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Abstract—This paper proposes a method for the extraction of 

biometric features from the spatial patterns formed by eye 
movements during an inspection of dynamic visual stimulus. In 
the suggested framework each eye movement signal is trans-
formed into a time-constrained decomposition by using a proba-
bilistic representation of spatial and temporal features related to 
eye fixations and called Fixation Density Map (FDM). The results 
for a large collection of eye movements recorded from 200 indi-
viduals indicate the best equal error rate (EER) of 10.8% and 
Rank-1 identification rate (Rank-1 IR) as high as 51%, which is a 
significant improvement over existing eye movement-driven bio-
metric methods. In addition, our experiments reveal that a per-
son recognition approach based on the FDM performs well even 
in cases when eye movement data are captured at lower than 
optimum sampling frequencies. This property is very important 
for the future ocular biometric systems where existing iris recog-
nition devices could be employed to combine eye movement traits 
with iris information for increased security and accuracy. Con-
sidering that commercial iris recognition devices are able to im-
plement eye image sampling usually at a relatively low rate, the 
ability to perform eye movement-driven biometrics at such rates 
is of great significance.  

Index Terms—Behavioral biometrics, eye movement cues, Fix-
ation Density Maps, security enhancement. 

I. INTRODUCTION 
IOMETRICS RESEARCH has rapidly progressed during the 
last decades, endeavoring to find the most appropriate 

characteristics that express human individuality as well as the 
mathematical models for their representation and comparison. 
Biometric technologies that rely on distinctive features such as 
fingerprints [1], iris [2], and face [3] have reached a maturity 
level, delivering high identification rates and receiving wide-
spread adoption. Nevertheless, the stable structure of these 
features, which is the reason of their high accuracy, appears 
also as their Achilles’ heel, since they are easily susceptible to 
forgery and various types of spoofing attacks [4], [5]. This is 
one of the reasons that fed the necessity for exploring other 
methods of personal identification, ranging from regular ap-
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proaches as hand geometry [6] and palm-print [7] biometrics 
to more sophisticated techniques, such as vein pattern authen-
tication [8]. Furthermore, biometric research moved towards 
characteristics that encapsulate not only physical but also be-
havioral cues of individuals. Hand-writing dynamics [9] and 
voice recognition [10] can be considered among the primary 
fields of study, whereas other sources of behavioral features 
include keystroke dynamics [11] and gait [12]. 

Applications of biometric technology were for a long time a 
privilege of military or government security agencies. Howev-
er, the last few years a turning point is clearly observed with 
the increasing adoption of biometric-related technologies in 
common-use appliances. Some characteristic examples in-
clude face recognition utilities recently added in personal lap-
tops, fingerprint authentication modules introduced in the lat-
est smartphones, and the voice recognition systems incorpo-
rated in modern cars. The widespread endorsement of bio-
metric technologies in everyday-life applications urges for an 
investigation of novel biometric traits that could be easily in-
tegrated in human-centered environments. In this context, eye 
movements appear as a potentially precious source of charac-
teristics considering the current trend for user-friendly touch-
less appliances, capable of interacting with face region [13]. 
Eye movements encapsulate both physical and behavioral in-
formation. Their dynamic nature renders them a suitable secu-
rity enhancement option (e.g. for liveness detection [14]) in 
multi-modal schemes based on more classic features, such as 
the iris [15]. Additionally, since recording of eye movements 
is accomplished from the face region, extracted characteristics 
may be combined with other established biometric traits cap-
tured from the same area, such as periocular [16], nose [17], 
and lip biometrical cues [18].    

A. Characteristics of Eye Movements 
Movement of the eye globe is accomplished by a system of 

six extra-ocular muscles, acting as agonist/antagonist pairs: 
the superior and inferior rectus are primarily responsible for 
the execution of the vertical component of movements, the 
lateral and medial rectus generate the horizontal component of 
eye movements and the superior and inferior oblique are em-
ployed primarily for the execution of the torsional movement 
components. Eye movements are coordinated by the neuronal 
control signal from the brain [19] which guides them to hold 
the eyes at positions of interest (fixations) and to rapidly move 
them from one fixation point to another by executing stereo-
typical, ballistic movements called saccades.  

Biometric Recognition via Probabilistic Spatial 
Projection of Eye Movement Trajectories in 

Dynamic Visual Environments 
Ioannis Rigas, Member, IEEE, Oleg V. Komogortsev, Member, IEEE 

B 



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY THIS IS A PRE-PRINT ONLY 
 

 

2 

Active visual observation is a procedure modulated both by 
bottom-up attention mechanisms, activated from features such 
as color, orientation, texture, and by top-down factors result-
ing from a cognitive task, e.g., object-oriented visual search 
[20]. Due to this duality (low-level attraction/perceptual mod-
ulation) eye movement features incorporate both physiological 
and behavioral traits. The physical traits of eye movements 
correspond to the geometrical properties of the ocular system 
(shape of the eyes, pupil size), the parameters of the mechani-
cal plant defined by the extraocular muscles (passive elastici-
ty, active state tension, length tension relationship, series elas-
ticity, force velocity relationship), and neuronal control signal 
frequency characteristics [21]. The behavioral aspects, on the 
other hand, arise from the individual’s brain activity that de-
fines “where and how” the eyes are going to move during 
cognitive tasks. The formation of idiosyncratic repetitive pat-
terns during visual inspection was initially explored during the 
experiments of Noton and Stark [22], [23] in 1971. Their re-
search led to the Scanpath Theory, stating that during the in-
spection of a specific visual stimulus eye movements form 
patterns (scanpaths), which can be partially replicated during 
the subsequent observations of the same stimulus. These pat-
terns are potentially influenced by the stimulus, the mental 
task, and the individual attention strategy of each person. The 
validity of Scanpath Theory is confirmed by several scientific 
studies [24], [25], [26]. These research efforts were conducted 
for different visual tasks, and the resulting findings indicate 
the presence of a varying degree of similarity for the scanpaths 
formed by the same person. However, there are also cases that 
failed to capture any degree of similarity [27]. The results of 
the research presented in [28] were mixed, since in some cases 
idiosyncratic patterns were observed, whereas in others the 
stimulus influence strongly modulated eye movement signals. 

B. Related Work 
The first research effort exploring eye movement features in 

the field of biometrics was presented in [29]. In this work, 
Cepstrum transform was used for the investigation of unique 
characteristics that could be enfolded into the spectral compo-
nents of eye movements. The experimental results for a data-
base of 9 subjects reported 1% false acceptance rate (FAR) 
and 23% false rejection rate (FRR).  

The field of voice recognition served as a source of inspira-
tion for the method developed in [30]. The specific research 
was motivated by the existing analogies in the behavioral na-
ture of eye movement and speech signals, and the implement-
ed model was optimized with the use of training signals of 
variable lengths. The best-achieved performance for a data-
base of 17 subjects provided an EER of 29.4%. 

A mathematical framework for the description and analysis 
of eye movements based on extra-ocular muscles and neural 
control signal parameters, the Oculomotor Plant Characteristic 
(OPC), was presented in [31]. The evaluation experiments, 
implemented with the participation of 59 subjects, revealed a 
minimum half total error rate (HTER) of 19%.   

In [32], the efficiency of graph matching techniques was 
tested on a set of eye movement recordings captured under the 

influence of a cognitive visual stimulus (human faces). The 
achieved identification rate (Rank-1 IR) for a database of 15 
subjects was 70%, whereas the reported EER was 30%.  

Recently, the corrective mechanisms of the oculomotor sys-
tem were explored as a possible source of idiosyncratic traits. 
The extracted characteristics constituting the Complex Ocu-
lomotor Behavior (COB) [33], were found to enclose useful 
personal information, as demonstrated by the performances of 
25% EER and 47% Rank-1 IR for a set of 32 subjects. 

In [34], an objective evaluation for the Complex Eye 
Movement (CEM) features previously introduced in [35] was 
presented and evaluated using databases of different size, rec-
orded with devices of various specifications. The best results 
for a database of 32 subjects and a high-resolution device 
(1000 Hz) were 28% EER and 38% Rank-1 IR, whereas the 
respective rates for a database of 22 subjects and a device op-
erating at 300 Hz were 31% EER and 53% Rank-1 IR. For 
low-resolution equipment (75 Hz) and a database of 173 per-
sons EER was 34% and Rank-1 IR 7%. An expansion of the 
CEM framework was proposed in [36], achieving rates of 
16.5% EER and 83.7% Rank-1 IR for the high-quality data-
base of 32 subjects and 25.6% EER and 16.3% Rank-1 IR for 
the low-quality database of 173 subjects. 

C. Motivation & Hypothesis 
The basis of the developed scheme lies on an idea that dur-

ing observation of a complex dynamic visual stimulus (e.g. 
video sequence), spatial and temporal fixation characteristics 
would be indicative of the brain activity related to the genera-
tion and guidance of visual attention, thus providing an oppor-
tunity to identify a person based on such activity. This idea is 
based on the concept that the brain is responsible for encoding 
information for “where and how” an eye is going to move 
given specific stimulus, and thus spatial locations of the fixa-
tions, their duration, and order can be employed to decode part 
of this information. Decoded information forms a biometric 
template that represents part of the brain activity in a mathe-
matical form. To build this representation we implement a 
projection of the raw time-sampled eye movement signal into 
the spatial domain. Then, we construct multi-map biometric 
templates using generated Fixation Density Maps (FDMs), 
representing person’s attention activity for sequential time 
intervals. This representation possesses the following im-
portant properties: 1) spatial distributions of fixation samples 
are represented in a robust way, 2) possible overlap effects for 
attention-drawing regions are diminished, and 3) implicit in-
corporation of time evolution characteristics for the recorded 
trajectory is possible. 

FDM biometrics were previously introduced in [37]. Our 
current work greatly extends on the research related to FDM 
biometrics since:  

a) A generalized framework is presented for the FDM-based 
comparison of eye movement patterns in the presence of dy-
namic cognitive visual stimulus. Our research includes the 
exploration of different comparison measures for FDMs and 
the usage of fusion schemes for information combination. 

b) The experiments were conducted with the use of a larger 
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database consisting of 200 subjects, making it the largest con-
sidered eye movement database to date. 

c) Our work explores the possibility of employing enroll-
ments from different visual content in order to enhance per-
formance, and dynamically update the biometrical templates. 

d) We investigate the relative tolerance of the proposed 
method to the degradation in temporal resolution and compare 
the obtained performance with methods outlined in the related 
work section. 

II. REPRESENTATION OF EYE MOVEMENTS WITH FIXATION 
DENSITY MAPS 

Spatial projection of the eye movement trajectories is im-
plemented by using the Fixation Density Map (FDM) as a 
basic structural element. Let us assume that an eye tracking 
device captures eye movement samples with a sampling fre-
quency 𝑓!. Then, for a specific recording time interval 𝑇!"# a 
FDM can be constructed with the following procedure: for an 
individual fixation point, let 𝛥𝜃! (Fig. 1) denote the angle 
formed by visual axis for the fixation point 𝑖 with regard to 
axis direction when it crosses the screen center. If we denote 
with 𝛥𝜃𝑥!, 𝛥𝜃𝑦!   the angles corresponding to the horizontal 
and vertical projection of the visual axis, then using the exper-
imental setting geometry—the viewing distance 𝑑! is assumed 
known and fixed—we may calculate the coordinates for the 
distances 𝛥𝑥!, 𝛥𝑦! from the center as: 

𝛥𝑥! = 𝑡𝑎𝑛 𝛥𝜃𝑥! ∙ 𝜋 180! ∙ 𝑑!        (1) 
𝛥𝑦! = 𝑡𝑎𝑛 𝛥𝜃𝑦! ∙ 𝜋 180! ∙ 𝑑!        (2)  

By employing the known values for the stimulus screen di-
mensions (ℎ!, 𝑤!) and resolution (ℎ!, 𝑤!), we may in turn 
convert the distances from the center to the respective pixel 
coordinates (𝑥!,  𝑦!) by using the translation equations: 

𝑥! = 𝑤! 2 + 𝑤! 𝑤! ∙ 𝛥𝑥!            (3) 

𝑦! = ℎ! 2 + ℎ! ℎ! ∙ 𝛥𝑦!            (4) 

 
During the next step, we construct a discrete map (DCM) 

from the fixation samples by representing each sample with a 
unitary spike in the corresponding pixel location: 
                  𝐷𝐶𝑀 𝑥, 𝑦 = 𝛿 𝑥 − 𝑥! (𝑦 − 𝑦!)!

!!! , 𝐾 = 𝑇!"# ∙ 𝑓!   (5) 
In order to transform the discrete map into a probabilistic 

representation, we apply a Gaussian kernel of standard devia-
tion σ and construct the final Fixation Density Map: 

𝐹𝐷𝑀 𝑥, 𝑦 = 𝐷𝐶𝑀 𝑥, 𝑦 ∗ 𝐺! 𝑥, 𝑦            (6) 
A value of σ = 0.02 (normalized in map’s width) is globally 

used during our implementation. This value was selected so 
that it corresponds—under our experimental settings—to the 
average receptive area of the eye’s fovea, which is roughly 1° 
of visual angle [38]. 

A FDM can be regarded as a 2-D imprint of the temporal 
evolution of attention in the space of the specific visual stimu-
lus. In case of a dynamic stimulus, e.g., a video sequence, 
there are two basic factors which need to be considered: i) the 
spatial layout of the visual content changes over time and ii) 
visual inspection may last for an extended period of time (de-
pending on the video duration). Consequently, if a single FDM 
is constructed for the representation of eye movements during 
a long recording, there might be overlapping fixations that 
complicate analysis. Moreover, a single representation cannot 
capture temporal eye movement characteristics which repre-
sent important information related to the individual guidance 
of visual attention. To overcome this, we propose a procedure 
that involves a decomposition of each eye movement signal 
into parts corresponding to sequential time intervals. For every 
recording, with a total duration of TR, the raw eye movement 
signal is initially partitioned into n equal-duration (Tint) non-
overlapping sequential segments. In our implementation we 
use an interval of Tint = 5 seconds. This empirically selected 
duration ensured that a robust sequence of fixations and sac-
cades is captured without significant overlapping effects for 
the selected stimulus. A separate FDM is constructed for every 
segment and the final biometric template is formatted by con-
centrating all of the constructed FDMs into a multi-map repre-
sentation. During the template matching phase the respective 
map components are pairwise compared, therefore, correctly 
aligning temporal and spatial information encoded in the eye 
movements by the brain and oculomotor plant. Fig. 2 presents 
a brief visual summary of the described procedure. 

 

𝛥𝑥! 
𝛥𝑦! 

𝑑! 
ℎ! 

𝑤! 
point of 
fixation 

 
𝛥𝜃! 

stimulus 
screen 

subject’s eye 

. 
. 

Fig. 1.  Optical geometry of the experimental configuration used 
for gaze recording. 
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III. COMPARISON OF FIXATION DENSITY MAPS 

A. Similarity Measures for Fixation Density Maps 
In the field of visual attention modeling, several different 

schemes have been proposed for the comparison of map repre-
sentations of visual prominent features, generally known as 
low-level saliency maps [38], [39]. In the case of FDMs, in-
stead of using the visual content information the map is con-
structed by directly employing the eye movement samples 
coming from a person. Due to the morphological similarity 
between saliency maps and FDMs, we explore the efficacy of 
four different map comparison measures originating from the 
field of visual saliency for the task of biometrical recognition 
via FDMs. 

Similarity metric (SIM) 
This measure has been suggested in an attention modeling 

scheme [40] as a simple approach for measuring the common-
ly activated areas between two saliency maps. In order to use 
it in our framework we assume that the FDMs under compari-
son correspond to two distributions 𝑃 𝑥, 𝑦  and 𝑄 𝑥, 𝑦 . Then, 
the Similarity metric can be calculated by finding the mini-
mum value between the two distributions under consideration 
at every spatial location and sum all respective values. 

𝑆𝐼𝑀 𝑃,𝑄 = 𝑚𝑖𝑛 𝑃 𝑥, 𝑦 ,𝑄 𝑥, 𝑦!
!!!

!
!!!      (7) 

The two distributions are assumed to be normalized to sum to 
unity, 𝑃 𝑥, 𝑦!

!!!
!
!!! = 1, 𝑄 𝑥, 𝑦!

!!!
!
!!! = 1, where 

𝑁, 𝑀 = width and height of the maps.  

Pearson’s Correlation Coefficient r (PCC) 
The Pearson’s Correlation Coefficient r can be defined as 

the ratio that expresses the degree of covariance between two 
variables relative to the mean of their individual variances. 
The correlation coefficient ranges from -1 to 1, with 0 denot-
ing no correlation between two variables, 1 denoting strong 
correlation in the same direction, and -1 indicating strong cor-
relation in opposite directions. Assuming that the FDMs 
𝑃 𝑥, 𝑦  and 𝑄 𝑥, 𝑦  are the variables under consideration, we 
may use the PCC as a gauge of the correlation between them. 
PCC can be calculated using the following formula:                            

𝑃𝐶𝐶 𝑃,𝑄  = 
!∙!!! !

!! ∙ !!!!
!.!

!!
!!

!!!
!

!∙!! !!
!!

!!!
!

!∙!!

    (8) 

Kullback-Leibler Divergence (KLD) 
The Kullback-Leibler Divergence [41] is a measure to ex-

press the overall dissimilarity between two probability density 
functions by calculating the relative entropy of one of them 
with respect to the other. If we denote 𝑝, 𝑞, the probability 
density functions that correspond to FDMs 𝑃 𝑥, 𝑦  and 
𝑄 𝑥, 𝑦 , then the Kullback-Leibler Divergence can be calcu-
lated as: 

𝐾𝐿𝐷 𝑃,𝑄 = 𝑞 𝑥, 𝑦 ∙ 𝑙𝑜𝑔 ! !,!
! !,!

!
!!!

!
!!!      (9) 

with 𝑝 𝑥, 𝑦 = 1!! , 𝑞 𝑥, 𝑦 = 1!! , and additionally 

  𝑝 𝑥, 𝑦 > 0 for any 𝑥,  𝑦 such that 𝑞 𝑥, 𝑦 > 0. 
Due to the fact that the relative entropy of 𝑃 𝑥, 𝑦  relative 

to 𝑄 𝑥, 𝑦  has a different value than 𝑄 𝑥, 𝑦  relative to 
𝑃 𝑥, 𝑦 , the Kullback-Leibler Divergence produces non-
symmetric similarity matrices, and additionally the calculated 
values lack a well-defined upper boundary. We will describe 
below a procedure implemented to overcome these deficien-
cies and use the KLD for the comparison of FDMs. 

Earth Mover’s Distance (EMD) 
The measure of Earth Mover’s Distance can be used for the 

computation of the distance between two probability distribu-
tions over a region by calculating the minimal cost for the 
transformation of one distribution to the other. During our 
experiments we employed the implementation of EMD devel-
oped by Judd et al. [40]. By representing FDMs as distribu-
tions 𝑃 𝑥, 𝑦 , 𝑄 𝑥, 𝑦 , the Earth Mover’s Distance can be cal-
culated by solving the well-known transportation problem 
[42]. If we denote 𝑓!,! the transported amount from the ith sup-
ply to the jth  demand, and 𝑑!,! the ground distance between the 
ith and the jth bin in distribution, the Earth Mover’s Distance is 
computed with the use of the following equation: 
𝐸𝑀𝐷 𝑃,𝑄 = min!!" 𝑓!,! ∙ 𝑑!"!,! + 

    𝑃!! − 𝑄!! ∙max!,! 𝑑!,!   (10) 

under the restrictions: 𝑓!,! ≥ 0, 𝑓!" ≤ 𝑃!! ,    𝑓!" ≤ 𝑄!! , and 
𝑓!,!!,! = 𝑚𝑖𝑛 𝑃!! − 𝑄!! . 

As stated above, the Kullback-Leibler Divergence produces 
non-symmetric similarity matrices and lacks the upper bound. 
The latter property is also a feature of Earth Mover’s Distance. 
Motivated by the work in the field of classification in dissimi-
larity space [43], [44], we decided to develop an Euclidean 
space embedding procedure for the employed dissimilarity 
measures, so that we can use them for the comparison of bio-
metric templates. Let us denote 𝐷 the full 𝑆×𝑆 matrix that 
contains the dissimilarity values calculated for 𝑆 different 
samples. If 𝐷! is the lower triangle of the full matrix, then we 
can use these values in order to construct a symmetric matrix 
(𝐷!): 

𝐷! = 𝐷! + 𝐷! ! − 𝑑𝑖𝑎𝑔 𝐷       (11) 
Considering each row of the new matrix as a feature of the 

dissimilarity space we can calculate their Euclidean distances, 
resulting thus in a normalized Euclidean distance matrix 
(𝐷!"#$%) which is symmetrical and has a well-defined upper 
bound: 

𝐷!"#$% 𝑖, 𝑗 = !!"#$ !,!
!"#!,!!!"#$

, 𝑖, 𝑗 = 1,… , 𝑆    (12) 

with 𝐷!"#$ = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐷!, 𝐷! ! .  
This matrix can be used during the classification procedure in 
our biometric scenarios. 

B. Fusion of Information from Fixation Density Maps 
In the above description we presented similarity measures 

for the pairwise comparison of the maps that correspond to 
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respective time intervals of a video sequence. Since biometric 
templates consist of multiple maps, we need to effectively 
combine the information coming from the map components 
that correspond to different time intervals. In the case of 
FDMs, each component correlates with the spatio-temporal 
layout of the visual input, making thus a direct combination of 
information on the feature level infeasible. For this reason, we 
perform information fusion in the match score level, by com-
bining the generated matching scores for every time interval 
into a single score which expresses the overall similarity be-
tween two templates. In our experiments, we implemented and 
assessed the following fusion schemes: 
(SM) Simple Mean. This is the simplest method that is used for 
fusing the match score information. A simple linear combina-
tion with equal weights is computed over the similarity scores 
that correspond to different FDMs in order to generate a single 
matching score in the interval [0,1]. 
(WM) Weighted Mean. The weighted mean algorithm uses a 
slightly more complicated approach by utilizing a number of 
training samples in order to perform an iterative error minimi-
zation procedure using the genuine and impostor samples. 
During this process a vector of different weights is generated 
and then used for the linear combination of the match scores 
coming from the corresponding FDMs. 
 (LR) Likelihood Ratio. This fusion algorithm initially builds a 
set of Gaussian mixture models by using information from a 
training set [45]. Subsequently, it generates a model by calcu-
lating likelihood ratio of the genuine samples over the impost-
er samples and uses this model for the combination of the in-
dividual match scores into a single value in the interval [0, ∞]. 

 
Fig. 3.  Overview of the architecture of the developed biometric 

recognition scheme based on FDM templates. 

Fig. 3 illustrates the various parts of the proposed approach 
for the implementation of a biometric recognition system 
based on FDM comparison. 

IV. EXPERIMENTAL METHODOLOGY 

A. Visual Stimulus 
The eye movement recording experiment was conducted 

with the employment of a time-changing cognitive stimulus 
consisting of video sequences. Specifically, the official trailer 
of the Hollywood film “Hobbit 2: The Desolation of Smaug 
(2013)” was used. This video sequence was selected due to the 
variety of its content, consisting of rapidly changing action 
scenes, static parts with emotional content, and briefly pre-
sented text banners. The trailer was partitioned into two dif-
ferent segments of approximate duration of 1 minute each. 
During the experiments, every participant enrolled separately 
for each of these video segments, leading to the formation of 
the two independent datasets of eye movement recordings 
VD1 and VD2. Our decision for partitioning the video se-
quence instead of using it as a whole is supported by the fol-
lowing arguments: 

a) An extensive visual stimulus presentation might lead to 
mental fatigue which in turn may influence negatively the 
behavioral characteristics of eye movements. 

b) A recording with a large duration would lead to exces-
sively large number of features (in our case many FDMs), thus 
increasing the computational burden. 

c) Performance may be investigated for the combination of 
FDM templates generated from videos of different content.  

It must be noted that the recordings for VD1 and VD2 were 
a part of a larger experiment where subjects performed various 
eye movement tasks with several periods of rest to reduce pos-
sible fatigue effects. The time gap between VD1 and VD2 
recording was approximately 20 minutes. Several other tasks 
and brief rest periods between those tasks were performed by 
the subject between VD1 and VD2 related recordings. Total 
duration of all tasks and periods of rest did not exceed 1 hour. 

B. Participants 
The experiments for the formation of the eye movement da-

tasets employed in this work were conducted with the partici-
pation of 200 subjects (93 males, 107 females), ages 18-44 
with an average age of 22 (SD = 4.08). Every subject per-
formed two recordings for each video segment, yielding a col-
lection of totally 800 unique eye movement samples. Texas 
State University’s institutional review board approved the 
study, and every participant provided informed consent.  

C. Apparatus 
Eye movement recordings were accomplished with the use 

of an EyeLink 1000 eye tracker [46] running at 1000 Hz, with 
vendor’s reported spatial accuracy 0.5°. The specific device 
implements two pupil tracking algorithms, the Centroid and 
the Ellipse fitting. The preferred mode was the Centroid, a 
method which uses a center of mass algorithm for tracking the 
center of the thresholded pupil. In Fig. 4, example images are 
provided demonstrating pupil tracking, captured via the inter-
face of the employed experimental device. 
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Fig. 4.  Images of the tracked pupil for different eye gaze positions. 

The tracked corneal reflection can also be observed as a (yellow) dot. 
 

The device was positioned at a distance of 550 millimeters 
from the computer screen, with dimensions of 474 x 297 mil-
limeters and resolution of 1680 x 1050 pixels. The head of 
each subject was comfortably stabilized by using a chin rest 
with a forehead bar. During our experiments, the average 
measured calibration accuracy for the recorded datasets was 
0.49° (SD = 0.17°), whereas the average recorded data validity 
was determined to 96.08% (SD = 5.20%). 

V. RESULTS 
All performance rates reported in this section are obtained by 
splitting the database samples into training and testing sets, 
with a 50%-50% partitioning according to a uniformly random 
distribution and average the results over 20 random partitions. 
In the presented figures, the data were fitted to a quadratic 
polynomial curve by using MATLAB function fit. 

A. Verification Scenario 
A genuine score refers to a similarity value for two samples 
generated from the same identity. An impostor score refers to 
a similarity value for two samples generated from different 
identities. A general overview of the separation degree for 
these two populations (genuine/impostor) is possible by in-
specting the distributions formed by the respective scores. Fig. 
5 depicts the distributions formed by genuine and impostor 
scores generated during the comparison of FDM templates, for 
the case of dataset VD1. 

          
Fig. 5.  Distributions of genuine and impostor scores for comparison 

measures: (a) SIM, (b) PCC, (c) KLD, and (d) EMD) (SM fusion 
scheme was used). 

By defining an acceptance threshold (η) we can compute the 
False Positive Rate (FPR) as the percentage of the genuine 
scores that fall under the threshold η and the False Acceptance 
Rate (FAR), as the percentage of the impostor scores that are 
over η. True Positive Rate (TPR) can be defined as the per-
centage of genuine scores that are over the threshold η, and it 
stands TPR = 1 - FPR. By changing the acceptance threshold 
and calculating the respective values for TPR and FAR, we 
can construct a Receiver Operating Characteristic (ROC) 
curve, which allows for a general inspection of the biometric 
system’s trade-off between correct identification and impostor 
intrusion. One way for summarizing the information of a ROC 
curve is by calculating Equal Error Rate (EER). Equal Error 
Rate corresponds to the point of operation where the False 
Positive Rate equals the False Acceptance Rate. In Table I, we 
may observe the calculated Equal Error Rates for each of the 
comparison measures used for FDMs, for datasets VD1 and 
VD2. The table contains the individual rates for the maps that 
correspond to each time interval (M01-M11) and the final 
performances after match score fusion. The best performance 
in every case is highlighted. For dataset VD1, a one-way 
ANOVA reveals no significant main effect for EER across 
different time intervals, F(10, 33) = 0.7, p = 0.7178, but there 
is a significant main effect across comparison measures, F(3, 
40) = 29.96, p < 0.001. These results are verified from the 
analysis for VD2, with the respective values across different 
time intervals being F(10, 33) = 0.99, p = 0.4691 and across 
comparison measures F(3, 40) = 26.77, p < 0.001. 

TABLE I 
EQUAL ERROR RATES 

VD1 VD2 

Feat. 
Comparison Measure 

Feat. 
Comparison Measure 

SIM PCC KLD EMD SIM PCC KLD EMD 

M01 30.9% 33.5% 24.6% 30.8% M01 33.0% 34.4% 24.5% 25.6% 
M01 38.5% 38.2% 26.2% 35.0% M01 35.9% 37.4% 28.8% 29.4% 
M03 37.0% 40.6% 27.0% 34.6% M03 34.6% 35.4% 26.6% 32.9% 
M04 35.6% 38.3% 26.5% 34.7% M04 33.2% 34.9% 29.1% 32.7% 
M05 34.4% 37.0% 29.5% 30.4% M05 35.9% 36.7% 25.8% 31.8% 

M06 41.4% 42.4% 28.6% 31.2% M06 35.1% 35.2% 26.6% 31.9% 
M07 38.5% 39.4% 30.0% 31.6% M07 40.1% 40.8% 30.1% 39.8% 
M08 35.9% 34.4% 31.8% 31.0% M08 37.1% 36.3% 31.3% 32.3% 
M09 31.8% 32.3% 25.4% 29.4% M09 37.7% 38.1% 31.2% 35.3% 
M10 34.1% 36.4% 27.6% 30.8% M10 40.2% 40.2% 29.2% 33.9% 
M11 36.1% 37.3% 27.8% 29.6% M11 38.2% 39.2% 24.8% 33.1% 

Fusion  Fusion  
SM 26.7% 28.1% 20.2% 16.5% SM 27.9% 29.6% 22.6% 18.3% 
WM 27.7% 29.5% 23.0% 23.8% WM 31.0% 31.9% 24.5% 22.2% 
LR 25.8% 27.7% 19.9% 12.1% LR 27.4% 29.1% 21.9% 13.6% 

In Fig. 6, we present the constructed ROC curves for both 
datasets used during our experiments. Using these curves we 
may obtain a more general view of the characteristics of the 
used comparison measures. The curves were constructed by 
using the calculated rates for the best performing fusion 
scheme, which is the Likelihood Ratio (LR) in all cases. 

Top Left Top Right 
Center 

(a) 
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Fig. 6.  Receiver Operating Characteristic (ROC) curves for datasets 

(a) VD1 and (b) VD2 (using LR fusion scheme). 

B. Identification Scenario 
Rank-k Identification Rate (Rank-k IR) is a measure of ac-

curacy, which shows the percentage of genuine scores that can 
be found within the k top matches of a biometric system. Ta-
ble II shows the calculated values for Rank-1 IR for the indi-
vidual maps that correspond to each time interval and the total 
performance after the combination of the individual match 
scores. 

TABLE II 
RANK-1 IDENTIFICATION RATES 

VD1 VD2 

Feat. 
Comparison Measure 

Feat. 
Comparison Measure 

SIM PCC KLD EMD SIM PCC KLD EMD 

M01 7.6% 5.1% 26.9% 13.0% M01 8.9% 7.1% 23.6% 14.9% 
M01 5.2% 3.6% 16.4% 11.1% M01 8.4% 6.1% 18.1% 16.7% 
M03 7.9% 5.3% 18.4% 8.8% M03 8.6% 8.0% 23.3% 11.4% 
M04 5.6% 2.9% 25.0% 12.6% M04 10.3% 9.9% 23.7% 14.0% 

M05 5.2% 4.7% 14.7% 14.6% M05 8.5% 5.7% 25.9% 14.7% 
M06 3.0% 2.8% 17.1% 14.0% M06 7.4% 6.5% 26.0% 15.3% 
M07 6.7% 5.3% 19.7% 15.1% M07 4.1% 3.3% 18.5% 7.2% 
M08 7.8% 8.2% 19.9% 13.6% M08 9.6% 6.7% 23.6% 15.9% 
M09 11.1% 8.6% 25.2% 17.5% M09 5.6% 4.4% 22.9% 12.7% 
M10 8.4% 6.0% 18.3% 13.8% M10 5.1% 4.3% 18.7% 10.0% 
M11 5.2% 4.7% 19.4% 15.8% M11 5.9% 4.3% 15.6% 10.4% 

Fusion  Fusion  
SM 28.7% 23.0% 39.4% 25.0% SM 30.2% 26.2% 38.0% 26.7% 
WM 20.5% 14.6% 28.4% 16.8% WM 15.6% 13.9% 27.5% 19.9% 
LR 29.9% 23.1% 36.2% 32.5% LR 31.8% 26.2% 31.8% 32.8% 

A one-way ANOVA for Rank-1 IR indicates no significant 

main effect across different time intervals both for dataset 
VD1, F(10, 33) = 0.28, p = 0.9810, and for dataset VD2, F(10, 
33) = 0.36, p = 0.9552. As previously, there is a significant 
main effect across comparison measures, with the respective 
values for dataset VD1, F(3, 40) = 70.89, p < 0.001 and for 
dataset VD2, F(3, 40) = 78.81, p < 0.001. 

The evolution of identification rates as a function of the 
employed rank k is computed and demonstrated using the Cu-
mulative Match Characteristic (CMC) curves, shown in Fig. 7. 

 
Fig. 7.  Cumulative Match Characteristic (CMC) curves for datasets 
(a) VD1 and (b) VD2 (using the best performing fusion scheme for 

every case). 

C. Information Fusion from Different Datasets 
During our research we decided to test the behavior of the 

suggested scheme during the combination of information com-
ing from enrollments that correspond to different visual con-
tent. Since the constructed datasets VD1, VD2 correspond to 
different spatio-temporal layouts, their samples are combined 
at the match score level. For implementing this particular sce-
nario we feed the fusion module with the pairwise match 
scores calculated for the respective time interval FDMs com-
ing from both datasets. During our experiments we employed 
the same fusion schemes that were utilized in the previous 
cases (SM, WM, LR). 

In Table III we can observe the resulting EERs after infor-
mation fusion from datasets VD1, VD2 and Table IV presents 
the corresponding values for the calculated Rank-1 IRs. Simi-
larly, in Fig. 8 we present a general overview of performance 
during match score fusion from the two datasets, both for the 
case of a verification (ROC curves) and an identification 
(CMC curves) scenario. 

 



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY THIS IS A PRE-PRINT ONLY 
 

 

8 

 

 
Fig. 8.  (a) Receiver Operating Characteristic (ROC) and (b) Cumula-
tive Match Characteristic (CMC) curves for match score fusion from 
datasets VD1 and VD2 (using the best performing fusion scheme for 

every case). 

D. Database Scaling Performance 
In order to examine the impact of database scaling, i.e. per-

formance behavior by increasing the number of subjects, we 
generated random subsets from the complete database of 200 
subjects, and calculated biometric performance for sets VD1, 
VD2, and their fusion. Fig. 9 depicts the obtained results. The 
variation in EER is relatively minor, since relative difference 
for the extreme values (50 and 200 subjects) is less than 15% 
on average. The corresponding Rank-1 IR degrades substan-
tially when increasing the number of subjects. For the relative 
small group of 50 subjects, the Rank-1 IR is 52.9% for VD1, 
53.7% for VD2 and 61.2% for the fusion case. For the com-
plete database of 200 subjects, corresponding rates are 32.5%, 
32.8%, and 43.6%. Therefore, this is a relative degradation in 
performance of 38.5% for VD1, 38.9% for VD2, and 28.7% 
for the combination of the two datasets. 

 
Fig. 9.  (a) EER and (b) Rank-1 IR performances while increasing 

the number of subjects in database. 

E. Behavior under Temporal Resolution Degradation 
During our experiments, we decided to explore the toler-

ance of the proposed methods to setups that have limited sam-
pling rate by artificially changing the temporal resolution of 
the captured eye movement signal. This investigation is very 
important for the future development of eye movement-driven 
biometric methods that would run in tandem with iris recogni-
tion techniques on the existing iris recognition hardware. The 
eye image sampling frequency of the iris recognition devices 
frequently has an upper boundary of 30Hz, which is much 
lower than the commercial high-grade eye tracking equipment 
that is able to capture eye images at rates up to 2000Hz [46]. 

In order to perform a comparative evaluation with existing 
eye movement-driven biometric techniques we utilized two 
approaches, (CEM-P) [34] and (CEM-B) [36], that have been 
previously evaluated in scenarios of reduced sampling fre-
quency. We used the same sampling frequency tiers that were 
employed in the papers describing CEM-P and CEM-B ([34], 
[36]), and specifically: 1000 Hz (the original sampling fre-
quency), 500 Hz, 250 Hz, 120 Hz, 75 Hz and 30 Hz. In the 
case of the current approach (denoted FDM-EMD), we used 
the best performing comparison measure (EMD) and the best 
fusion strategy (LR).  

Fig. 10 illustrates the behavior of the inspected methods by 
successively degrading the frequency resolution both for a 
verification (EER) and an identification (Rank-1 IR) scenario. 
In the most extreme case of frequency resolution degradation 
(30 Hz) the EER for the presented method increases from 

TABLE III 

EQUAL ERROR RATES 

Fusion of information from 
VD1 and VD2 

Fusion 
Comparison Measure 

SIM PCC KLD EMD 

SM 26.2% 27.5% 20.1% 15.3% 
WM 26.7% 28.6% 23.0% 21.1% 

LR 25.8% 26.7% 19.3% 10.8% 

 

TABLE IV 

RANK-1 IDENTIFICATION RATES 

Fusion of information from 
VD1 and VD2 

Fusion 
Comparison Measure 

SIM PCC KLD EMD 

SM 38.7% 32.7% 51.0% 38.0% 
WM 23.2% 16.7% 31.5% 21.5% 

LR 41.6% 33.1% 44.7% 43.6% 
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12.1% to 14.6% (a relative increment of  20.6%), whereas for 
CEM-P it rises from 31.4% to 40.7% (a relative increment of 
29.6%) and for CEM-B from 21.9% to 30% (relative incre-
ment of 37%). In the case of the identification scenario, the 
superiority of the proposed approach is again prominent. For 
the suggested scheme, Rank-1 IR decreases from 32.5% to 
26.7% (a relative loss of 17.8%), whereas for the case of 
CEM-P falls from 10.4% to 2.5% (a relative loss of 76.0%), 
and for CEM-B from 27.4% to 8.7% (a relative loss of 
68.2%). 

 
Fig. 10.  (a) EER and (b) Rank-1 IR performances in case of temporal 

resolution degradation. 

VI. DISCUSSION 

A. Performance Characteristics 
The main target of the conducted study was to develop and 

evaluate a generalized framework for the representation and 
comparison of spatial distributions formed by eye movements 
in a time-changing visual environment. We assessed the per-
formance of FDM-based biometric templates using four dif-
ferent comparison schemes and three fusion approaches. The 
evaluation results reveal that under a verification scenario the 
EER tops on a value of 12.1%, whereas in case of an identifi-
cation scenario the highest achieved Rank-1 IR is 39.4%. Our 
experiments showed that the identification performance can be 
further improved by combining the information coming from 
recordings of the same person. In such cases, the EER im-
proved to 10.8% and Rank-1 IR to 51.0%. These performanc-
es constitute a substantial progress in the field of eye move-
ment biometrics, since the achieved EERs outperform all the 
previous reported values for the method described in papers 

[30], [32], [33], [34], [35], [36]. The importance of the results 
may be emphasized by the fact that the method was evaluated 
on a large data pool formed from 200 subjects. It should be 
noted, though, that the reported performances are still inferior 
to those achieved by well-established biometric methods (e.g. 
fingerprints and iris) capable to deliver EER < 2%. In addi-
tion, the overlap in distributions of genuine and impostor 
match scores, depicted in Fig. 5, implies a sensitivity that 
would probably obscure a straightforward utilization of the 
specific feature as a standalone trait in a high precision bio-
metric system. 

During our analysis we investigated four computational 
schemes that can be used for the comparison of FDMs. A 
close inspection of Tables I, II, III, and IV reveals that the 
utilized dissimilarity measures (Kullback-Leibler Divergence 
and Earth Mover’s Distance) outperform the similarity 
measures (Similarity metric and Pearson’s Correlation Coeffi-
cient) in every case. These differences in performance are ad-
ditionally confirmed by the results of the one-way ANOVA 
across the comparison schemes. Earth Mover’s Distance 
achieved better rates in the majority of the considered scenari-
os and appears as the preferable choice in terms of recognition 
accuracy. Nevertheless, a time consumption analysis imple-
mented for the evaluated measures and presented in Fig. 11, 
reveals that Earth Mover’s Distance requires substantially 
more computational time than the other measures for a pair-
wise comparison of two FDMs. As a result, Kullback-Leibler 
Divergence may appear as a more feasible solution in the eye 
movement-driven biometric systems where a good trade-off 
between computational load and performance is of major con-
cern. 

 
Fig. 11.  Comparison of computational delays for the employed 

schemes (simulations implemented in an Intel Core2 Quad Q9400, 
2.66GHz, 8GB RAM. Time averaged over 100 iterations). 

Combination of the individual time interval FDMs was ac-
complished by conducting fusion in the match score level us-
ing three different schemes: Simple Mean (SM), Weighted 
Mean (WM), and Likelihood Ratio (LR). The exact same 
schemes were also used for the combination of information 
coming from both datasets. Likelihood Ratio (LR) demonstrat-
ed superior performance in all cases for the measure of EER. 
For the case of Rank-1 IR, LR scheme was outperformed only 
once, in the case of KLD measure where the Simple Mean 
(SM) scheme achieved better rates. It is worth commenting 
that the Weighted Mean (WM) scheme failed to generate com-
petitive results. This may lead to the conclusion that, in gen-
eral, there is no preferred feature map for a specific time inter-
val that should be accounted at the expense of the others, 
something that is also supported by the results of the one-way 
ANOVA across different time interval maps. 
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B. Dynamic Update of Biometrical Templates 
The conducted experiments revealed the capability to boost 

the identification rates with the combination of enrollments 
corresponding to different visual content. Apart from the de-
sirable performance gain, this characteristic has another signif-
icant effect since it may be exploited in order to provide anti-
spoofing robustness to a biometric system. In some established 
methods (e.g. fingerprints, iris) once an exact replica of the 
biometric feature is acquired it can then be routinely used to 
perform multiple spoof attacks. In the case of FDMs, however, 
this ‘once fooled always fooled’ state might be negated. Even 
if someone is able to replicate the fixation distributions formed 
for a certain visual stimulus, the template can be periodically 
enhanced or even totally updated with the use of a new en-
rollment corresponding to different visual content. 

C. Robustness to Temporal Signal Distortions  
During our research we evaluated the tolerance of the pro-

posed scheme in case of temporal resolution degradation. The 
results presented in Fig. 10 demonstrate the robustness of the 
proposed scheme to such effects. In comparison to the other 
methods that also rely on eye movements ([34], [36]), the rela-
tive loss in performance is lower both for the case of EER and 
for Rank-1 IR. This optimum behavior can be attributed main-
ly to two reasons: first, FDMs mostly represent spatial charac-
teristics and thus the effects of temporal degradation affect the 
constructed templates at a lower degree, second, any minor 
misalignments in the exact locations of fixation points can be 
effectively blended in the probabilistic representation of a 
FDM. 

Fig. 12 portrays the effect of decreasing the sampling fre-
quency on FDMs representation. Despite observed influence 
from the reduction in temporal resolution, the main character-
istics of fixation distributions are still preserved in the bio-
metric template. 

 
Fig. 12.  Influence of temporal resolution degradation to FDM repre-

sentation. The presented FDMs correspond to the same recording, 
sampled with frequencies: (a) 1000 Hz and (b) 30 Hz. 

D. Limitations 
The presented results should be evaluated under the scope 

of certain limitations. First, recordings for every subject were 
implemented during the same day and consequently template 
aging is a phenomenon that might possibly affect FDM fea-
tures for samples recorded at much greater time intervals. Fur-
thermore, the databases were constructed using two samples 
per subject. The performance (either better or worse) in case 
of more viewings of the same content is still an unexplored 
field. Second, the experiments were conducted in a lab-
controlled environment using a chin-rest with head bar to en-
sure the highest possible quality for the recordings. In a real-

world system though, utilization of a chin-rest might be an 
infeasible option. However, this limitation could be surpassed 
with the utilization of a system configuration that consists of 
two (or more) light sources and/or cameras, allowing thus for 
a larger degree of freedom for head movements [47]. Finally, 
it should be mentioned that several behavior changing condi-
tions, e.g., stress, alcohol etc., could potentially influence the 
formation of fixation patterns and as a result the corresponding 
biometric templates. 

VII. CONCLUSION 
In this paper we presented a general framework based on 

Fixation Density Maps (FDMs) for the representation of eye 
movements recorded under the influence of dynamic visual 
stimulus. Our research included a thorough investigation of 
different comparison schemes that can be employed for as-
sessing the similarity of the constructed multi-map biometric 
templates. In addition, various fusion schemes were explored 
for the task of effectively combining the similarity information 
coming from different FDMs in the match score level. To this 
point, the achieved identification rates suggest a possible em-
ployment of the proposed scheme as an assistive biometrical 
trait in security systems by exploiting in parallel its advanta-
geous properties such as the capability of dynamically enhanc-
ing biometric templates. 

In our future work, we intend to explore the possibility of 
combining the proposed scheme with techniques that represent 
primarily temporal characteristics in order to investigate its 
benefits in terms of performance and stability in a biometric 
system that depends solely on eye movement traits. 
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