characteristic (CMC) for varied stimulus type, spatial accuracy, and temporal resolution. Rank-k identification rate is the 
percentage of individuals for which the correct match is found within the top k matches. 
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C. The Effects of Spatial Accuracy 
There is a stark contrast between spatial accuracy tiers that 

is immediately obvious from the ROC and CMC curves. From 
the baseline of 0.5° to the next accuracy tier of 1.0°, biometric 
accuracy is substantially reduced in both verification and 
identification scenarios, with equal error rate increasing from 
28% to 38% and rank-1 identification rate reduced from 38% 
to 11%. At all spatial accuracy tiers beyond 1.0°, biometric 
accuracy in both verification and identification scenarios is 
virtually indistinguishable, and is essentially random. 

It should be noted that the dithering approach applied to 
reduce spatial accuracy may not accurately model the spatial 
accuracy of specific individuals and systems. There exists no 
current literature that mathematically describes the distribution 
of eye tracking error across the screen. As such, we have 
employed a uniform distribution of random noise as an 
approximation. 

D. Further Analysis 
Further analysis was conducted on the eye movement 

recordings generated in the 3rd experiment (due to the larger 
subject pool) to identify any discernible effect of age or 
gender. In the case of gender, there was no obvious difference 
in the error rates obtained by male (34% EER, 7% IR) and 
female subjects (36% EER, 10% IR). For age, the recordings 
were split into two groups of approximately equal size, 
subjects 20 years of age and under, and subjects older than 20 
years of age. In this case, the results suggest that the 
considered techniques produced more accurate identification 
on the older age group (32% EER, 9% IR) than on the younger 
age group (36% EER, 7% IR). 

To assess the liveness detection properties of the considered 
techniques, artificial eye movement recordings were generated 
as in Komogortsev and Karpov’s assessment of OPC 
biometrics [28]. An SVM was applied at the feature level to 
classify individual recordings as human or spoof, utilizing 
leave-one-out cross-validation to generate liveness scores. On 
the eye movement recordings of the 2nd experiment, CEM-P 
was able to achieve 0% false live rejection rate, 0% false 
spoof acceptance rate, and 100% classification accuracy. For 
comparison, on the same dataset, with the same eye model, the 
OPC technique was only able to achieve 27% false live 
rejection rate, 4% false spoof acceptance rate, and 85% 
classification accuracy [28]. 

In order to estimate the computational performance of the 
proposed techniques, profiling was performed and averaged 
over 1000 iterations on a dataset of 100 subjects, with 2 
sessions per subject (a subset of the data from the 3rd 
experiment). The Sensor module required an average 11.5 
seconds to load and parse all 200 recordings; that is, 57.5 
milliseconds per recording. The Feature Extraction module 
required 10.3 seconds to classify and merge fixations and 
saccades across all 200 recordings; or, 51.5 milliseconds per 
recording. The Matching module required 36.8 seconds to 
perform comparison, information fusion, and calculate match 
scores for all 19900 recording combinations; or, roughly 1.8 
milliseconds per comparison. It should be noted that these 
results were obtained using single-threaded execution on a 2.7 
GHz processor with 16 GB of RAM; however, these 
algorithms are easily parallelized for increased performance. 

E. Future Research 
Perhaps the most important step toward improving the 

accuracy of eye movement biometrics is large-scale data 
collection. The NIST and related organizations have spent 
years collecting and distributing thousands of biometric 
templates for standards such as fingerprint and iris, providing 
a common benchmark from which to measure the accuracy of 
new algorithms. One of the major disadvantages of eye 
movements is the need to collect data over time. This property 
effectively limits the number of biometric templates that can 
be captured in a given time period, and has lead to a number 
of disjoint datasets collected by various researchers. Access to 
large, open, and freely available datasets is essential to the 
advancement of eye movement biometrics. 

Another major concern is the continued development of 
mathematical models of human eye movement. At present, 
there do not exist any models of the oculomotor plant that are 
capable of reproducing all forms of human eye movement 
with absolute accuracy. As our mechanical understanding of 
the human visual system increases, so too will the biometric 
accuracy of OPC-based techniques that attempt to estimate 
physical constants from measurable properties; however, at 
the same time, as these models become more sophisticated it 
will become necessary to invest additional effort into detecting 
and identifying spoofed recordings. 

Beyond this, the most immediate necessity is the refinement 
of existing biometric techniques, and the development of 
further eye movement features. For example, it may be 
possible to improve biometric accuracy by utilizing the 
properties of: corrective eye movements, such as glissades and 
saccadic dysmetria; task-specific eye movements, such as 
within-word fixation distributions and regressive saccades in 
reading; and more complex eye movement types, which are 
typically more difficult to reproduce and identify, such as 
smooth pursuits and optokinetic reflex. 

There are, further, a number of aspects to biometric 
performance that must be examined. Among these, the effects 
of fatigue, caffeine, tobacco, and alcohol on eye movements 
are well documented [8], and additional research will be 
necessary to quantify their impact on the biometric viability of 
eye movements. Similarly, template aging and permanence 
studies are still necessary to identify the rate and magnitude of 
degradation over time for the biometric signatures produced 
by eye movement biometrics. The development of quality 
metrics, with which to identify and ignore unsuitable 
recordings, is still necessary to ensure that enrollment and 
authentication are not skewed by noise; and more rigorous 
liveness detection research is necessary to confirm the 
accuracy, or inaccuracy, of eye movements in this regard. 

Finally, we must examine the hardware itself. As the frame 
rate and resolution of general-purpose cameras increases, so 
will the accuracy and efficiency of video-oculography 
techniques, thereby lower the cost and increasing the accuracy 
of eye movement biometrics. As face and iris detection are 
already key components of most video-oculography systems, 
it is only a short leap to fast and cost-effective multi-modal 
systems that incorporate face, iris, and eye movement 
biometrics through a single sensor. 
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V. CONCLUSION 
This paper has presented an objective evaluation of the 

effects of eye tracking specification and stimulus presentation 
on the biometric viability of complex eye movement patterns 
(CEM). Six spatial accuracy tiers (0.5°, 1.0°, 1.5°, 2.0°, 2.5°, 
3.0°), six temporal resolution tiers (1000 Hz, 500 Hz, 250 Hz, 
120 Hz, 75 Hz, 30 Hz), and five stimulus types (simple, 
complex, cognitive, textual, random) were evaluated to 
determine acceptable conditions under which to collect viable 
eye movement data for biometric purposes. 

Based on the results, we conclude that stimulus type has 
little, if any, effect on the accuracy of eye movement-based 
biometrics. Eye tracking systems with spatial accuracy of less 
than 0.5° and greater than 250 Hz temporal resolution are 
recommended for biometric purposes, due to degradation in 
accuracy as specifications are reduced beyond this point. Eye 
tracking systems with greater than 1.0° spatial accuracy or less 
than 30 Hz temporal resolution are not likely to produce viable 
biometric information. 
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