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Abstract 

This work investigates the possibility of detecting iris 
print-attacks via the analysis of a number of gaze-related 
features acquired in a process of eye tracking. Gaze 
estimation algorithms employ models based on the physical 
structure and function of the eye, providing thus a number 
of salient features that can be potentially employed for the 
detection of spoofing print-attacks. In our study, a 
combined dataset was assembled for the investigation of 
these features, consisting of eye movement recordings and 
the corresponding iris images collected from 100 subjects. 
The collected iris images were utilized in direct 
implementation of iris print-attacks against an eye tracking 
device. We developed a methodology for the detection of 
spoof indicative artifacts in the recorded signals, and fed 
the extracted features from the “live” and “spoof” eye 
signals into a two-class SVM classifier. The obtained 
results indicate a best correct classification rate (CCR) of 
95.7%. Furthermore, we demonstrate the moderate 
decrease in liveness detection rates during subsampling of 
the eye movement signal to frequencies as low as 15 Hz. 
This result indicates the usefulness of running gaze 
estimation algorithms on existing iris recognition devices 
where such sampling frequency rate is common. 

1. Introduction
For a long time the research concerning well-established

biometric modalities such as the fingerprints, iris, and face, 
moved towards a march for an optimization of the 
algorithmic techniques used during the representation and 
comparison of biometric templates. In this way, biometric 
systems gradually evolved in their current state of 
performance, capable of delivering impressively high 
accuracy rates, and performing biometric template 
extraction and matching speedily. In spite of the 
remarkable advances in the field, a thorny issue has been 
reported throughout the history of automated personal 
recognition, regarding the insufficient resistance of systems 
to spoofing attacks using counterfeits of the genuine 
biometric templates [1], [2], [3], [4]. An additional 
alarming concern is the easiness with what successful 

replicas can be constructed by using common materials, 
e.g. printing paper (iris and face) and gelatin (fingerprints). 
As a result, the development of techniques for the detection 
of such attacks appears as a compelling research task in the 
field of biometrics. The necessity for effective 
countermeasures is further emphasized considering the 
current trend of biometric technologies to migrate from the 
relatively controlled environments of military and 
government agencies, to personal appliances (e.g. 
smartphones, cars) and everyday transactions (banks, 
shopping etc.). 

The term liveness detection can be generally used to 
describe an ensemble of research techniques aiming at the 
recognition of signals generated from valid biometric 
templates (“live” samples) and the corresponding artificial 
imitations (“spoof” samples). In the field of iris biometrics, 
one of the first systematic attempts for the suggestion of 
countermeasures against direct iris spoofing print-attacks 
was presented in [5]. The techniques presented in that work 
included analysis of the frequency spectrum of iris images, 
examination of the eye reflectance properties for controlled 
static light patterns, and exploration of pupil dynamics. 
Characteristics of eye pupil were the main topic of research 
in the work presented in [6]. In this case, the proposed 
framework involved various computational techniques for 
the quantification of iris patch differences, and for the 
comparison of iris and pupil diameters. An approach based 
on the representation of texture using Local Binary Patterns 
(LBPs) was proposed in [7]. The suggested method was 
evaluated under a more sophisticated spoofing attack 
scenario, implemented with the use of printed contact 
lenses. A different route was followed in [8], with the 
presented methodology targeting on the detection of 
distinctive distortions in image quality, arising during the 
capturing procedure. Some characteristic examples of this 
kind of distortions involve focus features, motion blur, and 
occlusion artifacts. The liveness detection framework that 
was proposed in [9] was based on the discovery of “alien” 
frequencies in the spectrum of fake iris samples. The 
technique was evaluated using a large database of iris 
printouts constructed under controlled quality conditions.  

Recently, in [10], biometric techniques based on eye 
movements were evaluated for eye liveness detection, in a 
scenario simulating the attack with a mechanical replica of 
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the human eye. It should also be noticed an accelerated 
urgency in researching liveness detection methods, with the 
organization of liveness detection competitions regarding 
iris recognition [11] and other prominent biometric 
modalities [12], [13].  

1.1.  Motivation 
In the present research work, we explore the capabilities 

of an iris print-attack detection framework based on the 
process of gaze estimation. There are several studies (e.g. 
[3], [14]) demonstrating that direct iris print-attacks are 
easy to implement and remarkably efficient. During such 
an attack, an image of a real iris is obtained, printed with a 
high quality printer, and presented in front of the image 
sensor of an iris scanner. The printed image may have a 
hole in the place of the pupil, in order to by-pass the corneal 
reflection control check usually made by an iris-scanning 
device. It should be noted that an iris scanner and an eye 
tracking system essentially employ similar hardware, i.e., 
image sensor and an IR light, thus making it possible to do 
iris and eye movement-driven biometrics on the same 
device [15]. The hole in the printed image of the iris allows 
for the corneal reflection movement to be recorded, making 
possible a print-attack even against sophisticated biometric 
systems that incorporate eye tracking capabilities. 

This possibility, of using a very simple replica (printed 
image) to spoof an iris recognition device running eye 
tracking algorithms, motivated us to develop a 
methodology to detect such spoofing attempts. This work 
presents for the first time experimental data involving a 
practical print-attack spoofing scenario, performed against 
an eye tracking device. Our contribution may be 
summarized as follows: 

1) We provide a theoretical description of eye gaze 
estimation process based on Pupil Center Corneal 
Reflection (PCCR) technique, and present the possible 
artifacts that may arise to the recorded eye movement 
signals during an iris print-attack.  

2) We develop a methodology for the detection of 
print-attacks, based on the analysis of the generated eye 
movement signal distortions. 

3) We evaluate performance of the proposed method 
against actual print-attacks. A two-stage experiment was 
organized, involving “live” eye gaze and iris image 
recordings from 100 subjects, and the utilization of the 
respective printed iris images for performing attacks 
against an eye tracking device, that simulated iris scanner 
with incorporated eye movement detection abilities. 

4) We demonstrate that the reduction of the temporal 
sampling rate of eye image capturing to a level common to 
existing iris biometric systems brings about only a small 
decrease in the detection rates for the spoof attack. This 
result is supporting a possible incorporation of eye tracking 
features in a multi-modal iris recognition system. 

2.  Gaze Estimation in the Case of Print-Attack 
Iris Spoofing 

2.1.  Theoretic Framework of Gaze Estimation 
In this section we provide an overview of the theoretical 

background that describes gaze estimation for the general 
case of a Pupil Center Corneal Reflection (PCCR) eye 
tracking system. We decided to focus on PCCR technique 
due to its widespread adoption in the modern eye tracking 
equipment, given its favorable characteristics regarding 
accuracy and operational stability. A comprehensive 
survey describing different eye-gaze models and 
techniques can be found in [16]. 

We may define the Point of Gaze (POG) as the 
intersection of the visual axes of an observer eyes with the 
observed stimulus. Estimation of POG may be 
accomplished with the use of one or more light sources, and 
one or more cameras typically operating in the infrared 
domain. An increasing number of light sources and/or 
capturing cameras leads to an equivalent increase in the 
degrees of freedom allowed for head movements. Given the 
fact that the visual axis and the optic axis do not coincide in 
the human visual system, gaze estimation is implemented 
in two stages: a) estimation of the optic axis using the 
optical geometry of the eye tracking setting and eye 
properties, and b) reconstruction of the visual axis from the 
estimated optic axis using only eye properties. 

The adopted mathematical formulation involved during 
gaze estimation is based on the general framework 
described in [17]. In Figure 1, we present a schematic 
depicting the configuration that can be used for the 
estimation of POG, for the simple case of one light source 
and one camera. 

 
Since the first step for the estimation of POG requires the 

computation of optic axis, we need to find two points that 
the axis crosses, and calculate their coordinate vectors. 
From Figure 1, we may observe that the optic axis crosses 
the center of the corneal curvature (𝒄) and the pupil center 

Figure 1: Diagram of the gaze estimation configuration for a 
PCCR based system. 

l	  : light  source 
q	  : point of reflection 
r	  : point of refraction 
p	  : pupil center 

c	  : center of corneal curvature 
d	  : center of eye rotation 
v	  : image of pupil center 
u	  : image of corneal reflection 

o	  : nodal point of the camera 
θ	  : angle between optic axis    
     and horizontal plane 
α	  : angle between optic axis     
      and visual axis  
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(𝒑 ). An eye tracking system is able to calculate the 
coordinate vectors of these two points by analyzing the 
captured images of the corneal reflection center (𝒖) and the 
center of the pupil (𝒗 ), and by employing the optical 
geometry and the properties of human eye structure. Let us 
denote 𝐾 the distance between the pupil center (𝒑) and the 
center of the corneal curvature (𝒄). Then, we may extract an 
equation connecting these two points as: 

𝒑 − 𝒄 = 𝐾         (1) 

The exact value for parameter 𝐾  depends on the eye 
structure, and can be calculated from a calibration 
procedure occurring prior to the main gaze estimation 
process. 

Since 𝒑  and 𝒄  represent coordinate vectors, a set of 
additional equations are needed for their estimation. 
Optical geometry of the configuration used for gaze 
estimation (Figure 1) can be employed for the extraction of 
the remaining equations needed to determine 𝒑 and 𝒄. The 
condition that a ray of light coming from a point source 𝒍 is 
reflected at a point 𝒒 of the corneal surface can be written: 

                                     𝒒 − 𝒄 = 𝑅         (2) 
with 𝑅 being the radius of the hypothetical spherical mirror 
representing the cornea. As in the case of 𝐾, this parameter 
can be estimated through the calibration procedure. In an 
analogous manner, the condition that a ray of light coming 
from the center of the pupil 𝒑 is refracted at a point 𝒓 of the 
corneal curvature is formulated as: 

                                     𝒓 − 𝒄 = 𝑅         (3) 

In addition, points 𝒒 and 𝒓 are related with the captured 
images of the corneal reflection center 𝒖 and the refracted 
ray from the pupil center 𝒗 respectively, through the set of 
parametric equations: 

                               𝒒 = 𝒐 + 𝑘; 𝒐 − 𝒖        (4) 
𝒓 = 𝒐 + 𝑘< 𝒐 − 𝒗         (5) 

with 𝑘;, 𝑘< denoting configuration dependent parameters, 
and 𝒐 representing the nodal point of the camera. The laws 
of optic reflection and refraction may be employed for the 
extraction of the auxiliary equations needed to solve the 
system of equations (1) to (5) (see [17] for extended 
details), leading thus to the full estimation of the optic axis.  

Reconstruction of the visual axis is independent of the 
specific eye tracking configuration. Its orientation can be 
determined by calculating the relative angle 𝒂 formed with 
the optic axis, with regard to angle 𝜽, which is the angle 
between optic axis and the horizontal line crossing the 
center of eye rotation	  𝒅. Both angles depend exclusively on 
the observer’s eye structure, and they can be computed via 
the calibration procedure. With the orientation of the visual 
axis estimated, its reconstruction may be completed with 
the determination of the coordinates of a point that it 
crosses, which—in our case—is the already estimated 
center of the corneal curvature 𝒄 (see Figure1). 

2.2.  Gaze Signal Distortions Appearing during Iris 
Print-Attack Spoofing 

In the case of an iris print-attack there are several 
inconsistencies that affect the POG estimation procedure. 
The most important of them is the atypical relative 
positioning of the corneal reflection and the pupil center. 
Specifically, whereas for a “live” moving eye both the 
corneal reflection and the pupil center move, in the case of 
an iris printout the corneal reflection can still move but the 
pupil center appears to be stationary. Consequently, the 
relative positions of the pupil and corneal reflection centers 
would be abnormal compared to the case of a “live” eye. 
Another deficiency concerns the eye-structure parameters 
(e.g. R, K) that are estimated during the calibration 
procedure. As we will explain below, during a print-attack 
the calculated values for these parameters do not follow the 
typical range corresponding to “live” eyes. Given their 
incorporation during visual axis reconstruction and POG 
estimation, they can serve as an additional source of 
distortion appearing in the captured signals. 

In Figure 2, we demonstrate the unnatural behavior of 
the “spoof” eye during a print-attack, relative to the “live” 
eye. In both cases, a fixation has been performed to the 
same point, 3.5° above the primary eye position (eye 
looking straight ahead). In the case of a “live” eye, both the 
corneal reflection and the pupil center changed their 
positions. On the contrast, for the “spoof” eye the pupil 
boundary is fixed, and thus the pupil center appears to stay 
in the same position. Both the inconsistent behavior 
induced by the functional differences of a printed eye 
replica, and the qualitative inferiority of an iris printout, are 
translated into a number of signal distortions that can be 
detected in the corresponding eye movement recordings. 

 
1) Position Offsets 

The most conspicuous distortion appearing in gaze 
signals recorded during a print-attack, is the presence of 
position offsets due to the apparent unnatural movement of 
the center of the corneal reflection relative to the pupil 
center. Examples of such artifacts are depicted in Figure 3. 

Figure 2: Differences in the relative positioning of the corneal 
reflection and the pupil center, in the case of (a) a “live” eye and 

(b) a “spoof” eye. 
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The two factors that modulate the exact form of these 
distortions are the eye-structure parameters—calculated 
during the calibration procedure—and the mechanics of the 
gaze estimation process. During a typical eye tracking 
calibration procedure a subject looks at a set of predefined 
points (usually nine or five), placed at fixed locations. By 
solving a set of equations that include linear and non-linear 
terms a mapping is achieved, leading to the determination 
of several eye-structure specific parameters that can be 
used during the estimation of future gaze locations (more 
details regarding the calibration process for the eye tracking 
hardware we employed are provided in [18]). Although 
values of the parameters may vary from person to person 
(subject-specific), typically they lie on a bounded surface in 
case of a “live” eye [17]. The structural and functional 
inconsistencies during an iris print-attack result in the 
generation of a mapping (and thus calculation of the related 
parameters) that does not fit to that of a “live” eye. Since 
the calculated eye-structure parameters are subsequently 
incorporated in the gaze estimation equations (1) to (3), and 
used during the reconstruction of visual axis (angle 𝒂), they 
co-modulate position distortions in the recorded signals. 
Even for a theoretically infallible calibration procedure 
though, the creation of position offsets would be inevitable. 
Regardless of the validity of the calculated eye-specific 
parameters, in the case of a print-attack the image of pupil 
center 𝒗  will always appear misplaced relative to the 
respective image of the corneal reflection center 𝒖. This 
inherent inconsistency is propagated through equations (4) 
and (5) to the rest equations used to estimate POG, and in 
turn is translated to position offsets in the captured signal. 

 
 

2) Local Amplitude Distortions and Noise Artifacts 
The structural differences of an iris printout compared to 

the real eye affect not only the global characteristics of the 
recorded gaze signals but also their local amplitude levels. 
Gaze estimation inaccuracies during eye micro-movements 
and the incorrect models built during calibration, can result 
in the appearance of unnatural variability of local amplitude 
levels within the recorded signal. An example of this 
phenomenon may be observed in Figure 4. The solid lines 
mark the different amplitude levels in case of a “live” and a 
“spoof” signal. In addition, the inevitable qualitative 
deficiencies of an iris printout (no moisture, different 
surface, fitted hole not attached to the pupil), are further 
contributing to the appearance of enhanced noise artifacts 
in the “spoof” signals (Figure 4, dashed lines). 

 
3) Signal Invalidity 

Lastly, the aforementioned sources of artifacts can be 
considered responsible for the occasionally larger degree of 
eye movement signal loss in the case of a print-attack. This 
loss usually occurs due to blinks, eye moisture, and 
squinting, but in the case of a spoof replica presentation it 
occurs due to the eye tracking equipment inability to extract 
necessary features from the image for gaze estimation. 

3.  Liveness Detection Features 
The method that we developed for the detection of the 

spoof indicative distortions arising during a print-attack, 
was inspired by the Complex Eye Movement (CEM) 
Biometrics framework, presented in [19]. In the current 
approach, instead of identifying fixations and saccades in 
an eye movement recording, we perform a finer 
decomposition of the eye movement signal into a set of 
elementary units consisted of eye micro-movements. In the 
sequence, we use the formed signal units in order to 
calculate statistical features that represent position and 
amplitude level related properties. The extracted features 
are employed for the detection of signals that arise from an 
iris print-attack, and their separation from the valid ones. 

The initial decomposition of a recorded signal is 
performed using the Velocity Threshold Identification 

Figure 3: (a)-(b) Position offsets appearing in signals captured 
during an iris print-attack in comparison to (c)-(d) normal signals 

recorded from “live” eyes. 
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(I-VT) technique, described in [20]. This algorithmic 
procedure is usually employed for parsing an eye 
movement signal into sequences of normal fixations and 
saccades, by calculating the velocities of the recorded 
samples and comparing them using one or more thresholds. 
In our methodology, a carefully selected parameterization 
occurs for the segmentation of the gaze signal into 
micro-saccades and micro-fixations. Instead of merging the 
micro-saccadic and micro-fixation parts into individual 
fixations and saccades, we directly employ the elementary 
units consisted from eye micro-movements, for the 
extraction of signal features that incorporate both the global 
characteristics of the signal, related to position offsets, and 
the local cues, related to irregular amplitude and noise 
levels. Based on the signal characteristics, we utilize a 
velocity threshold of 5°/sec (it should be mentioned that for 
normal saccades this threshold is about 20°/sec):  
         𝑅𝑎𝑤𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 → 𝐼𝑉𝑇 5° 𝑠𝑒𝑐 → 𝑢V,	  	  	  𝑖 = 1, … , 𝑁   (6) 

with 𝑁 denoting the number of the elementary units (𝑢V) 
generated from the signal decomposition. 

In the original implementation of the CEM framework 
[19], several different primitive features were proposed for 
the description of fixation and saccade basic properties. 
From the provided ensemble of characteristics we selected 
the Horizontal Fixation Centroid and the Vertical Fixation 
Centroid features. During the experimental assessment of 
the possible traits that could be embodied in the developed 
technique, these specific features proved to be more 
informative and stable than the others, due to their high 
correlation with the positional attributes of the two 
categories of signals (“live”/“spoof”). In order to represent 
the local position characteristics of every elementary unit 
𝑢V, we calculate the centroid for the horizontal (𝑢_ℎ𝑜𝑟V) and 
vertical (𝑢_𝑣𝑒𝑟V) components: 

 𝑐_ℎ𝑜𝑟V = 𝑢_ℎ𝑜𝑟V(𝑘)`
abc 𝐾       (7) 

 𝑐_𝑣𝑒𝑟V = 𝑢_𝑣𝑒𝑟V`
abc (𝑘) 𝐾       (8) 

with 𝐾 denoting the number of discrete samples composing 
the ith elementary unit. The calculated vectors of centroids 
are then used for the formation of Liveness Detection 
Features (LDFs), by concatenating in a common feature 
vector—consisted of both the horizontal and the vertical 
components—the average value and the corresponding 
standard deviation over the centroids of different 
elementary units 𝑢V . The resulting feature accounts thus 
both for global position properties (average value term), 
and for the variability appearing in amplitude levels 
(standard deviation term). We have: 

 𝐿𝐷𝐹_ℎ𝑜𝑟 → 𝑎𝑣𝑔 𝑐_ℎ𝑜𝑟V , 𝑠𝑡𝑑(𝑐_ℎ𝑜𝑟V)       (9) 
 𝐿𝐷𝐹_𝑣𝑒𝑟 → 𝑎𝑣𝑔 𝑐_𝑣𝑒𝑟V , 𝑠𝑡𝑑(𝑐_𝑣𝑒𝑟V)        (10) 

The extracted features can be directly used for the detection 
of gaze signals recorded during an iris print-attack and 
those generated from live human eyes. 

4.  Experimental Validation 

4.1.  Experimental Methodology 
In order to evaluate the suggested scheme on the task of 

liveness detection, we performed a two-stage experiment: 
in the first stage we constructed a combined database, by 
recording the eye movements and the iris images from a 
large number of subjects. In the second stage, we employed 
the captured iris images to perform iris print-attacks on the 
eye tracking system that simulated iris scanner with eye 
tracking capabilities. The complete database that was used 
during our experiments is publicly available in 1. 
4.1.1   Experimental Stimulus 

The stimulus used in both experimental stages was a 
single point placed at a visual angle of 3.5°  above the 
primary eye position (eye staring straight ahead). Subjects 
were instructed to move their gaze towards this point, and 
fixate for a total duration of 15 seconds. Selection of this 
specific stimulus was driven by the necessity to inspect the 
fundamental properties of the gaze signal during a 
print-attack. It should be noted that the stationary stimulus 
represents the most difficult case regarding liveness 
detection, and can be directly generalized for the case of a 
stimulus containing excessive motion, where signal 
distortions are expected to be even worse. A second reason 
for the chosen scenario is related to the possibility to 
incorporate the developed scheme in a multi-modal system. 
In such a system, gaze estimation and iris capturing would 
be performed simultaneously, and consequently, an 
excessive movement of the eye would complicate the iris 
capturing procedure. 
4.1.2   Experimental Stage 1: “Live” Eye Recordings 

The experiment for collecting the “live” samples was 
implemented with the participation of 100 subjects (52 
male/48 female), ages 18-43 with an average of 22 years 
(SD 3.7). Every subject was enrolled totally twice, and the 
time interval between two enrollments was about 30 
minutes. During this time, the subject performed other eye 
tracking tasks with brief periods of rest. The recordings 
were performed with a monocular EyeLink 1000 eye 
tracker [21] running at 1000 Hz, with vendor reported 
spatial accuracy of 0.5° . Data from the left eye were 
recorded in all experiments. Each subject’s head was 
positioned at a distance of 550 mm from a computer screen 
(474 mm x 297 mm, resolution 1680 pixels x 1050 pixels), 
where the stimulus was presented. 

The iris images were obtained with a BMT-20 Iris 
Recognition System [22], capturing high quality iris images 
with resolution of 640 pixels x 480 pixels. As previously, 
each subject enrolled a total of two times, yielding a 
database of 200 unique pairs of iris samples. During the 
experiments only the left eye iris samples were used. 
 

1 http://cs.txstate.edu/~ok11/etpad_v1.html 
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Texas State University institutional review board 
approved the study, and every participant provided 
informed consent. 
4.1.3   Experimental Stage 2: Print-Attack Recordings 

For the second stage of the experiment, print-attack 
carriers were initially prepared by printing the captured iris 
templates on matte printer paper, via HP Laserjet 4350dtn 
gray scale printer, with a resolution of 1200 dpi x 1200 dpi. 
Selection of matte instead of glossy paper was dictated by 
the specificity of the implemented experiment, that 
involved recordings with an eye tracking device. As it was 
practically verified during our preparatory experimental 
assessment, the reflectance properties of glossy paper 
render extremely difficult any capturing of the pupil and/or 
the corneal reflection. In order to complete the preparation 
of the attack carriers, we carefully removed the pupil part 
from every printout, forming thus a hole that allowed 
corneal reflections to be captured.  

Implementation of print-attacks was performed by fitting 
every iris printout on an “eye patch” mask with a small 
window, allowing for a steady adjustment of the carrier to 
the person performing the spoofing attack. In order to 
ensure that the extracted liveness characteristics depend 
mainly on the print-attack specific deficiencies and not on 
inter-person specific features, a subject that did not belong 
to the formed experimental database was selected to 
perform the spoofing attacks. 

We decided to perform two different spoofing attack 
scenarios, in order to assess the effectiveness of the 
proposed scheme to detect distortions that are related both 
to the calibration stage and to the stimulus presentation 
stage: 

Spoofing Attack Scenario I (SAS-I). In the first attack 
scenario, the employed eye tracking system is directly 
attacked using the prepared iris printouts, both during the 
calibration procedure and during the main gaze recording 
phase (stimulus presentation stage). Gaze signals that are 
captured during such an attack, should carry distortions that 
arise from both sources. 

Spoofing Attack Scenario II (SAS-II). In the second 
attack scenario, the employed eye tracking system is 
attacked exclusively during the stimulus presentation stage, 
whereas the calibration procedure is implemented by a 
valid (“live”) eye. This scenario corresponds to the case 
that the attacker is capable to by-pass the calibration 
procedure (e.g. the system is pre-calibrated) and perform 
the spoofing attack directly during the main process. 

4.2.  Results 
4.2.1   Performance Metrics 

The feature vectors extracted from the “live” and 
“spoof” eye recordings are fed into a classification scheme 
based on a SVM classifier with a Gaussian Radial Basis 

Function kernel (σ = 1). Selection of a SVM classifier was 
decided due to its effectiveness on two-class problems, as 
the scenario regarding the detection of “spoof” and “live” 
signals. The following classification performance metrics 
were employed in order to evaluate the proposed method: 

Correct Classification Rate (CCR). CCR is defined as 
the percentage of correctly classified test samples (either 
“live” or “spoof”) to the total number of test samples. 

False Spoof Acceptance Rate (FSAR). FSAR is defined 
as the percentage of “spoof” test samples that are 
incorrectly classified as “live”. 

False Live Rejection Rate (FLRR). FLRR is defined as 
the percentage of “live” test samples that are incorrectly 
classified as “spoof”. Additionally, we can define True 
Positive Rate (TPR) = 1 – FLRR. 

Equal Error Rate (EER). EER is defined as the point of a 
Receiver Operating Characteristic (ROC) curve for which 
FSAR equals FLRR. The following procedure may be 
performed for the calculation of EER in the case of a SVM 
classifier: given the condition the two classes under 
consideration are not completely separable, the distances of 
the misclassified samples from the optimum separating 
hyperplane can be employed as “soft-scores”. By varying 
the acceptance threshold for these “soft-scores” a ROC 
curve can be constructed, making thus possible the 
determination of EER. 

Table 1. Performance rates for spoofing attacks of type SAS-I, 
SAS-II. 

SAS type CCR (SD)     
% 

FSAR (SD) 
% 

FLRR (SD) 
% 

ERR  
% 

SAS-I 93.1 (2.8) 12.1 (5.4) 1.7 (1.9) 4.3 (2.1) 

SAS-II 95.7 (2.1) 6.2 (3.2) 2.3 (2.4) 3.8 (1.9) 

 
Table 1 presents the calculated rates for both types of 

performed spoofing attacks (SAS-I, SAS-II). The 
demonstrated results were calculated using an 80%-20% 
training-testing split of sample pools, and the presented 
results are averages over 100 iterations. In Figure 5, we can 

Figure 5: ROC curves for spoofing attacks of types SAS-I, 
SAS-II. 
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observe the ROC curves constructed with the methodology 
described above, from which reported values for the EER 
were determined. 

During our experiments, we also decided to evaluate the 
influence of temporal resolution degradation on the 
suggested liveness detection scheme. Since the majority of 
iris scanning equipment operates at sampling frequencies 
as low as 15 Hz, assessment of our method’s behavior in 
such a range is crucial for a possible incorporation in a 
system that would capture both modalities (gaze and iris) 
simultaneously. For this reason, we subsampled both the 
“live” and “spoof” signals from the initial eye tracking 
frequency of 1000 Hz to a sampling frequency of 15 Hz. 
Table 2 demonstrates calculated performances for the 
scenario involving temporal resolution degradation, for 
both types of spoofing attacks. Correspondingly, in Figure 
6 we present the constructed ROC curves, used for the 
calculation of EERs. 

Table 2. Performance rates for spoofing attacks of type SAS-I, 
SAS-II, with the signals subsampled at a frequency of 15 Hz. 

SAS type CCR (SD)     
% 

FSAR (SD) 
% 

FLRR (SD) 
% 

ERR  
% 

SAS-I 92.7 (2.9) 8.2 (4.7) 6.4 (3.7) 6.6 (2.8) 

SAS-II 93.9 (2.4) 6.7 (3.8) 5.4 (3.7) 5.9 (2.7) 

 

5.  Discussion 
An inspection of the calculated performance rates and 

the overall behavior of the suggested scheme, as illustrated 
from the ROC curves, may reveal the effective separation 
of the “live” and the “spoof” eye signals, for the performed 
attack scenarios (SAS-I, SAS-II). The CCR reaches a 
maximum 95.7%, and the EER is as low as 3.8% (for 
SAS-II attack). Given the originality of the constructed 
database, consisted of “live” eye movements and their 
“spoof” counterparts, we cannot compare our results with 
other methods directly. However, we should notice that the 
accuracy of the proposed scheme is similar or in some cases 

even better than other approaches in the field, e.g., the 
reported results in [5], ranged from null to 11.1% for 
FSAR, and from null to 2.8% for FLRR. In [6], where pupil 
constriction features were explored, the reported CCRs 
were in the range of 82% to 99.9%. Recently, in [9], the 
extracted image spectrum features provided a 5% FSAR, 
for null false rejection of the genuine samples. 

A noteworthy observation concerns the superiority 
(even limited) of SAS-II rates over SAS-I performance. At 
a first glance, it might be expected to be easier to detect 
“spoof” signals for SAS-I scenario, since in this case 
samples are affected both from errors during calibration 
stage and during stimulus presentation stage. The observed 
performance differences can be attributed to the increased 
invalidity of SAS-I samples compared to SAS-II. 
Specifically, estimation of invalidity for the experimental 
datasets revealed an average rate of 19.7% for the case of 
SAS-I, 10% invalidity for samples of SAS-II and 3.5% for 
the “live” recordings. Consequently, this can be translated 
in the presence of greater degree of valid information 
during comparisons for the case of SAS-II, leading on a 
better separation of the “live” and “spoof” samples. 

The results regarding the experiments simulating 
temporal resolution degradation show only a moderate 
influence of frequency subsampling on the calculated 
classification rates. Additionally, it can be observed that the 
drop in performance is mainly driven by an increase of the 
FLRR. This behavior reflects the fact that the “live” 
samples are more susceptible to be influenced by temporal 
resolution degradation, since their captured patterns are 
originally more consistent than the “spoof” signals, which 
are already corrupted by distortions. 

We should point out that our research is subject to 
limitations, which should be accounted during inspection of 
the results. Our experiments were conducted in a restricted 
lab environment, minimizing the influence of any external 
environmental parameters. Furthermore, behavioral aspects 
might impact generation of gaze patterns, resulting on 
adverse effects during liveness detection. For example, 
possible changes in human behavior (e.g. due to tiredness, 
intoxication etc.) may result in gaze patterns that deviate 
from normality, thus potentially increasing the FLRR. 
Finally, it should be noticed that the proposed method was 
developed based on the characteristics appearing during a 
paper iris print-attack, which does not guarantee its 
effectiveness against more sophisticated methods of 
spoofing. 

6.  Conclusion 
In this work, we presented a research exploring the 

possibility to utilize gaze estimation as a framework for 
detecting iris print-attacks on an eye tracking capable iris 
recognition device. For this reason, we developed a method 
for the detection of the usual distortions appearing in eye 

Figure 6: ROC curves for spoofing attacks of types SAS-I, 
SAS-II, for signals subsampled at a frequency of 15 Hz. 
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movement signals in the case of an attack of this type. 
Furthermore, we practically evaluated our approach by 
constructing a database composed of eye movement 
recordings and the corresponding iris images, which were 
then used for the implementation of direct attacks to an eye 
tracking system. The results reveal the effectiveness of the 
proposed scheme to detected print-attack via eye 
movement signal analysis, even in the case when signal is 
captured at frequencies as low as 15 Hz. Our future plans 
include the investigation of more sophisticated signal 
analysis techniques to improve detection capabilities of our 
method, and also the inspection of other types of attacks, 
e.g. iris patterns printed on contact lenses. 
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