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ABSTRACT  

This paper presents a template aging study of eye movement biometrics, considering three distinct biometric techniques 
on multiple stimuli and eye tracking systems. Short-to-midterm aging effects are examined over two-weeks, on a high-
resolution eye tracking system, and seven-months, on a low-resolution eye tracking system. We find that, in all cases, 
aging effects are evident as early as two weeks after initial template collection, with an average 28% (±19%) increase in 
equal error rates and 34% (±12%) reduction in rank-1 identification rates. At seven months, we observe an average 18% 
(±8%) increase in equal error rates and 44% (±20%) reduction in rank-1 identification rates. The comparative results at 
two-weeks and seven-months suggests that there is little difference in aging effects between the two intervals; however, 
whether the rate of decay increases more drastically in the long-term remains to be seen. 
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1. INTRODUCTION  
Biometrics is a far-reaching and ever-changing field1, an amalgamation of bits and pieces of numerous disciplines, 
working together to answer a single question: What makes us unique? This question has led to the study of a wide range 
of human characteristics, physical and behavioral, including: fingerprints, iris patterns, speech, handwriting, walking 
gait, and facial structure. 

Many of these characteristics have been under active research in a biometric context for decades, some tracking initial 
investigations as far back as the mid to late 19th century2. More recently, study of the human visual system has shown 
that eye movements provide a number of novel and unique properties that make them desirable as a behavioral 
biometric. 

Template aging is the term used to address the degradation in biometric accuracy that occurs as physical and behavioral 
traits are altered by the growth and decay of the human body3. Aging effects such as bone growth, reduced skin 
elasticity, reduced muscle strength, reduced sight/hearing, disease, and illness may affect biometric modalities to 
different extents4. 

Template aging effects have been shown to reduce biometric accuracy in many standard biometric modalities, including: 
face5, iris6, fingerprint7, and voice8 recognition. Algorithms have been devised to address these effects9, correcting for 
the effects of age on biometric templates, though in this regard there is still much work to be done. 

As a relatively recent behavioral biometric, the effects of template aging on eye movement biometrics has not been 
investigated in any capacity. It is likely that, like the face and iris, eye movements are not invariant to the effects of age; 
however, the degree and extent to which aging affects the biometric viability of eye movements is an as of yet unstudied 
topic. We hypothesize that the effects of template aging on eye movement biometrics may be noticeable yet insignificant 
in the short-to-midterm (i.e. weeks / months), and attempt to quantify the rate of re-enrollment required to maintain 
biometric viability. 

2. EYE MOVEMENT BIOMETRICS 
In this paper, we consider three techniques for the application of eye movement biometrics, defined previously in the 
relevant literature: complex eye movement patterns10, complex eye movement behavior11, and oculomotor plant 
characteristics12. Each of these techniques concerns itself with fundamentally different eye movement properties and 
distinct methods of comparison. 



 
 

 
 

 

2.1 Human Visual System 

The human visual system is composed of two primary components, the oculomotor plant and brainstem control. The 
oculomotor plant encompasses the eye globe, six extraocular muscles, and the surrounding tissues and ligaments that 
provide both viscous and elastic properties to the whole. The brainstem control is responsible for the generation and 
transmission of the neuronal control signal, a blanket term for the omnipause and burst neurons that cause contraction 
and relaxation of extraocular muscles 

Together, these components produce the many and varied types of human eye movement, including: fixation, saccade, 
smooth pursuit, vergence, optokinetic reflex, and vestibule-ocular reflex. Of these, fixations and saccades are of 
particular interest due to their highly stereotypical and reproducible behavior. Fixations occur when the eye globe is held 
in a relatively stable position, such that the fovea remains centered on an object of interest, providing heightened visual 
acuity; saccades occur when the eye globe rotates quickly between points of fixation, with very little visual acuity 
maintained during rotation. The term scanpath refers to the spatial path formed by a sequence of fixations and saccades. 

2.2 Complex Eye Movement Patterns 

Complex eye movement pattern (CEM-P) biometrics was the result of a first attempt at relating high-level neurological 
processes to basic and aggregate patterns found in the properties of human eye movements10. This early work placed a 
focus on scanpath theory13 and a number of traits that had previously proven useful indicators of software usability14. 

For a given eye movement recording, a biometric feature vector is generated to include the following statistics: scanpath 
length, scanpath convex hull area, fixation count, average fixation duration, regions of interest count, inflection count, 
average vectorial saccadic amplitude, average horizontal saccadic amplitude, average vertical saccadic amplitude, 
average vectorial saccadic velocity, average vectorial saccadic peak velocity, slope coefficient of the amplitude-duration 
relationship, slope coefficient of the amplitude-peak velocity relationship, and average velocity waveform indicator (Q). 

These statistics are compared individually, between recordings, using a Gaussian kernel to generate biometric match 
scores, and the scores for each feature are combined using an information fusion algorithm. In the original work on this 
topic10, a weighted mean was employed to perform information fusion, using a forward-search algorithm to select 
weighting; however, in the current paper, we employ a random forest for this purpose15. 

2.3 Complex Eye Movement Behavior 

Complex eye movement behavior (CEM-B) biometrics is a natural extension of the ideas expressed in the formulation of 
CEM-P biometrics11; however, the two techniques are fundamentally different in their approach. While CEM-P 
examines the distance between sums and averages of quantifiable eye movement patterns, CEM-B considers the overall 
distribution of fixations and saccades throughout a recording. 

For each recording, fixations and saccades are identified and quantified according to the following properties, where: 
fixations are described by start time, duration, horizontal centroid, and vertical centroid; and saccades are described by 
start time, duration, horizontal amplitude, vertical amplitude, average horizontal velocity, average vertical velocity, 
horizontal peak velocity, and vertical peak velocity. 

The distribution of these features is compared between recordings using the Cramér-von Mises statistical test, an 
extension of the Kolmogorov-Smirnov test used to compare the goodness of fit of two empirical distributions. This 
produces a biometric match score for each eye movement property (4 for fixations and 8 for saccades), which are then 
combined into a single match score using information fusion by random forest15. 

2.4 Oculomotor Plant Characteristics 

Oculomotor plant characteristic (OPC) biometrics arose as an attempt to estimate the physical properties of the 
oculomotor plant from the properties exhibited by saccadic eye movements12. A mathematical model of the oculomotor 
plant is employed to simulate saccadic eye movements, and an optimization problem is devised to estimate parameters of 
the model that most closely fit the simulated saccade trajectory to the trajectory of a measured saccade. 

In the current paper, we employ this technique as it was originally applied in a biometric context12, utilizing a two-
dimensional linear homeomorphic oculomotor plant model16 with the following parameters: series elasticity, length-
tension relationship, force-velocity relationship, passive viscosity*, tension slope, inertial mass*, activation time, 
deactivation time, tension intercept*, neural pulse, and neural pulse width*. These parameters are referred to as 



 
 

 
 

 

oculomotor plant characteristics (OPC), and except where noted (*), these parameters are applied separately for 
agonist/antagonist muscle pairs. 

The Nelder-Mead simplex algorithm17 is applied to estimate model parameters that minimize the absolute difference 
between measured and simulated saccade trajectories. For each recording, OPC are estimated for the horizontal 
component of each saccade separately (OPC-H), ignoring any saccade of less than 4° amplitude, less than 20 
milliseconds duration, or containing abnormal trajectory artifacts. Further, OPC estimation by the Nelder-Mead 
algorithm is constrained to a maximum of 13 minutes per saccade. The result is a biometric feature vector containing 
OPC values for each saccade in a recording, the distributions of which are compared between recordings using the 
multivariate Hotelling T2 test to generate a biometric match score18. 

3. METHODOLOGY 
To properly evaluate the proposed techniques, it was deemed necessary to examine biometric accuracy on both high- and 
low-resolution eye tracking systems. Existing eye movement datasets, collected by Komogortsev et al.19, 20, were utilized 
for comparative evaluation, with collection methodology in the following subsections. 

3.1 Participants 

Low-resolution eye movement data was collected for a total of 33 subjects (21 males, 12 females), ages 18 – 34 with an 
average age of 21 (SD = 3.3). 30 of the subjects performed 4 recordings each, and 3 of the subjects performed 2 
recordings each, generating a total of 122 unique eye movement recordings per stimulus. Subjects were given a 20-
minute break between the 1st and 2nd recording, with 7 month between the 2nd and 3rd recording, and 20 minutes 
between the 3rd and 4th recording. 

High-resolution eye movement data was collected for a total of 32 subjects (26 males, 6 females), ages 18 – 40 with an 
average age of 23 (SD = 5.4). 29 of the subjects performed 4 recordings each, and 3 of the subjects performed 2 
recordings each, generating a total of 122 unique eye movement recordings per stimulus. Subjects were given a 20-
minute break between the 1st and 2nd recording, with 2 weeks between the 2nd and 3rd recording, and 20 minutes 
between the 3rd and 4th recording. 

3.2 Apparatus & Software 

Low-resolution eye movements were recorded using video-oculography techniques and a common web camera. For 
these purposes, modified versions of the open-source ITU Gaze Tracker software21 and PlayStation Eye Camera22 were 
employed for monocular gaze tracking, providing a temporal resolution of 75 Hz and average calibration accuracy of 
1.0° (SD = 0.5°). Stimuli were presented on a flat screen monitor positioned at a distance of 540 millimeters from each 
subject, with screen dimensions of 375×302 millimeters, and screen resolution of 1280×1024 pixels. 

High-resolution eye movements were recorded using a high-performance commercial eye tracking system. For these 
purposes, the EyeLink 1000 was employed for binocular gaze tracking, providing a temporal resolution of 1000 Hz and 
average calibration accuracy of 0.7° (SD = 0.5°). Stimuli were presented on a flat screen monitor positioned at a distance 
of 685 millimeters from each subject, with screen dimensions of 640×400 millimeters, and screen resolution of 
2560×1600 pixels. 

In both cases, a chin rest was employed to improve stability. All algorithms and data analysis were implemented and 
performed in MATLAB, and run on a 3.1 GHz quad-core CPU with 16 GB memory. 

3.3 Procedure 

Eye movement recordings were generated for three distinct stimuli, including: a horizontal saccade stimulus (HSS), a 
random saccade stimulus (RSS), and a reading saccade stimulus (RES). For both high- and low-resolution eye tracking 
systems, stimulus presentation was roughly equivalent, with only minor variation required to accommodate different 
screen sizes. 

The horizontal saccade stimulus (HSS) employed a technique commonly used to evoke a fixed-amplitude saccade at 
regular intervals23. A small white dot jumped back and forth on a plain black background, eliciting a 30° horizontal 
saccade with each jump. The 30° amplitude was chosen due to screen constraints and the complications associated with 
separating low-amplitude saccades (less than 1°). Subjects were instructed to follow the white dot with their eyes, with 
100 saccades elicited per recording. 



 
 

 
 

 

The random saccade stimulus (RSS) applied the same techniques as the horizontal saccade stimulus. A small white dot 
jumped across a plain black background in a uniformly distributed random pattern, eliciting an oblique saccade of 
random amplitude with each jump. Subjects were instructed to follow the white dot with their eyes, with 100 saccades 
elicited per recording. 

The reading saccade stimulus (RES) presented a textual excerpt of moderate length and difficulty, in order to evoke eye 
movements as they naturally occur during reading. Textual excerpts were selected to ensure that readying required 
roughly 1 minute, line lengths and the difficulty of material was consistent, and learning effects did not impact 
subsequent readings. Subjects were given 1 minute for each textual excerpt, and a different excerpt was displayed for 
each session. 

Eye movement recordings were parsed to remove invalid data points. Recordings were stored in an eye movement 
database, with each record linked to the stimulus, subject, and session that generated the recording. The recordings were 
then processed and classified into fixations and saccades using an eye movement classification algorithm24, followed by 
micro-saccade and micro-fixation filters respectively. The initial classification algorithm (I-VT) classified individual 
data points with a velocity greater than 20°/sec as belonging to a saccade, with all remaining points belonging to 
fixations. The micro-saccade filter re-classified saccades smaller than 0.5° amplitude as fixations and the micro-fixation 
filter re-classified fixations of less than 100 milliseconds as saccades. Fixation and saccade groups were then merged, 
identifying fixation and saccade-specific features. 

For ease of reference the recording sessions were labeled alphabetically and grouped into subsets, where the 1st session 
was labeled A, the 2nd session labeled B, the 3rd session labeled C, and the 4th session labeled D. A subset consists of 
eye movement recordings from two sessions that represents a distinct time interval between recordings; for example, 
subset AB would include eye movement recordings from the 1st and 2nd sessions, and is representative of a 20-minute 
time interval. For both the high- and low-resolution eye tracking systems, recording subsets AB and CD represent a 20 
minute time interval; for the high-resolution eye tracking system, recording subsets AC, AD, BC, and BD represent a 2 
week time interval; and for the low-resolution eye tracking system, recording subsets AC, AD, BC, and BD represent a 7 
month time interval. 

Recording subsets were partitioned into training and testing sets according to a uniformly random distribution, and 
biometric match scores were generated according to the techniques described in Section 2, with algorithm thresholds and 
parameters selected on the training set(s) and error rates calculated on the testing set(s). 

Error rates were calculated for biometric verification and identification scenarios. In the verification scenario, each 
recording in the testing set was compared to every other recording in the testing set exactly once, and error rates were 
calculated from those comparisons. In the identification scenario, every recording in the testing set was compared to 
every other recording in the testing set, and identification rates were calculated from the largest match score(s) from each 
of the comparison sets. 

4. RESULTS 
Eye movement recordings were partitioned, by subject, into training and testing sets with a ratio of 1:1, such that no 
subject had recordings in both the training and testing sets. Experimental results were averaged over 20 random 
partitions for each recording subset, and error rates of recording subsets (AB, BC, etc.) in the same time interval (20 
minutes, 2 weeks, 7 months) were similarly averaged. 

4.1 Verification Scenario 

False acceptance rate (FAR) is defined as the rate at which imposter match scores exceed the acceptance threshold and 
false rejection rate (FRR) is defined as the rate at which genuine match scores fall below the acceptance threshold. The 
equal error rate (EER), shown in Figure 1, is the rate at which false acceptance rate and false rejection rate are equal. 

4.2 Identification Scenario 

Identification rate (IR) is defined as the rate at which enrolled subjects are successfully identified as the correct 
individual, where rank-k identification rate is the rate at which the correct individual is found within the top k matches. 
The rank-1 identification rate, shown in and Figure 2, is the rate at which the correct individual has the highest match 
score. 



 
 

 
 

 

 

 

 
Figure 1. Comparative equal error rates by system, technique, stimulus, and age group. 

 



 
 

 
 

 

 

 

 
Figure 2. Comparative rank-1 identification rates by system, technique, stimulus, and age group. 

 



 
 

 
 

 

4.3 Aging Effects 

To obtain a quantitative measure of aging effects, we measure the percentage change in equal error rates and rank-1 
identification rates, as shown in Table 1, from the 20-minute interval to the two-week and seven-month intervals. 

Table 1. Percentage change in biometric accuracy with aging. 

Interval Stimulus Biometric EER Change IR Change 
2 Weeks HSS CEM-B +20% -23% 

2 Weeks HSS CEM-P +10% -32% 
2 Weeks HSS OPC-H +10% -38% 

2 Weeks RSS CEM-B +65% -32% 

2 Weeks RSS CEM-P +48% -55% 

2 Weeks RSS OPC-H +23% -35% 

2 Weeks RES CEM-B +44% -20% 

2 Weeks RES CEM-P +14% -47% 

2 Weeks RES OPC-H +22% -23% 

7 Months HSS CEM-B +24% -43% 

7 Months HSS CEM-P +11% -55% 

7 Months HSS OPC-H +2% -60% 

7 Months RSS CEM-B +25% -51% 
7 Months RSS CEM-P +18% -61% 

7 Months RSS OPC-H +19% -53% 

7 Months RES CEM-B +28% -49% 

7 Months RES CEM-P +20% -22% 

7 Months RES OPC-H +10% -2% 

5. DISCUSSION 
Aging effects are immediately obvious from the results. Even as early as two weeks after initial enrollment, there is a 
noticeable increase in equal error rates and decrease in rank-1 identification rates from the baseline 20-minute interval. 
This tendency holds true for all considered eye tracking systems, stimuli, and biometric techniques. 

The differences in aging effects between the two-week and seven-month intervals are less obvious. At two weeks, equal 
error rates showed an average increase of 28% and rank-1 identification rates showed an average decrease of 34%; while 
at seven months, equal error rates showed an average increase of 18% and rank-1 identification rates showed an average 
decrease of 44%. 

Since it is safe to assume that error rates do not improve with time, as per the effects of equal error rate at two- weeks 
and seven-months, we must instead draw another conclusion. Applying a two-tailed Student’s t-test revealed no 
significant difference in the percent change in equal error rates (t(8) = 2.06, p = 0.074) or rank-1 identification rates (t(8) 
= 1.50, p = 0.173) at two-weeks and seven-months. As a result, we cannot draw useful conclusions from these 
differences, though it is possible to speculate that the differences in the rate of decay of biometric templates may be due 
to the differences in eye tracking specification (i.e. high- vs. low-resolution). 

In general, the biometric application of eye movements performed much poorer on the low-resolution eye tracking 
system. It is possible, and even likely, that the poor error rates on the low-resolution system left less room for 
degradation due to template aging, and may be responsible for the peculiarities evident in the differences between the 
two-week and seven-month intervals. 



 
 

 
 

 

With regard to individual stimuli, a two-way ANOVA indicated that there was no significant interaction effect between 
template aging effects and stimulus in either equal error rate (F(2, 17) = 1.47, p = 0.269) or rank-1 identification rate 
(F(2, 17) = 1.73, p = 0.219). Similarly, no significant interaction effect was identified between template aging effects and 
biometric algorithm, with: F(2, 17) = 0.25, p = 0.784, and, F(2, 17) = 0.65, p = 0.5413, respectively. 

Regarding, more generally, error rates without respect to template aging effects, we observe obvious interaction between 
biometric technique and stimulus, and substantial differences in biometric accuracy by technique. A two-way ANOVA 
indicated significant interaction effects between biometric technique and stimulus on the: high-resolution verification 
scenario, F(4, 53) = 4.6, p < 0.003; low-resolution verification scenario, F(4, 53) = 2.65, p < 0.046; and low-resolution 
identification scenario, F(4, 53) = 3.62, p < 0.012. This contradicts previous findings [19], which indicated that stimulus 
had no discernable effect on the accuracy of eye movement biometrics, specifically the CEM-P technique. 

At the algorithm level, CEM-B consistently achieved the lowest equal error rates and the highest rank-1 identification 
rates of the considered techniques, while CEM-P consistently performed the worst. It is interesting to note that, in terms 
of identification rate, OPC-H performed best on the horizontal stimulus and worst on the reading stimulus; and while we 
did not include the vertical OPC component due to time constraints, it is likely that it could be utilized to improve 
biometric error rates through information fusion. 

6. CONCLUSION 
This paper has presented a template aging study of eye movement biometrics, considering three distinct biometric 
techniques on multiple stimuli and eye tracking systems. Short-to-midterm aging effects were examined over two-week 
and seven-month intervals, on high- (1000 Hz) and low- (75 Hz) resolution eye tracking equipment. 

Based on the results, we find that aging effects are evident as early as two weeks after initial template collection, with an 
average 28% increase in equal error rates and 34% reduction in rank-1 identification rates. At seven months, we observe 
an average 18% increase in equal error rates and 44% reduction in rank-1 identification rates. The comparative results at 
two-weeks and seven-months suggest that there is little difference in aging effects between the two intervals; however, 
whether the rate of decay increases more drastically in the long-term remains to be seen. Future work in this area will 
likely consider long-term aging effects, on the order of years, and the possible application of corrective algorithms that 
may reduce the impact of aging. 
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