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1. INTRODUCTION 

From the systematic collection of handprints in 19th century India (Komarinski 2004), the field of biometrics has 
evolved substantially, encompassing such far-reaching modalities as: fingerprints (Jain, et al. 1999), head dimensions 
(Harmon, et al. 1981), iris patterns (Daugman 2004), and face geometry (Wiskott, et al. 1997). While the biometric 
field has grown far beyond its humble roots, the above-mentioned techniques are not without their flaws, and many 
are prone to exploitation by falsified features (Williams 2002). This has lead to the present need for biometric 
techniques that are not only capable of identifying an individual with high accuracy, but are capable of distinguishing 
falsified information, often encompassed by the properties of counterfeit-resistance and liveness detection. 

The human oculomotor system may be unique in its ability to address these issues, and is already employed in 
many biometric systems that make use of iris patterns (Daugman 2004), face (Abate, et al. 2007), retina patterns (Jain, 
et al. 2000), conjunctival vasculature (Crihalmeanu and Ross 2012), periocular information (Park, et al. 2009), eye 
movements (Kasprowski and Ober 2004), and pupil dilation (Bednarik, et al. 2005). The complex anatomical 
structure of the human oculomotor system and the dual aspect of physical and neurological components makes the 
accurate replication of eye movements practically infeasible outside of a living subject, providing inherent liveness 
detection and theoretically high counterfeit-resistance (Komogortsev and Karpov 2013; Komogortsev, et al. 2012b). 
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1.1 Human Oculomotor System 
The oculomotor plant, shown in Figure 1, encompasses the primary physical components of the human oculomotor 
system (Wilkie 1970), and is composed of the eye globe, six extraocular muscles, surrounding tissues, and various 
ligaments, tendon-like components, and liquids. Extraocular muscles include: the lateral and medial recti, responsible 
for horizontal rotation; the superior and inferior recti, 
responsible for vertical rotation; and the superior and 
inferior obliques, responsible for torsional rotation. 

When considered as a cohesive system, each 
component adds specific properties to the mechanics of 
the whole (Leigh and Zee 2006). The extraocular 
muscles provide the forces required to rotate the eye 
globe, with opposing muscle pairs performing mutually 
exclusive roles of agonist (AG) and antagonist (ANT), 
where the agonist muscle contracts and pulls the eye 
globe and the antagonist muscle expands to resist the 
pull. Each extraocular muscle is composed of both thin 
and thick filaments that cause a strict dependence 
between the force exerted by a muscle and its 
length/velocity of contraction. The eye globe provides 
inertia to the system, along with the resistive properties 
of the surrounding tissue and ligaments (Komogortsev 
and Khan 2008). 

The brainstem control describes the complex 
network of neurological components that signal the extraocular muscles to expand and contract (Leigh and Zee 2006). 
It should be noted that the term brainstem control is based on early modeling of the human oculomotor system, 
whereas eye movements are generated by components throughout the brain, not isolated to the brainstem itself. These 
components include sub-regions of the thalamus, superior colliculus, and posterior parietal cortex (Duchowski 2007), 
where: the thalamus is responsible for engaging visual attention; the superior colliculus is responsible for relocating 
visual attention; and the posterior parietal cortex is responsible for disengaging visual attention. These interconnected 
systems are ultimately responsible for the many and varied types of human eye movement. The brainstem control 
produces a signal that corresponds to the desired type, direction, and magnitude of eye movement, and the oculomotor 
plant responds, enacting the mechanical functions that produce the desired movement. 

The oculomotor plant, driven by the neuronal control signal, primarily exhibits six eye movement types described 
in detail by (Leigh and Zee 2006), these include: fixations, saccades, smooth pursuits, optokinetic reflex, vestibule-
ocular reflex, and vergence. Fixation occurs when the eye globe is held in a relatively stable position to provide visual 
acuity on a fixed point; saccades occur when the eye globe rotates rapidly between points of fixation, with little visual 
acuity maintained during rotation; smooth pursuit occurs when the eye globe rotates slowly, maintaining fixation on a 
slowly moving point; optokinetic reflex refers to the sequence of smooth pursuit and saccadic eye movements which 
occur when the eye attempts to maintain a fixation on a rapidly moving point; vestibulo-ocular reflex refers to the 
corrective eye movements which occur to maintain a fixation on a stationary point during head movement; and, 
vergence refers to the corrective eye movements which occur to maintain a fixation on a point whose distance 
changes, without horizontal or vertical motion in the visual field. Of these, fixations and saccades are of particular 
interest in the field of human-computer interaction, as they are simple and easy to evoke, measure, and identify on a 
stationary screen. These eye movements are affected not only by the physical structure of the oculomotor plant, but 
also by frequency characteristics of the neuronal control signal and its speed of propagation. 

1.2 Previous Research 
The foundations of eye movement-related biometrics stem from the early work of (Noton and Stark 1971), in defining 
a branch of study known as scanpath theory. The term scanpath refers to the spatial path formed by a sequence of 
fixations and saccades. In 1971, Noton and Stark found that the scanpath formed by a subject during the initial 
viewing of a pattern was repeated in 65% of subsequent viewings. Further, the scanpath formed for a given stimulus 
pattern tends to vary from person to person (Noton and Stark 1971; Rayner 1998; Schnitzer and Kowler 2005). These 
properties provide a basis for the use of eye movements as a biometric. 

 
Figure 1. The oculomotor plant. 
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To our knowledge, (Kasprowski and Ober 2004) was the first to investigate the viability of eye movements in a 
biometric context. In doing so, they considered the first 15 cepstral coefficients of the gaze position across each 
recording, a technique commonly applied to speech recognition (Jain, et al. 2007). Information fusion was applied by 
naïve Bayes, C4.5 decision trees, SVM polynomial, and k-nearest neighbor (k = 3 and 7). The best reported results 
provided 1% average false acceptance rate and 29% average false rejection rate over 10-fold stratified cross validation. 

(Silver and Biggs 2006) followed, investigating higher-level eye movement features in conjunction with keystroke 
biometrics, including: the 8 most significant fixations, fixation count, average fixation duration, average saccade 

velocity, average saccade duration, and average vertical position. Features were combined using a neural network, and 
provided 66% true positive percentage and 98% true negative percentage on the considered dataset. 

(Holland and Komogortsev 2011) considered individual and aggregated scanpath properties, including: fixation 
count, average fixation duration, average vectorial saccade amplitude, average horizontal saccade amplitude, average 
vertical saccade amplitude, average vectorial saccade velocity, average vectorial saccade peak velocity, velocity 
waveform indicator (Q), scanpath length, scanpath area, regions of interest, inflection count, amplitude-duration 
coefficient, and amplitude-peak velocity coefficient. Features were compared with a Gaussian kernel and combined 
by weighted average, achieving a 27% equal error rate. 

Most recently, (Rigas, et al. 2012) evaluated the use of graph-based matching across the gaze position of each 
recording, comparing minimum spanning trees using the multivariate Wald-Wolfowitz runs test. These techniques 
achieved a 30% equal error rate and 70% rank-1 identification rate. 

1.3 Motivation & Hypothesis 
We hypothesize that the anatomical characteristics of the human eye may be accurately estimated from the properties 
of saccadic eye movements, and that these oculomotor plant characteristics may be utilized to uniquely identify 
individuals in a biometric context. 

In previous work, Komogortsev et al. examined the feasibility of the proposed techniques under a verification 
scenario using a fixed, high-resolution dataset (Komogortsev, et al. 2012c). The current paper expands greatly on 
previous work, adding: random selection of training and testing partitions; biometric error rates under both 
verification and identification scenarios; performance comparison on a low-resolution dataset; an extended 18-
parameter oculomotor plant model; an in-depth statistical analysis of model parameters; and a comparison to the 
biometric performance of the 9-parameter oculomotor plant model. 

2. OCULOMOTOR PLANT CHARACTERISTICS 

In this work, we build on the methods proposed by (Komogortsev, et al. 2012c). To perform biometrics via 
oculomotor plant characteristics (OPC), a mathematical model of the oculomotor plant simulates saccadic trajectories 
and compares them to the recorded trajectory extracted from the gaze position across each saccade. The computed 
differences trigger OPC estimation procedures, which attempt to find optimal OPC values that minimize the 

 

Figure 2. Eye movement signal with classified fixations and saccades (left); 9-parameter oculomotor plant model biometric template (right). 
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difference between the recorded and simulated trajectories. Optimized OPC values form a biometric template that can 
be employed for biometric verification and identification, as shown in Figure 2. 

2.1 Oculomotor Plant Model 
The goal of the oculomotor plant model is to describe a system of equations capable of accurately reproducing the 
characteristics of normal human eye movements in real-time, while accounting for the unique properties of the 
extraocular muscles responsible for rotation of the eye globe. From these equations, the hidden and unobservable 
muscle properties specific to an individual (similar to a fingerprint) could be determined programmatically from the 
measurable properties of eye movements. A number of models have been proposed by various sources (Quaia and 
Optican 2003), generally representing the oculomotor plant linearly in one-dimension (horizontal) or non-linearly in 
three dimensions (horizontal, vertical, torsional). 

In the current work, we employ a two-dimensional linear homeomorphic model of the oculomotor plant as 
developed by (Komogortsev, et al. 2012a; Komogortsev and Jayarathna 2008). The considered model is driven by 
twelve differential equations, and is capable of simulating saccades with properties resembling normal humans 
(Komogortsev, et al. 2012a) on a two-dimensional plane (horizontal and vertical). Advantages of the considered 
model include: major anatomical components are accounted for and can be estimated; linear representation simplifies 
the parameter estimation process, while producing accurate simulation data within the bounds of a computer monitor; 
the architecture of the model allows separation into two one-dimensional models of the form described by 
(Komogortsev and Khan 2008), providing for concurrent execution during parameter estimation and eye movement 
simulation. The 9- and 18-parameter models described in the following sub-sections are one-dimensional models 
containing the corresponding physical parameters to simulate each component of movement – vertical or horizontal. 
For information on the use of one-dimensional models to simulate two-dimensional movement, please refer to 
(Komogortsev, et al. 2012a). 

2.2 Oculomotor Plant Characteristics 
We refer to the parameters of the oculomotor plant model as oculomotor plant characteristics (OPC). These 
parameters describe important physical and neurological properties exhibited by the system. Each extraocular muscle 
exhibits: series elasticity, the resistive properties of a muscle, associated with tendons, while the muscle is innervated 
by the neuronal control signal; length-tension relationship, the relationship between the length of a muscle and the 
force it is capable of exerting; force-velocity relationship, the relationship between the velocity of muscle 
expansion/contraction and the force it is capable of exerting; tension slope and tension intercept, which dictate the 
reaction of the muscle to innervation and ensure equilibrium during fixation, respectively. As well, the inertial mass 
of the eye globe and passive viscosity of the surrounding tissue must be taken into account.  

The considered model employs a pulse-step representation of the neuronal control signal, in which the neural step 
indicates the magnitude of the neural signal during fixation, the neural pulse indicates the magnitude of the neural 
signal during saccade, and the pulse width indicates the duration of the neural pulse. Activation and deactivation time 
describe the time required for changes in the neuronal control signal to propagate through the extraocular muscles. 

2.3 Oculomotor Plant Model (9-Parameter) 
The 9-parameter oculomotor plant model simplifies certain assumptions of the model by employing fixed constants in 
the estimation of the neuronal control signal as depicted by the equations in Section 2.5.2 of (Komogortsev and Khan 
2008). As a result, a variable parameter vector for the following oculomotor plant characteristics is estimated by the 
process described by (Komogortsev, et al. 2012c), with each entry followed by notation and initial value: 

1. Series Elasticity [KSE = 2.5 g/°] 
2. Length-Tension Relationship [KLT = 1.2 g/°] 
3. Force-Velocity Relationship (AG) [BAG = 0.046 g•s/°] 
4. Force-Velocity Relationship (ANT) [BANT = 0.022 g•s/°] 
5. Passive Viscosity [BP = 0.06 g•s/°] 
6. Tension Slope (Agonist) [NAG_C = 0.8 g] 
7. Tension Slope (Antagonist) [NANT_C = 0.5 g] 
8. Inertial Mass [J = 0.000043 g•s2/°] 
9. Tension Intercept [NFIX_C = 14.0 g] 
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2.4 Oculomotor Plant Model (18-Parameter) 
The 18-parameter oculomotor plant model includes all components of the 9-parameter model, with a few additions 
and modifications. Of particular note: the series elasticity and length-tension parameters are split into agonist and 
antagonist counterparts; muscle activation/deactivation time constants that convert the neuronal control signal to 
activate state tension are added to the model; and additional non-fixed parameters are added for neural pulse 
magnitude and duration. The expanded model produces a variable parameter vector for the following oculomotor 
plant characteristics, with each entry followed by notation and initial value: 

1. Series Elasticity (AG) [KAG_SE = 2.5 g/°] 
2. Series Elasticity (ANT) [KANT_SE = 2.5 g/°] 
3. Length-Tension Relationship (AG) [KAG_LT = 1.2 g/°] 
4. Length-Tension Relationship (ANT) [KANT_LT = 1.2 g/°] 
5. Force-Velocity Relationship (AG) [BAG = 0.046 g•s/°] 
6. Force-Velocity Relationship (ANT) [BANT = 0.022 g•s/°] 
7. Passive Viscosity [BP = 0.06 g•s/°] 
8. Tension Slope (AG) [NAG_C = 0.8 g] 
9. Tension Slope (ANT) [NANT_C = 0.5 g] 
10. Inertial Mass [J = 0.000043 g•s2/°] 
11. Activation Time (AG) [τAG_AC = 11.7] 
12. Activation Time (ANT) [τANT_AC = 2.4] 
13. Deactivation Time (AG) [τAG_DE = 2.0] 
14. Deactivation Time (ANT) [τANT_DE = 1.9] 
15. Tension Intercept [NFIX_C = 14.0 g] 
16. Neural Pulse (AG) [NAG_SAC = 55 g] 
17. Neural Pulse (ANT) [NANT_SAC = 0.5 g] 
18. Neural Pulse Width [PW = § ms] 

All neural pulse width (§) values between 6 milliseconds and the duration of the saccade were examined. 
(Komogortsev and Khan 2008) provide further description of each OPC parameter. Parameters for both the 9- and 18-
parameter models correspond to the matrix equations described in Section 3.2 of (Komogortsev, et al. 2012c). 

2.5 Estimation of Oculomotor Plant Characteristics 
In order to estimate oculomotor plant characteristics for a given saccade, the model is initialized with default 
parameters based on the relevant literature (Bahill 1980; Komogortsev and Jayarathna 2008; Komogortsev and Khan 
2008). An error function is defined as the absolute difference between the measured and simulated eye movement 
trajectory. Several forms of error function were tested during early investigation, and according to empirical 
observation the absolute difference provided an advantage over other estimations such as root mean squared error 
(RMSE) due to its higher absolute sensitivity to the differences in trajectory. 

The Nelder-Mead simplex algorithm (Lagarias, et al. 1998) is used to estimate model parameters that minimize 
the error function. Lower and upper boundaries are imposed to prevent reduction or growth of each parameter to 
values less than 10% or greater than 1000% of its default value. Stability degradation of the numerical solution for the 
differential equations describing the model is used as an additional indicator for acceptance of the suggested 
parameter values by the estimation algorithm. 

3. METHODOLOGY 

Previous research has shown that minor variations in eye tracking specifications, such as spatial accuracy and 
temporal resolution, can have a substantial impact on the biometric viability of eye movements (Holland and 
Komogortsev 2012). Therefore, to properly evaluate the proposed techniques, it was deemed necessary to examine 
biometric accuracy on both high- and low-resolution eye-tracking systems. The considered scenarios present two 
extreme cases (small subject pool, high-quality recording equipment and large subject pool, low-quality recording 
equipment) from which it is possible to show the performance of the proposed biometric methods. Biometric 
performance results, presented in Section 4, were measured on existing eye movement datasets, collected by 
(Komogortsev 2012a; Komogortsev 2012b) and openly available online, with collection methodology presented in the 
following subsections. 
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3.1 Apparatus & Software 
High-resolution eye movements were recording using an EyeLink 1000 eye tracking system, with a temporal 
resolution of 1000 Hz, vendor-reported spatial accuracy of 0.5°, average calibration accuracy of 0.7° (SD = 0.5°), and 
average data validity of 98.3% (SD = 1.7%). Stimuli were presented on a flat screen monitor positioned at a distance 
of 685 mm from each subject, with dimensions of 640×400 mm, and screen resolution of 2560×1600 pixels. 

Low-resolution eye movements were recorded using a modified version of the open-source ITU Gaze Tracker 
software (Agustin, et al. 2009) and PlayStation Eye Camera, with a temporal resolution of 75 Hz and average 
calibration accuracy of 1.1° (SD = 0.8°). The PlayStation Eye Camera is roughly equivalent to, and may easily be 
substituted by, an inexpensive webcam. Average data validity is unreportable as it was not possible to detect when the 
eye tracker began tracking an area of the image other than the subject pupil (i.e. rim of glasses, eyelashes, hair, etc.). 
Stimuli were presented on a flat screen monitor positioned at a distance of 540 mm from each subject, with 
dimensions of 375×302 mm, and screen resolution of 1280×1024 pixels. 

A chin rest was employed to improve stability. SVMlight, an open source implementation of the Support Vector 
Machine (Vapnik 1999), was utilized for SVM-based fusion, all other algorithms and analysis were implemented and 
performed in MATLAB, and run using a 3.1 GHz quad-core CPU with 16 GB memory. 

3.2 Participants 
High-resolution eye movement data was collected for a total of 32 subjects (26 males, 6 females), ages 18 – 40 with 
an average age of 23 (SD = 5.4). 29 of the subjects performed 4 recording each, and 3 of the subjects performed 2 
recordings each, generating a total of 122 unique eye movement recordings. Subjects were given a 20-minute break 
between the 1st and 2nd recording, 1-2 weeks between the 2nd and 3rd recording, and 20 minutes between the 3rd 
and 4th recording. 

Low-resolution eye movement data was collected for a total of 172 subjects (116 males, 56 females), ages 18 – 49 
with an average age of 23 (SD = 5.3). 171 of the subjects performed 2 recordings each, and 1 of the subjects 
performed 1 recording, generating a total of 343 unique eye movement recordings. There was a 15-minute time 
difference between the 1st and 2nd recording. 

3.3 Procedure 
Data collection procedures were equivalent for both eye-tracking systems, and there was no overlap in the subject 
pools of the two datasets. Each subject generated eye movement recordings over multiple sessions for a single 
stimulus. The stimulus employed a technique commonly used to evoke a fixed-amplitude saccade at regular intervals 
(Leigh and Zee 2006). A single white dot jumped back and forth on a plain black background, eliciting a 30° 
horizontal saccade with each jump. These distances were chosen due to screen constraints, and the complications 
associated with separating low-amplitude saccades (less than 1°). Subjects were instructed to follow the white dot 
with their eyes, with 100 saccades elicited for each recording session, and a 1 second fixation duration between 
saccades, for a data collection time of 100 seconds per recording. 

Eye movement recordings were parsed and processed to remove invalid data points (often caused when the subject 
blinks or looks away from the screen), with average data validity for the high- and low-resolution recordings provided 
in Section 3.1. Recordings were stored in an eye movement database, with each record linked to the stimulus, subject, 
and session that generated the recording. The recordings were then processed and classified into fixations and 
saccades using an eye movement classification algorithm (Salvucci and Goldberg 2000). 

A velocity threshold algorithm (I-VT) with documented accuracy (Komogortsev, et al. 2010) was employed to 
classify individual data points with a velocity greater than 70°/sec as belonging to a saccade, with all remaining points 
belonging to fixations. A comparatively high classification threshold was chosen to reduce the impact of trajectory 
noise near the beginning and end of each saccade. Saccades of less than 4° amplitude, duration less than 20 
milliseconds, or containing abnormal trajectory artifacts were discarded. OPC parameters were estimated for each 
remaining saccade according to the techniques described in Section 2. 

Eye movement recordings were partitioned into training and testing sets, by subject, according to a uniformly 
random distribution; such that, all recordings from half of the subject pool of a given dataset appeared in the training 
set, with the other half of the subject pool in the testing set, and there was no subject overlap between training and 
testing. Error rates were calculated under biometric verification and identification scenarios for 20 random partitions 
of training and testing sets. Regression was performed on the error rates achieved across all partitions to generate 
receiver operating characteristic (false acceptance rate vs. true positive rate) and cumulative match characteristic (rank 
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vs. identification rate) curves, with R2 > 0.9 in all cases. Equal error rate, rank-1 identification rate, and area-under-
curve were calculated from the regression. 

Biometric match scores were generated comparing OPC parameters between pairs of recordings. Hotelling’s T-
square test (abbreviated as Hotelling T2 in the remainder of the manuscript) was used to compare across all OPC 
parameters (Hotelling 1931) and the two-sample Cramér-von Mises test was used to compare individual OPC 
parameters. In the latter case, match scores were generated for each OPC parameter, and information fusion was 
applied by weighted mean, likelihood ratio (Nandakumar, et al. 2008), linear support vector machine (Cortes and 
Vapnik 1995), and 50-tree random forest (Breiman 2001), with algorithm parameters selected on the training set. 
Error rates were then calculated on the testing set for individual matches and fusion techniques under biometric 
verification and identification scenarios. 

4. RESULTS 

Prior to conducting statistical tests of between subject differences based on 9- and 18-parameters, the data were 
evaluated for the general linear model assumptions of (1) homogeneity of variance between and within subjects using 
Bartlett’s test of homogeneity of variance (Bartlett 1937), (2) the type of autoregressive process of parameters 
measured within subjects over time (i.e. change in the estimated OPC vectors with each new processed saccade), and 
(3) screening the parameters for normality of the distributions. In the case where parameter distributions were 
statistically skewed (e.g., 95% of the parameters), we used a logarithmic transformation.  

The results of these diagnostic tests revealed that the variance of OPC vectors within subjects were highly 
unstable over time. A highly similar pattern was observed between subjects relative to the within subjects variation 
over time. Further diagnostics revealed that the initial 40 OPC vectors captured from the first 40 saccades counted 
from the beginning of the eye movement data collection process had higher stability of the variance than the 
remainder of the OPC vectors extracted from all subsequent saccades. This phenomenon possibly indicates the impact 
of drifting, eye tracking equipment slippage, and/or subject fatigue that might occur in case of the prolonged data 
capture. However, this pattern in the variance of the OPC data was inconsistent across subjects, therefore we worked 
with all measurements provided by the data capture in the 9- and 18-parameter models. 

4.1 Model Complexity 
The OPC estimated by each model displayed statistically significant departures from normality (i.e. skewness and 
kurtosis). To correct for statistically significant departures of skewness and kurtosis, parameter values were 
transformed using a logarithmic transformation prior to statistical analyses. In our study, the logarithmic 
transformation of parameters yielded greater conformity to the normal distribution (a requirement of parametric 
statistical hypothesis tests) and increased statistical power relative to any subsequent statistical tests (e.g., the 
Hotelling’s T2 test). 

To determine which model (i.e. the 9- vs. 18-parameter) was superior in terms of explaining unique parts of the 
variance accounted for by each of the OP models, a series of principal component analyses were conducted. There is 
no single statistical measure that provides conclusive evidence that one principal component analysis solution is 
superior to another. Therefore, two techniques/criteria were used to statistically compare the 9- and 18-parameter 
models in order to determine superiority of a model specific to our research goals (Tabachnick and Fidell 2006). 

The first criteria involved evaluating the percentage of variance accounted for by a component based on the 
eigenvalues (i.e. an optimal linear combination of parameters compressed into a single value) in the 9- and 18-
parameter models; we applied a target value of total or cumulative variance accounted for > .95. Additionally, the 
pattern of variance allocation across parameters was examined (e.g., what percentage of variance does each 
component explain in relation to the total number of components) (Hair, et al. 1998). 

The second criteria included an evaluation of the reproduced correlation matrix to inspect the pattern and 
magnitude of the residuals. Conducting a principal component or factor analysis involves comparing a correlation 
matrix based on the observed (empirical) data to a correlation matrix implied by a theoretical model (e.g., in our study 
the 9- and 18-parameter models across different resolutions). A residual analysis serves to evaluate the degree to 
which the empirical correlation matrix matches or aligns with a theoretical model. 

Results of these statistical techniques revealed that the 18-parameter model at resolutions of 75 Hz and 1000 Hz 
yielded a more complete explanation of the variance across the parameters than did the 9-parameter model. For 
example, in the 75 Hz 18-parameter model, at eigenvalue number 17 out of 18, over 3.5% of the total variance was 
explained. In the 1000 Hz data, at eigenvalue number 17 out of 18, 1.86% of the variance was explained. Conversely, 
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in the 75 Hz 9-parameter model, at eigenvalue number 9 out of 9, only 2.4% of the variance was explained, and in the 
1000 Hz data, at eigenvalue 9 out of 9, only 1.4% of the variance was explained. 

A statistical artifact of model fitting and linear optimization techniques such as PCA is that by adding more 
parameters improves model-data fit; however, in certain circumstances the improved fit may not yield practically 
useful information given the context of a particular model or the overall goal of an investigation. Nevertheless, our 
goal in using PCA was to estimate the proportion of variance explained by each parameter within each model, so as to 
better understand the relative contribution of each parameter within the 9- and 18-parameter models. In this vein, the 
use of PCA was exploratory and serves to increase understanding of the two models. 

This descriptive pattern of component solutions across resolution and parameter complexity revealed that the 18-
parameter model explains finer pieces of the system than does the 9-parameter model. A residual analysis of the 
reproduced correlation matrices of the 9- and 18-parameter models at both resolutions revealed smaller values (i.e. no 
residuals exceeded .001) for the 18-parameter model, indicating superiority of the 18-parameter model to the 9-
parameter model. The 9-parameter model displayed a higher MSA value (.32) measure of sampling adequacy than did 
the 18-parameter model (.09); this pattern is reversed from our previous analyses, but is not statistically important 
relative to the PCA. 

4.2 Biometric Match Scores 
During our initial investigation of these techniques, several statistical tests were considered for comparing the 
distribution of oculomotor plant characteristics attributed to a given subject. Considered tests included the: two-
sample Cramér-von Mises test, two-sample Kolmogorov-Smirnov test, Ansari-Bradley test, Mann-Whitney U-test, 
two-sample F-test, and two-sample t-test. Of these, the two-sample Cramér-von Mises test provided the least 
biometric error, followed closely by the two-sample Kolmogorov-Smirnov test. In general, the Ansari-Bradley test, 
Mann-Whitney U-test, two-sample F-test, and two-sample t-test performed poorly due to the fact that they make 
certain assumptions about the underlying distributions. 
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To assess the stability of biometric matching, Kolmogorov-Smirnov tests for uniformity and normality and Wald-
Wolfowitz runs tests for randomness were applied to the match scores generated for each OPC using the two-sample 
Cramér-von Mises test. The results indicate that biometric match scores are highly non-random, in that they do not 
conform to normally or uniformly distributed random sequences (p < 0.0001) and do not contain random sub-
sequences (p < 0.0001). 

Shannon entropy was calculated for match scores to assess the information density of individual OPC. Low 
Shannon entropy (minimum = 0) indicates clustering of match scores around specific values, while high Shannon 
entropy (maximum = 8) indicates that the produced match scores are more unique and tend to fall within the range of 
possible values, rather than at the extremes. With the exception of neural pulse width, match scores for OPC 
parameters ranged between Shannon entropy of 4.9 – 7.9 (mean = 6.8 ± 0.9), indicating a relatively even spread of 
match scores within the range. In the case of neural pulse width, Shannon entropy reaches a low of 2.8, indicating that 
match scores cluster around specific values. This is not unexpected, as the values for neural pulse width are limited to 
integer values less than the duration of the saccade, which leads to saccades from different subjects sharing similar 
neural pulse properties despite differences in muscle properties. 

The decidability index (or d-prime) of match scores is a measure of the separation of two distributions, and may 
be applied to the distributions of genuine and imposter match scores as a measure of achievable error rate tradeoff. 
Decidability index assumes a Gaussian distribution of match scores, which is often the case; however, the genuine 
and imposter match scores generated for each OPC fail to conform to a Gaussian distribution, leading to particularly 
low decidability indices in the range of 0.01 – 0.27 (mean = 0.07 ± 0.05). 

 
Figure 3. Comparative equal error rates in a biometric verification scenario. Error bars indicate 95% confidence interval. 

WM = Weighted Mean; LR = Likelihood Ratio; RF = Random Forest; SVM = Support Vector Machine; T2 = Hotelling T2 
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4.3 Biometric Accuracy 
Biometric verification involves comparing each record in the testing set against every other record in the testing 

set exactly once. False acceptance rate is defined as the rate at which imposter match scores exceed the acceptance 
threshold, false rejection rate is defined as the rate at which genuine match scores fall below the acceptance threshold, 
and true positive rate is defined as the rate at which genuine match scores exceed the acceptance threshold. The equal 
error rate, shown in Figure 3, indicates the common value at which the proportion of false positives is equal to the 
proportion of false negatives. The receiver operating characteristic (ROC) plots true positive rate against false 
acceptance rate, and the area-under-curve of the ROC, shown in Figure 4, provides a metric by which to compare the 
accuracy achieved by ROC curves, where 100% AUC indicates perfect accuracy. 

Biometric identification involves comparing every record in the testing set against every other record in the testing 
set. Identification rate is defined as the rate at which enrolled subjects are successfully identified as the correct 
individual, where rank-k identification rate is the rate at which the correct individual is found within the top k matches. 
Hence, the rank-1 identification rate, shown in Figure 5, is the rate at which the correct individual has the highest 
match score. The cumulative match characteristic (CMC) plots identification rate by rank, for all ranks, and the area-
under-curve of the CMC, shown in Figure 6, provides a metric by which to compare the accuracy achieved by CMC 
curves, where 100% AUC indicates perfect accuracy. 

Match scores for individual OPC are combined for a particular subject-to-subject comparison using a technique 
referred to as information fusion. Information fusion can occur at the feature- or the match score-level. In this paper, 

 
Figure 4. Comparative area-under-curve in a biometric verification scenario. Error bars indicate 95% confidence interval. 

WM = Weighted Mean; LR = Likelihood Ratio; RF = Random Forest; SVM = Support Vector Machine; T2 = Hotelling T2 
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we consider one type of feature-level fusion, the Hotelling T2 test, and four types of match-score level fusion: 
weighted mean, likelihood ratio, random forest, and linear support vector machine. Feature-level fusion makes direct 

use of OPC values, while match-score level fusion makes use of the match scores generated by a Cramér-von Mises 
comparison of OPC values. 

Of the considered techniques, the Hotelling T2 test performed better than any combination of individual OPC 
characteristics (as compared by the two-sample Cramér-von Mises test), achieving both the lowest equal error rate of 
20.3% and the highest rank-1 identification rate of 65.7%. Interestingly, the linear support vector machine performed 
worst of the considered fusion techniques, achieving the highest equal error rate of 54.5%, indicating that the genuine 
and imposter match scores generated for OPC characteristics are not linearly separable within a hyperplane (supported 
by the low decidability index of match scores). Of the fusion techniques applied to the Cramér-von Mises comparison 
of OPC, likelihood ratio-based fusion performed with the most stability, providing the highest rank-1 identification 
rates on high-resolution 9-parameter model and the low-resolution 18-parameter model, and the lowest equal error 
rates in all cases. 

In considering biometric performance, the 18-parameter oculomotor plant model provides much greater accuracy 
than the 9-parameter model. This is apparent on both the high- and low-resolution datasets. Considering the best-
performing fusion technique, the Hotelling T2 test, the 18-parameter model provided an: equal error rate improvement 
of 40% on the high-resolution dataset; equal error rate improvement of 41% on the low-resolution dataset; rank-1 
identification rate improvement of 47% on the high-resolution dataset; and rank-1 identification rate improvement of 
63% on the low-resolution dataset. It is particularly interesting to note that the Hotelling T2 comparison of 18-

 
Figure 5. Comparative rank-1 identification rates in a biometric identification scenario. Error bars indicate 95% confidence interval. 

WM = Weighted Mean; LR = Likelihood Ratio; RF = Random Forest; SVM = Support Vector Machine; T2 = Hotelling T2 
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parameter OPC achieved roughly equivalent equal error rates on both high- and low-resolution datasets (20.3% and 
22.2% respectively), though there was an obvious degradation in rank-1 identification rate. 

Further, the 18-parameter model outperforms previous applications (Komogortsev, et al. 2012b) of the 9-
parameter model, which achieved only 41.7% minimum half-total error rate when applied to horizontal saccades 
obtained on a high-resolution dataset. It should be noted that the previous dataset made use of different stimuli that 

evoked a smaller amount of horizontal saccades, and therefore provided less opportunity for OPC extraction. This 
may also indicate that the considered techniques are more stimulus dependent than other forms of eye movement 
biometric (Holland and Komogortsev 2012). 

5. FUTURE RESEARCH 

The horizontal saccade stimulus employed in this work was purposefully fixed in amplitude, and evoked a large 
number of saccades. Such fixed experimental parameters allowed us to establish a baseline for the biometric 
performance of the considered techniques, and the use of a high-resolution commercial eye tracker with fixed head 
position and controlled lighting provided an environment that was close to ideal; however, additional work is required 
to understand the biometric performance for saccades of random amplitude, varied spatial placement, and different 
quantities. 

Another area of interest is the parameter estimation speed. The estimation of OPC vectors for each saccade is a 
slow process, where parameter estimation for a single saccade on the 9-parameter model required, on average, 1500 
saccadic simulations, or approximately 15 minutes using a single threaded MATLAB implementation. Despite this, 

 
Figure 6. Comparative area-under-curve in a biometric identification scenario. Error bars indicate 95% confidence interval. 
WM = Weighted Mean; LR = Likelihood Ratio; RF = Random Forest; SVM = Support Vector Machine; T2 = Hotelling T2 
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the employed oculomotor plant model is highly parallelizable, with each saccade trajectory easily processed by a 
separate thread, and implementation in a lower-level language such as C/C++ may speed up the estimation process. 
Similarly, a reduction in the number of iterations processed could provide results comparable to those previously 
obtained. 

The linear design of the oculomotor plant model makes it possible to seek analytical solutions to the differential 
equations that describe the model, thereby providing an opportunity for the direct extraction of OPC from a saccadic 
trajectory; however, the derivation of an analytical solution is very challenging. Additionally, the investigation of 
different modeling techniques (of which there are many) might yield a more accurate indication of physical muscle 
properties (Quaia and Optican 2003). 

As well, while these techniques are not yet accurate enough to be useful in a standalone system, less accurate 
techniques have already been employed to improve the accuracy of multi-modal systems (Komogortsev, et al. 2012b). 
The ability to seamlessly integrate the proposed techniques with other ocular biometrics (such as iris, retina, and other 
eye movement biometrics) makes them a solid candidate in this regard. All of these are avenues for future research. 

It should be noted that the size of the high-resolution dataset is relatively small; and, although we see similar 
trends in the low-resolution dataset, an increase in the subject pool of the high-resolution recordings is necessary to 
guarantee statistical significance. Due to the time and resources required to coordinate large-scale eye movement 
recording, expansion of the dataset has been deemed an area of future research. 

Further, in the current work the time span between recordings was not considered in the randomized splitting of 
subjects, as we do not consider the span of two weeks to be sufficiently long-term to warrant special consideration. 
Future research is necessary to identify the effects of template aging, both short- and long-term, on eye movement 
biometrics. 

6. CONCLUSION 

This paper has presented an objective evaluation of a novel biometric approach, utilizing the internal, non-visible, 
anatomical structure of the human eye. The proposed techniques employ a mathematical model of the human eye to 
estimate physical properties of the system from observable data. The derived properties were evaluated within a 
biometric framework to determine their efficacy in both verification and identification scenarios.  

Based on the results, we conclude that the proposed techniques are at least as effective as existing eye movement 
biometrics, achieving 20.3% EER and 65.7% rank-1 IR on high-resolution eye tracking equipment, and 22.2% EER 
and 12.6% rank-1 IR on low-resolution eye tracking equipment. In both cases, the best-achieved results were obtained 
by comparing across all OPC with the Hotelling T2 test. Further, we note that the extended 18-parameter model 
exhibited an obvious improvement in biometric accuracy when compared to the previously considered 9-parameter 
model. These results bring an interesting perspective in which the authentication accuracy of the OPC method is 
almost equivalent between a commercial system (costing tens of thousands of dollars) and a common web camera. 
We hypothesize that this important outcome would strengthen the validity of inexpensive ocular biometrics systems 
that employ both iris and eye movement biometric traits, as demonstrated by (Komogortsev, et al. 2012b). 
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