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1. Introduction

Human iris is a widely endorsed biometric trait, due to the
exceptional characteristics it provides in terms of accuracy, 
permanence, and processing speed. The systematic investigation 
of the iris in the field of biometric identification was founded by 
the research work of J. Daugman (Daugman, 1993), (Daugman, 
1994). The subsequent efforts mainly focused on the 
development and optimization of techniques for the extraction 
and modeling of the iris, leading to the construction of reliable 
biometric schemes capable to exhibit very high identification 
rates (Daugman, 2007), (Phillips et al., 2010). As soon as the 
research on iris recognition reached a level of maturity and the 
technology became practically deployed, previously unaddressed 
challenges emerged. One of the major concerns regarded the 
vulnerability of iris recognition methods to image sensor attacks 
conducted by artificial representations of the iris. 

The vulnerability of modern iris recognition systems to 
spoofing threats has been widely reported in various 
experimental studies. The work presented in (Ruiz-Albacete et 
al., 2008) investigated the behavior of an iris recognition system 
in the case of direct spoofing attacks. Using a set of printed iris 
images and a publicly available iris recognition system, 
researchers demonstrated the existence of security flaws in the 
absence of any effective anti-spoofing countermeasure. Another 
study which concerned the vulnerability assessment during direct 
counterfeit attacks (Ortiz-Lopez et al., 2011) exhibited a number 
of different image quality features which are present on fake iris 
imitations during such an attack. In (Tomeo-Reyes et al., 2011), 
an investigation was conducted to evaluate the intrusion success 
of artificial iris imitations of various types (paper printouts, 
contact lenses, prosthetic eyes) as well as the influence of noisy 
genuine samples on the recognition performance. Some studies 
explored the possibility of an attack by generating a spoof iris 

image using an extracted iris template (Venugopalan and 
Savvides, 2011), (Galbally et al., 2013).  

The findings of these studies demonstrated the security 
vulnerabilities of modern iris recognition systems to spoofing 
attacks. They also exposed a more alarming issue considering the 
easiness of performing such attacks even with relatively simple 
means (e.g. common printers and paper). As a result, there is an 
increased research focus on techniques for detecting direct 
spoofing attacks (sometimes referred as liveness detection 
techniques), and a more systematic evaluation of their potential.
Recently, this necessity was further emphasized with the 
organization of two iris liveness detection competitions (Yambay 
et al., 2014), (Sequeira et al., 2014). 

1.1. Prior Art on Iris Anti-spoofing 

Even before the comprehensive evaluation of the vulnerability 
of iris systems to direct counterfeit attacks, described earlier, 
there were initial ideas proposed for the protection from spoofing 
attacks. Some early anti-spoofing features were presented in the 
work of (Daugman, 2003). The work of (Li et al., 2003) 
practically explored the quality distortions in the texture of fake 
irises. Such distortions are usually generated due to focus, motion 
blur, and occlusion. A more systematical attempt to tackle the 
problem of iris aliveness detection was presented in (Pacut and 
Czajka, 2006). In the conducted research, the Fourier spectrum 
was employed for detecting spoof-indicative features of images 
coming from live and fake irises, and the experiments were 
performed using a variety of printing approaches. The same study 
investigated other anti-spoofing characteristics, such as the pupil 
size under controlled light intensity changes, and the iris 
reflection patterns induced by a preconfigured infrared light 
setting. The reflectance properties of human eye served as a 
source of inspiration for other methodologies as well. For 
example, in the method presented in (Lee et al., 2005) the 
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Purkinje images (light reflections from different eye areas) were 
employed for detecting fake irises. Also, in (Sung Joo et al., 
2006), the reflectance ratio between the eye and the sclera was 
used as a trait for liveness. Pupil dynamics also served as a 
source of liveness detection characteristics in a number of 
subsequent studies. In (Bodade and Talbar, 2009), a scheme was 
developed for the calculation of variations during the localization 
of the inner iris boundary, whereas (Puhan et al., 2011) explored 
the iris pattern dissimilarities generated due to the pupil reflex in 
the case of semi-transparent contact lens spoofing attacks. In 
(Xinyu et al., 2013), pupil constriction was modeled by 
measuring iris patch differences and the ratio of iris and pupil 
diameters, in a scenario allowing free head movements. 

A large category of methods for detecting fake irises is based 
on the analysis of image texture characteristics. In (He et al., 
2007), the properties of the grey level co-occurrences matrices 
(GLCM) (Haralick et al., 1973) were proposed for the description 
of texture features of iris counterfeits, and the extracted features 
were incorporated into a classification scheme based on Support 
Vector Machines (SVM). Co-occurrence matrix features were 
also employed in the approach presented in (Zhuoshi et al., 
2008), this time in conjunction with texture quality cues, 
specifically, iris edge sharpness and Iris-Texton (Xianchao et al., 
2007) histograms. An investigation of iris textures printed on 
contact lenses was the main topic of research for the 
methodologies presented in (He et al., 2009) and (Hui et al., 
2010). In both cases, the effective-proven texture descriptor of 
Local Binary Patterns (LBPs) (Ojala et al., 2002) was utilized for 
the analysis of captured iris samples. In (Galbally et al., 2012), a 
large ensemble of texture quality features was assessed for the 
detection of distortions arising during the image capturing 
procedure. More recently, the scheme presented in (Czajka, 
2013) explored the existence of “alien” frequencies in the 
spectrum of the printed irises. Furthermore, a method for the 
analysis of texture features based on hierarchical visual 
codebooks was presented in (Sun et al., 2014). 

Lately, the possibility to extract liveness indicative cues via 
eye movement biometrics in a simulated scenario of an attack by 
a mechanical replica of the human eye was examined in 
(Komogortsev et al., 2015). It should be mentioned that the use 
of eye movement cues has been also suggested as a mechanism 
for liveness detection in the domain of face recognition. In (Gang 
et al., 2007) and (Jiang-Wei, 2008), eye blink detection was 
proposed for the prevention of face photo presentation attacks. In 
(Ali et al., 2012), the extraction of gaze direction cues was 
suggested for the verification of liveness in a face recognition 
system. Their approach required the presentation of a specialized 
visual stimulus consisted of collinear points.  

1.2. Motivation & Contribution 

This paper presents a methodology for the detection of iris 
spoofing print-attacks based on the analysis of eye movement 
cues. The term print-attack is used to describe a counterfeit 
attempt performed with a paper-printed image of a live iris, fitted 
with a hole in place of the pupil. Given its simplicity, this attack 
is the most possible expected spoofing attack to be performed at 
an iris recognition system. Contemporary iris recognition devices 
are usually equipped with a mechanism for detecting pupil 
reflections in order to avoid spoofing attacks with printed iris 
images. However, this mechanism can be easily by-passed by 
making a hole that allows the light to be reflected from the 
cornea of the eye. The fact that the corneal reflection and the 
pupil are used from the eye tracking algorithms in order to 
capture the human eye movements gave us the motivation for 

exploring the eye movement signal distortions arising during 
such a counterfeit attempt. 

The detected artifacts in an eye movement signal during a 
print-attack are mainly generated by the structural inconsistencies 
of the printed iris with respect to the live functional iris 
characteristics. This differentiates our approach in comparison to 
most of the previous iris anti-spoofing methods which are based 
on image quality features (e.g. texture, blur etc.). In these 
techniques the images are directly inspected for the detection of 
image degrading characteristics. However, image quality can also 
be degraded by other reasons related to the recording procedure 
(e.g. noise). Our approach is based on a signal processing 
framework for the statistical modeling of distortions that arise 
mainly due to the structural differences of real and fake irises. 
There is no requirement for any complex analysis of the quality 
of specific image features like texture etc. Also, the proposed 
scheme analyzes the natural eye movement without the explicit 
requirement of any complex light pattern or any specialized eye 
stimulation process. 

The method presented in this work improves significantly 
over the outcomes of the preliminary study presented in (Rigas 
and Komogortsev, 2014) in the following aspects: 

a) We present an enhanced feature set which can model 
additional sources of distortion. The provided detection rates are 
more accurate. 

b) We present results for experiments using a much larger 
database than our preliminary study. This allows for a more 
comprehensive analysis of the method’s large-scale potential. 

c) We perform an in-depth evaluation of the characteristics of 
the proposed method in case of different signal recording 
conditions (limited duration, temporal and spatial resolution). 
This analysis is crucial to support a possible incorporation of eye 
tracking capabilities to cotemporary iris scanners. 

2. Characteristics of the captured eye movements during an 
iris print-attack 

2.1. General Theory of Gaze Estimation 

In this section, we present the basic theory describing the gaze 
estimation process based on the calculation of the relative 
positions of the pupil center and corneal reflection, generally 
known as the Pupil Center Corneal Reflection (PCCR) technique. 
This description will facilitate the understanding of the 
underlying sources that result in the appearance of artifacts in the 
eye movement signals in the case of an iris print-attack. Fig. 1 
shows the basic components required in the eye-tracking 
configuration. 

 
Fig. 1. Diagram of the eye-tracking configuration employed for estimating 

gaze based on PCCR technique. 
The hardware elements of the configuration are: a) a light 

source l  (usually infrared), generating the corneal reflection, and 
b) a high-speed camera capturing images of the pupil and the 

optical axis 

visual axis 



corneal reflection. The exact point of a person’s fixation, the 
Point of Gaze (POG), is typically defined as the point where the 
visual axes of both eyes intersect in the space of visual stimulus. 
In order to find POG, we need to reconstruct the visual axis 
based on an initial estimation of the optical axis of the eye—due 
to eye anatomy these axes do not coincide.  

The following description presents the basic steps followed 
during gaze estimation based on the general framework presented 
in (Guestrin and Eizenman, 2006), where additional details can 
be found. In order to estimate the optical axis we should find two 
points that it crosses, and calculate their position vectors. To this 
purpose, we can use the point that represents the pupil center p , 
and the point that represents the center of curvature of a 
hypothetical spherical mirror modeling the eye cornea c . The 
basic system of equations that needs to be solved for the 
estimation of optical axis is formed via the eye-tracking 
configuration geometry (Fig. 1), and can be summarized as 
follows: 

K− =p c               (1)    R− =q c               (2)    R− =r c   (3) 

( )qk= + −q o o u  (4)    ( )rk= + −r o o v  (5) 

Points p  and c  are connected through equation (1), where 
K  symbolizes the distance between them. It can be observed 
from the configuration of Fig. 1 that the distance ( K ) between 
p  and c  depends on the eye-structure. For this reason, the 

parameter K  needs to be estimated using a calibration procedure 
(discussed in the next subsection), performed prior to the main 
gaze estimation process. We can employ equation (2) to connect 
the center of corneal curvature c  with the point where light is 
reflected on cornea’s surface, denoted with q . Similarly, by 
using equation (3) we can connect c  to the point where a beam 
coming from the pupil center is refracted, denoted with r . In 
both equations (2) and (3), parameter R  represents the radius of 
the hypothetical spherical mirror modeling the cornea. This eye-
structure related parameter is estimated via the same calibration 
procedure used for parameter K . The two last equations, (4) and 
(5), connect in a parametric form the points of reflection ( q ) and 
refraction ( r ) with the images of the corneal reflection ( u ) and 
the center of pupil ( v ), captured by the imaging element ( qk  and 
rk  are parameters related only to the eye-tracking configuration). 

By further employing the laws of optics and the eye-tracking 
configuration geometry we can derive the auxiliary equations 
needed for completely solving the system of equations (1) to (5) 
(Guestrin and Eizenman, 2006). After computing the vectors for 
points p  and c , we need to estimate the angle formed between 
the optical and the visual axis to complete gaze estimation. 
Again, this angle depends solely on the eye structure and may be 
estimated through the same calibration process used for 
parameters K and R . After calculating the direction of visual 
axis, we can use it along with a point that it crosses (e.g. c ), to 
fully estimate POG.  

Calibration Procedure 

The goal of the calibration procedure is to train the eye-
tracking algorithm prior to the main gaze recording procedure 
(described in previous subsection), by using the specific eye 
structure and experimental configuration characteristics. In a 
typical calibration process, the subject is instructed to fixate on a 
number of points (usually nine), positioned at predefined 
locations. The calibration errors, i.e. the disparity between the 
actual calibration points and the subject’s eye correspondences, 
can be represented in the form of a calibration map (Stampe, 
1993). Using these errors, a number of parameters is calculated 
and then used to interpolate recorded eye positions to the 
respective places on visual stimulus space during the main 

recording procedure. Additional information about the calibration 
process and its role during gaze estimation can be found in 
(Hansen and Qiang, 2010). 

2.2. Types of Generated Eye Movement Signal Distortions 

From the above description it can be clearly understood that 
during an iris print-attack the structural and functional 
differences between the printed and a natural iris can affect the 
gaze estimation procedure based on equations (1) to (5). This 
may lead in the appearance of various artifacts in the eye tracking 
signals. In this section, we present the main generating sources of 
these signal artifacts along with the different forms of distortion 
that they cause. 

In Fig. 2, we practically demonstrate one of the main 
structural discrepancies between a printed iris and a real iris. In 
the case of a real iris (Fig. 2a), the pupil follows the natural 
movement of the eye and the iris. For example, when an upward 
eye movement is performed, the pupil center moves along with 
the iris in the upward direction. Simultaneously, the corneal 
reflection, marked as a bright (yellow) dot, appears to be close to 
the lower boundary of the pupil. An analogous process occurs in 
the event of a downward movement. Oppositely, in the case of a 
printed iris (Fig. 2b), the pupil center appears in a fixed position, 
but the corneal reflection is still moving. When the exact same 
movements—as previously—are performed, the relative captured 
positions of the pupil center and the corneal reflection diverge in 
an unnatural way. This inconsistent positioning of the pupil 
center and the corneal reflection is imprinted on the 
corresponding images v ,  u , captured by the camera module of 
an eye tracking system (Fig. 1), and in turn transferred through 
equations (4), (5) to the rest equations used for the reconstruction 
of the optical axis, and the estimation of POG. 

 

Fig. 2. Discrepancies appearing in the behavior of (a) a real iris and (b) a 
printed iris, while gaze focuses exactly at the same fixation points (pupil area 
marked with dark/blue color, corneal reflection marked as a light/yellow dot). 

The observed discrepancies between a printed and a real iris 
are affecting the results of the calibration procedure as well. The 
structural inconsistencies of a printed iris result in the generation 
of calibration maps that substantially diverge from the typical 
pattern corresponding to a real eye. This leads on the calculation 
of erroneous values for the eye-structure related parameters 
estimated through the calibration procedure (e.g. K , R ), and 
acts as an additional source of distortion in the eye movement 
signals. Fig. 3, shows some examples of the calibration maps that 
are generated from real eyes (denoted with blue circles), and their 
printed correspondences used to perform spoofing attacks 
(denoted with red crosses). We may observe that the maps 
corresponding to the real eyes, even if formed from different 
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subjects, follow a similar pattern, which corresponds to the fixed 
locations of the nine points used for calibration. In contrast, 
calibration maps corresponding to their printed iris counterparts 
strongly deviate from the typical patterns formed by natural eyes. 

 
Fig. 3. Calibration maps generated from real eyes (blue circles) and their 

printed counterparts (red crosses). 
There are various types of distortions that may arise in the 

eye-tracking signals due to the combined effect of discrepancies 
during the calibration procedure and the main gaze estimation 
process. The most prominent type of distortion in the eye 
tracking signal recorded during an iris print-attack is the global 
positional offset, i.e. a uniform translation of the recorded signal 
from its expected position with regard to the visual stimulus. 

 
Fig. 4. Demonstration of eye movement positional signals captured in case 

of: (a) an iris print-attack, and (b) a real eye. 
In Fig. 4, we present some example positional signals captured 

during our experiments in the case of an iris print-attack (Fig. 
4a), and from a real eye (Fig. 4b). It can be easily observed that 
in the case of an iris print-attack large global positional offsets 
appear in the captured eye movement signals, when compared to 
the target stimulus position (marked with red solid line). Another 
observation is that the exact positioning (exact offset) of the 
signals generated for different print-attacks can vary 
considerably. Adversely, the positional signals captured from real 
eyes appear to be closely centered to the target stimulus position. 
In this case, the signals may present some natural variability 
caused by eye micro-movements (tremors, drifts, and micro-
saccades), but in overall, their placement is consistent with the 
presented stimulus location. 

A second category of signal distortions caused by print-attacks 
involves the appearance of abnormal local amplitude variations, 
i.e. irregular differences of amplitude levels in parts of the signal. 

Examples of this kind of artifact are shown in Fig. 5. We 
magnified the eye movement signals depicted in Fig. 4 in order to 
inspect clearly the local amplitude variations of signals coming 
from iris print-attacks (Fig. 5a), and from real eyes (Fig. 5b). As 
it can be observed, there is a larger level of variation in local 
amplitudes for the signals generated during an iris print-attack 
compared to the real eye signals. The main cause for the 
appearance of these larger local amplitudes is again related to the 
functional discrepancies between the real eyes and their printed 
counterparts. Whereas the global positional offsets distortions are 
caused by erroneous estimations of the global gaze position of 
the eye, the local amplitude variations are inaccurate estimations 
of the micro-movements of the eye. Specifically, the source of 
these inaccuracies is the fixed pupil boundary of the printed iris 
and the captured corneal reflection micro-movements from the 
intruder’s eye. 

 
Fig. 5. Demonstration of local amplitude variations and noise levels for 
signals captured in the case of: (a) an iris print-attack, and (b) a real eye. 

Zooming in all cases corresponds to exactly the same range of 2° of visual 
angle. 

A third class of signal distortions is caused by the finite 
quality and the shape of the pupil hole created on the printed 
irises. A directly observed result of these imperfections is the 
presence of enhanced levels of noise contaminating signals 
captured during an iris print-attack. Representative examples of 
the noise levels for signals captured from an iris print-attack and 
a real eye are marked with (red) rectangles in Fig. 5. Another 
phenomenon which occurs due to the finite quality and the shape 
of the pupil hole is the appearance of higher than usually 
percentages of invalid raw positional data, which happens when 
eye tracking equipment fails to determine gaze coordinates. 

3. Proposed methodology for iris print-attack detection  

In previous section, we described the different types of global 
and local distortions appearing in the eye movement signals 
recorded during an iris print-attack. In the current work, we 
present a methodology for modeling these signal distortions and 
detecting the print-attacks. In Fig. 6 we present a block diagram 
of the basic procedures followed during the suggested print-
attack detection scenario. Following, we describe in detail the 
procedures for the implementation of the suggested method. It 
should be emphasized that the feature extraction algorithm is 
based on low complexity calculations, which is an important 
requirement for an anti-spoofing protection scenario.  
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3.1. Decomposition of Captured Eye Movement Signals 

The first stage of the processing algorithm involves the 
decomposition of every eye movement recording into a set of 
elementary units representing the micro-movements of the eye. 
This initial decomposition of the eye movement signal into 
elementary units facilitates the dynamic statistical modeling both 
of the global and of the local distortions appearing in the signals 
captured during an iris print-attack. In order to perform the signal 
decomposition we employ the Velocity Threshold Identification 
(I-VT) technique (Salvucci and Goldberg, 2000). This method 
was originally developed for the extraction of the fixation and 
saccadic components from eye movement signals. In the current 
methodology, we need to obtain a fine-scaled decomposition of 
each signal into elementary units of eye micro-movements. Thus, 
we proceed to a carefully implemented parameterization of the I-
VT algorithm based on the required signal characteristics, by 
utilizing a velocity threshold of 5 / sec.°  to filter out micro-
saccades (and larger saccades if they are present in the signal) 
and leave fixational drift parts as the elementary units for 
subsequent analysis. Please note that fixational tremor cannot be 
reliably detected by the employed equipment (i.e., it requires 
scleral coil equipment (Robinson, 1963)), and thus the impact of 
tremor is not investigated in our work. The process is described 
by the following formulation: 

( )5 / . ,  1, ,iEMr IVT sec u i N→ ° → = …  (6) 

In Eq. (6) we denote with iu  each of the N   elementary units 
extracted from the decomposition of an eye movement recording 
( EMr ). The formation of the features used for the detection of 
iris print-attacks is implemented with the calculation of statistical 
measures on the extracted elementary eye movement signal units. 

3.2. Statistical Modeling and Feature Extraction 

During the second stage of the processing algorithm we 
proceed to the modeling of each elementary unit by calculating a 
set of statistical measures. The selection of the specific measures 
is directly connected to the analysis of the various print-attack 
signal distortions presented earlier. Thus, the calculated statistics 
encapsulate information related to the global and local amplitude 
properties of signals, the noise levels, and the invalidity. 

Local Unit Centroid. The local centroid of each elementary 
unit ( iu ) provides an aggregated representation of samples 
positional information, and can be used to represent the global 
positioning properties of elementary units:  

( )
1

/
ui

i

M

i i u
m

LUC u m M
=

=∑   (7) 

where 
iu

M  is the total number of samples of the elementary unit 
iu . This number can vary due to different lengths of the units. 

Local Unit Power. This measure is used to model the local 
signal energy per sample in every elementary unit ( iu ). It carries 

information related both to the global offsets and the local 
amplitudes, and can be calculated as the signal power 
corresponding to every unit: 

( )
2

1

/
ui

i

M

i i u
m

LUP u m M
=

=∑   (8) 

Local Unit Variance. The signal variance is defined as the 
signal power for every elementary unit ( iu ) when subtracting the 
mean. Consequently, this specific statistical measure isolates the 
local amplitude variation characteristics, and thus provides 
robustness in cases where global offset information becomes 
insufficient. Local elementary unit variance can be calculated as: 

( )
2

1

 /
ui

i

M

i i i u
m

LUV u m LUC M
=

= −∑  (9) 

Local Unit SNR. We can express the Signal-to-Noise Ratio 
for every unit ( iu ), as the ratio of the mean amplitude of the 
samples to the corresponding standard deviation. This statistic 
can model noise artifacts appearing due to the finite quality of the 
iris paper-print and the artificial construction of the pupil hole. 

/i i iLUS LUC LUV=   (10) 

Local Unit Invalidity. As already mentioned, eye movement 
signals recorded during an iris print-attack usually appear to have 
enhanced levels of invalidity. The invalidity level of every unit 
( iu ) can be expressed as: 

/
i i

inval
i u uLUI M M=   (11) 

where 
iu

M  is the number of samples marked from the eye-
tracker as invalid, i.e. not successfully captured. 

3.3. Feature Vector Formation 

The final feature vector is formed with the calculation of the 
average values and the standard deviations over the statistics 
extracted from all separate eye movement signal units, and the 
concatenation of values into a common representation: 

( )
,

, , , ,avg avg avg avg avg avg

x y
f LUC LUP LUV LUS LUI=  (12) 

( )
,

, , , ,std std std std std std

x y
f LUC LUP LUV LUS LUI=     (13) 

( ),avg stdf f f=            (14) 

We denote with x, y the corresponding coefficients for the 
horizontal and vertical components of eye movement. It is 
important to mention that the procedure adopted for forming the 
final feature vectors allows for a hierarchical modeling of the 
signal distortions. The generated distortions can affect different 
parts of an eye movement signal in different degrees. For this 
reason, the statistics are initially calculated for every single 
elementary unit, and then, they are incorporated into a compact 
representation capable to represent both the global characteristics 
and the local amplitude variations in the signals. 
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Fig. 6. Block diagram of the procedures followed in the proposed methodology. 
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4. Experimental methodology 

The experiments for the collection of the real and the print-
attack recordings were performed as two separate processes. 
Initially, we recorded the eye movements and the iris images 
from 200 subjects, thus forming the database of live recordings. 
Then, we used the iris images from the live subjects in order to 
create the fake iris printouts and attack the eye tracking device. 
The eye movement signals recorded during this procedure 
formed the database of print-attack recordings. 

4.1. Apparatus 

All eye movement recordings were performed using an 
EyeLink 1000 eye-tracker working at 1000 Hz (vendor reported 
spatial resolution of 0.01° RMS). In our experiments the eye-
tracker operated in monocular mode collecting samples from the 
left eye. By employing very high grade commercial eye-tracking 
equipment we were able to conduct an analysis of our method’s 
robustness by simulating scalable degradation of temporal and 
spatial resolution. The recordings of iris images were 
implemented via a CMITech BMT-20 system. This device 
captures images of both irises at resolution 640x480 pixels in a 
format conforming to standard ISO/IEC 19794-6:2011 for iris 
image data. For our experiments we used the left eye iris images. 

The iris printouts used for conducting the attacks were printed 
on high quality matte paper, with the use of a HP Laserjet 
4350dtn grayscale printer with resolution of 1200x1200 dpi. 
During our initial investigation we experimentally found that 
printing the iris patterns on a glossy paper using a laser color 
printer is not suitable for performing print-attacks at the eye-
tracking device due to the reflectance properties of the resulting 
printout. In such case, the eye-tracking software fails to acquire 
any valid estimation for pupil boundary and corneal reflection, 
and the detection becomes trivial. 

4.2. Experimental Stimulus 

A single fixation point was employed as the visual stimulus. 
The point was positioned at a visual angle of 3.5° above the 
primary eye position (eye staring straight ahead). We carefully 
selected this type of stimulus (instead, for example, of a moving 
point) for the following reasons: 

a) It is the most demanding scenario for the case of an iris 
print-attack and allows for an evaluation of the fundamental 
characteristics of our method. A visual stimulus that will provoke 
larger eye movements would result in even more pronounced 
distortions in the signals making thus the detection easier. 

b) The overarching motivation of our work is to enable higher 
security in iris recognition devices by employing eye tracking 
capabilities. Iris recognition devices usually require a user to 
stare straight ahead and not make excessively large eye 
movements, for capturing a good quality iris image. The use of a 
stationary point stimulus during the experiments allows for the 
evaluation of our method under such a scenario. 

4.3. Participants 

A total of 200 subjects (99 male/101 female), ages 18-44 
(average = 22, STD = 4.3) participated in the collection of data 
from real eyes. From the total number of participants, 96 had a 
normal (not-corrected) vision, and 104 had a corrected vision (46 
glasses/58 contact lens). Each participant enrolled twice, forming 
thus a database of 400 eye movement recordings and the 
corresponding 400 real iris images. It should be noted that the 
large volume of subjects provides a sufficient diversity of 
eye/pupil shapes and sizes, allowing for a thorough evaluation of 
the proposed scheme. Texas State University institutional review 

board approved the study, and participants provided informed 
consent. 

The experiments for the collection of eye movements during 
the print-attacks were performed using the 400 printed iris 
images from the real eyes. Print-attacks were performed by a 
specific person that was not among the subjects employed in the 
database of real eyes. This decision was purposefully made in 
order to ensure that the differences between the real and print-
attack eye movement signals were primarily the result of 
structural and functional inconsistencies of the iris printouts, 
rather than the result of inter-person eye movement differences. 
The person making the print-attacks did not have any reported 
eye movement disorders that could affect the captured signals. 

The constructed datasets containing the eye movement 
recordings both for the real eyes and for their print-attack 
counterparts are publicly available via link0F

1. The database 
contains also the iris images used to create the printouts. It should 
be noticed that our processing method uses only the eye tracking 
signals. However, we included also the real iris images in the 
database for any future techniques that might combine both. 

4.4. Experimental Procedure 

During the collection of eye movements from the real 
subjects, each participant’s head was positioned at a distance of 
550 millimeters from a 19” computer screen (474x297 
millimeters, resolution 1680x1050 pixels), where the visual 
stimulus was presented. Each subject was instructed to fixate on 
the stationary point stimulus for a period of 15 seconds. During 
the implementation of the eye movement recordings with the 
corresponding iris printouts, each iris image was fastened to an 
eye patch, and was steadily adjusted on the head of the subject 
performing the attacks. Print-attacks were implemented against 
the same eye tracking device and recording setup as previously. 
A video demonstration of the implementation of an iris print-
attack against the eye tracking device is provided in1.  

We opted to perform two separate print-attack scenarios 
corresponding to the possible practical implementations of a 
spoofing attack against an eye-tracking system: 

Spoofing Attack Scenario I (SAS-I). In the first scenario the 
spoofing attack is conducted both during the calibration stage and 
during the stimulus presentation stage. It should be mentioned 
that during the calibration stage the subject performing the attack 
needs to make small head movements in order to bring the more 
distant points into the field of view, mimicking thus the natural 
eye movements. In the case of SAS-I, the distortions are 
generated both from the calibration stage and from the 
inconsistent positioning of pupil and corneal reflection during the 
stimulus presentation stage. 

Spoofing Attack Scenario II (SAS-II). In the second scenario 
the spoofing attack is conducted only during the stimulus 
presentation stage. In this case, the calibration stage is performed 
with the attacker’s real eye. This scenario emulates the case when 
calibration is skipped. We decided to test this scenario since 
some eye trackers do not require re-calibration after the initial 
calibration is done. Signal distortions during this scenario are 
generated only from the inconsistent positioning of pupil and 
corneal reflection during the eye-tracking procedure. 

5. Results 

5.1. Distinctiveness of Single Features  

                                                
1 http://cs.txstate.edu/~ok11/etpad_v2.html 



In order to investigate the relative contribution of each single 
feature in the overall performance, we calculate the decidability 
index d’ (d-prime value) (Daugman, 2003), which is a measure of 
the separation of genuine/impostor distributions for each feature. 
Table 1 presents the d’ values for each of the extracted features. 

Table 1. Decidability index (d’) for each single feature. 

Feature Direction d’ 
SAS-I SAS-II 

LUCAVG 
Horizontal 0.17 1.34 

Vertical 0.04 0.95 

LUPAVG 
Horizontal 0.53 1.13 

Vertical 0.74 0.57 

LUVAVG 
Horizontal 0.32 0.31 

Vertical 0.33 0.28 

LUSAVG 
Horizontal 0.48 0.15 

Vertical 0.47 0.04 
LUIAVG Both 0.64 0.21 

LUCSTD 
Horizontal 0.57 0.08 

Vertical 0.59 0.07 

LUPSTD 
Horizontal 0.44 0.31 

Vertical 0.46 0.45 

LUVSTD 
Horizontal 0.30 0.24 

Vertical 0.31 0.19 

LUSSTD 
Horizontal 0.69 1.35 

Vertical 0.85 0.75 
LUISTD Both 0.37 0.27 

5.2. Performance Evaluation Metrics 

During the evaluation experiments we employ a SVM 
classifier1F

2 with a Gaussian Radial Basis Function kernel (SAS-I, 
σ = 1, SAS-II, σ = 2). In all experiments we use a 50%-50% 
training-testing split for the SVM classifier, and the calculated 
rates are averaged over 100 iterations. 

The used metrics (standard ISO/IEC 30107-3 for presentation 
attack detection) are presented below. In the definitions, the term 
“live” feature vectors refers to samples from real irises, and the 
term “spoof” feature vectors refers to samples from printed irises. 

Attack Presentation Classification Error Rate (APCER). 
APCER is defined as the percentage of “spoof” test feature 
vectors that are incorrectly classified as “live”. 

Normal Presentation Classification Error Rate (NPCER). 
NPCER is defined as the percentage of “live” test feature vectors 
that are incorrectly classified as “spoof”. 

Average Classification Rate (ACR). ACR is defined as the 
average percentage of correctly classified test feature vectors 
(either “live” or “spoof”): 

ACR 100% APCER NPCER / 2= − +  (15) 

Equal Error Rate (EER). EER is the point of the Receiver 
Operating Characteristic (ROC) curve for which APCER equals 
NPCER. To construct the ROC curves we use the “soft-margin” 
implementation of the SVM classifier, and utilize the distances of 
the misclassified feature vectors from the optimum separating 
hyper-plane (slack variables) as “soft-scores”. By varying the 
acceptance threshold for these “soft-scores” we can build the 
ROC curve and determine the EER. 

                                                
2 used MATLAB functions: svmtrain, svmclassify 

5.3. Print-Attack Detection Performance 

In Table 2, we present the calculated print-attack detection 
rates along with the corresponding standard deviations (STD). 
Also, we show the corresponding print-attack detection rates for 
the 200-subject datasets achieved by the preliminary feature set 
presented in (Rigas and Komogortsev, 2014). The ACR for the 
case of the SAS-I peaks at a value of 95.4%, and for the case of 
the SAS-II at a value of 96.5%. It can be noticed that APCER for 
the SAS-I case is greater than NPCER, with values of 5.9% and 
3.4% respectively. In the case of the SAS-II the situation is 
reversed, with APCER being 3.4% and NPCER 3.5%. A 
comparison with the results for the simple feature set used in 
(Rigas and Komogortsev, 2014) reveals an improvement both of 
the ACR and the EER. The APCER is considerably improved, 
whereas the NPCER is slightly increased. Also, the trade-off 
between APCER and NPCER appears to be more balanced.  

In Fig. 7, we show the constructed ROC curves used for the 
calculation of the EER (note that TPR = 1 - FRR). These curves 
describe the overall operational characteristics of the proposed 
method. The minimal EER values calculated for these curves are 
4.7% for the SAS-I and 3.4% for the SAS-II respectively. 

 

Fig. 7. ROC curves for print-attacks of type SAS-I and SAS-II. 
 

5.4. Performance Analysis for Limited Recording Duration 

We decided to conduct an experimental analysis regarding the 
behavior of performance when limiting the duration of the 
captured eye movement signal (input signal). As described in 
Section 4, the original recordings have duration of 15 seconds. 
However, for anti-spoofing modules embedded in more complex 
biometric recognition systems it is usually required to provide 
fast decisions, making it important to extract the print-attack 
decision from data captured within a relatively short recording 
duration. 
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Table 2. Performance results for print-attack detection. 

Performance Metric 
Current Method (enhanced feature set) Preliminary Method (Rigas and Komogortsev, 2014) 

SAS-I SAS-II SAS-I SAS-II 

ACR (STD) 95.4 (1.0)% 96.5 (1.0)% 93.0 (1.1)% 95.7 (0.8)% 

APCER (STD) 5.9 (1.5)% 3.4 (1.2)% 12.0 (2.4)% 6.7 (1.7)% 

NPCER (STD) 3.4 (1.5)% 3.5 (1.6)% 2.7 (1.2)% 1.9 (1.0)% 

EER (STD) 4.7 (0.8)% 3.4 (0.9)% 5.7 (1.1)% 3.9 (0.8)% 
 



 

Fig. 8. Behavior of detection rates for limited duration of the input signal.2F

3 
Fig. 8 illustrates the performance of our method by artificially 

reducing the recording duration (cut-off initial part of the signal). 
For the ACR metric, the rates remain at the optimum levels about 
96% for recording time over 7 seconds, for both types of attacks 
(SAS-I, SAS-II). For shorter recording time the performance 
starts decreasing, however not very drastically. Even for the 
lowest tested duration of 1 second, the ACR values for the SAS-I 
and SAS-II are 87.2% and 94.2%. A similar behavior is also 
mirrored by APCER and NPCER metrics, with their highest 
values being 15.1% and 10.5% for the case of SAS-I, and 7.2% 
and 4.4% for the case of SAS-II. For the EER metric, the 
optimum levels (3.5-4.5%) seem to persist also for a minimum 
recording time of 7 seconds. After that, the EER gradually 
increases to values of 11.9% for the SAS-I and 6.1% for the 
SAS-II, for recording duration of 1 second. 

5.5. Performance Analysis for Temporal Resolution Degradation 

We conducted experiments to evaluate the robustness of the 
proposed method by simulating recording conditions of lower 
sampling rate than the original frequency of 1000 Hz. To this 
purpose, we successively down-sample the original signals in 
lower temporal resolution and re-run the print-attack detection 
algorithm for the down-sampled signals. The frequencies used in 
our experiments are: 500 Hz, 250 Hz, 120 Hz, 75 Hz, 30 Hz, and 
15 Hz, and the results are shown in Fig. 9. For the ACR metric, 
we observe a worst-case ACR of 89% for the SAS-I, and 94.8% 
for the SAS-II. The respective worst-case APCER and NPCER 
values are 11.2% and 10.9% for the SAS-I, and 6.1% and 5.4% 
for the SAS-II accordingly. The worst-case values for the EER 
metric are 11% for the SAS-I case, and 5.3% for the SAS-II case. 

5.6. Performance Analysis for Spatial Resolution Degradation 

We also decided to investigate the impact of spatial resolution 
degradation on the recorded eye movement signals, by dithering 
noise to the raw recorded signals captured with the eye-tracking 
device. Whereas in the case of temporal resolution degradation 
the rates behavior changed smoothly, the addition of noise to the 
samples is expected to affect the detection performance more 
dramatically, given the by-principle involvement of local 
amplitude variations and noise levels in the extracted feature set 
of the proposed algorithm. 

                                                
3 Data fitted in curves using MATLAB function: fit (3-order polynomial) 

 

Fig. 9. Behavior of detection rates for temporal resolution degradation.3 
As illustrated in Fig. 10, the detection rates remain in an 

acceptable range while the dithering noise does not exceed 0.75° 
of visual angle. In this case, the ACR metric decreases to a value 
of 90% for the SAS-I, and 95.5% for the SAS-II, whereas the 
EER metric increases to 9.3% and 4.6% accordingly. This 
behavior is also reflected from the values of the APCER and 
NPCER, which gradually increase to values of 11.3% and 8.6% 
for the SAS-I, and 5.4% and 3.6% for the SAS-II. For higher 
levels of dithering noise the decrease in performance is more 
drastic and reaches prohibitive levels for the task of print-attack 
detection. 

 

Fig. 10. Behavior of detection rates for spatial resolution degradation.3 

6. Discussion 

6.1. General Performance 

The results demonstrated in Table 2 portray the satisfactory 
performance that can be achieved by the proposed method in the 
task of print-attack detection. The achieved ACR values are over 
95% in both performed attack scenarios, and the EER values 
calculated from the ROC curves (shown in Fig. 7) are in the 
range of 3-5%. The use of a large database of eye movement 
signals allowed for an in-depth analysis of the proposed method, 
and the robustness assessment for various degrading conditions 



for the recorded signals. Furthermore, the overall rates are 
improved compared to our preliminary work in (Rigas and 
Komogortsev, 2014), due to the employed feature set used for 
modeling additional sources of signal distortion. The values of 
decidability index d’ (Table 1) allow to infer the relative 
contribution of the extracted features. It is worth observing that 
whereas some features contribute highly on both the SAS-I and 
SAS-II, others seem to contribute differently due to the existing 
differences in the signal characteristics in the two scenarios. 

Generally, our experimental findings show an optimistic 
prospective for the incorporation of eye movement-driven 
features in current iris recognition devices. The proposed method 
performs with moderate degradation in performance for signal 
durations as low as 1 second, however, the top performances are 
achieved for signal durations of about 7 seconds. During a 
practical implementation it is possible to adapt the required 
signal duration according to the system’s requirements (trade-off 
between registration time and required detection accuracy). 
Another possible scenario involves the incorporation of the 
algorithm in a multi-modal system that fuses eye movement-
driven biometrics and iris biometrics. In this case, the already 
available eye movement signal can be additionally used for 
performing liveness detection (single instance or continuous) of a 
subject with minimum additional cost. Furthermore, in the 
proposed scheme the feature extraction and vector formation 
steps can be computed via signal-processing procedures based on 
simple sum/product operations, which can be efficiently 
performed by digital signal processing (DSP) units.  

It should be noticed that a direct comparison of our approach 
with any previous techniques based on image quality 
characteristics (e.g. texture, defocus distortions etc.) cannot 
happen due to the fact that the current database consists of eye 
movement signals and not from the images captured during the 
print-attack. Furthermore, none of the previously constructed 
databases provides eye movement signals. To provide an indirect 
assessment, we present the indicative performance levels that 
were obtained by some of the previously implemented methods. 
In (Pacut and Czajka, 2006), inspection of frequency spectrum in 
two different scenarios brought about rates ranging from null up 
to 11.1% for the APCER, and up to 2.8% for the NPCER. For the 
method presented in (Zhuoshi et al., 2008), where texture 
characteristics of images printed on contact lenses were 
examined, the reported ACR ranged from 97.8% to 100% for the 
first database they used, and from 76.8% to 95.8% for the 
second. In (Czajka, 2013), the inspection of “alien” frequencies 
in the image spectrum resulted in a performance of 5% APCER 
for null false rejection of valid samples. An experimental study 
of pupil constriction under different illumination scenarios 
(Xinyu et al., 2013), exhibited results for ACR ranging from 82% 
to 99.9%. The above rates give a general idea of the performance 
levels achieved in the field of iris anti-spoofing protection. It 
should be added, though, that in most of the previous efforts 
different and task-specific scenarios were used, and this partially 
explains the diversity in the reported detection accuracy ranges. 

6.2. Robustness for Signal Recording Degradations 

Our analysis regarding the robustness of the proposed method 
under different cases of signal degradation led to several useful 
findings. There is a relative smooth decrease of detection rates 
when the temporal resolution is degraded down to 15 Hz, as 
demonstrated by the results of Fig. 9. In addition, it can be 
observed that the rates in the case of SAS-II present a 
substantially milder variation than for the SAS-I. A possible 
explanation is that the smoothening effect on distortions, due to 
temporal down-sampling, is more important in the case of the 

heavily distorted signals of the SAS-I than for the SAS-II. The 
significance of the obtained results can be further magnified 
given the fact that contemporary iris recognition devices typically 
operate with relatively low sampling rates. A phenomenon 
mostly observed in the case of temporal resolution degradation 
curves (Fig. 9), is that sometimes the results do not change 
monotonically. This effect can be attributed to the fine-scale 
influence of different down-sampling rates on the signal 
decomposition algorithm. The slightly different form of the 
smoothened signal leads in turn to slightly better (or worse) 
modeling of the elementary units, resulting in the observed 
behavior of the curves. 

The degradation in the spatial resolution of the captured signal 
has also an impact on the detection rates (Fig. 10). In specific, the 
performance seems to be affected severely when dithering noise 
amplitude exceeds 0.75° of visual angle. It should be noticed 
though that this decrease in performance is expected, since after a 
specific level the noise starts absorbing important signal 
characteristics which are indicative of the print-attacks. 

6.3. Limitations 

The presented experimental study should be examined under 
the scope of certain limitations. Our experiments were performed 
in a controlled environment away from any external parameters, 
and the heads of the subjects were comfortably stabilized with 
the use of a headrest. It should be noticed, however, that the 
modern remote/head-mounted eye-tracking technologies can 
allow different degrees of head movement, and can provide thus 
additional robustness in the case of a practical scenario. 

Another important issue involves the influence of several 
physical/behavioral states (e.g. fatigue, intoxication) and/or 
medical disorders on the recorded eye movement patterns. The 
optokinetic nystagmus (Leigh and Zee, 2006) (Ch. 10 - pp. 480-
521) is an eye movement disorder that results in fixational signals 
presenting larger positional variability compared to the normal 
ones. The saccadic intrusions (Leigh and Zee, 2006) (Ch. 10 - pp. 
521) are abrupt movements which appear in the form of artifacts 
contaminating the normal activity of an eye movement signal. 
The signal variations induced by these and other eye movement 
disorders can lead the detection algorithm to falsely correlate 
these distortions with a spoofing attack. This, in turn, may result 
in an increase of the falsely rejected biometric signals, thus 
increasing the NPCER. However, it is not expected to affect the 
APCER performance, since an attacker with an eye movement 
disorder is expected to have even less success in mimicking the 
normal eye movement behavior. 

7. Conclusion 

In this work, we presented a method based on eye movement 
traits for the extraction of features indicating an iris print-attack. 
We used a database containing real eye movements recorded 
from a large number of subjects, and the corresponding signals 
recorded during a spoofing attack performed with the printed iris 
images captured from the subjects. The developed scheme is 
capable to statistically model the eye movement signal distortions 
appearing due to the artificial nature of the iris paper-prints. The 
obtained rates demonstrate the effectiveness of the suggested 
method on the detection of spoofing print-attacks under different 
scenarios. We performed additional simulations for exploring the 
performance robustness in case of limited recording duration, and 
signal capturing quality degradation. Our analysis shows that the 
detection performance remains in reasonable levels for signal 
durations down to 1 second, sampling rates as low as 15 Hz, and 
dithering noise of amplitude less than 0.75° of visual angle. 



In our future research we will examine the possibility of 
extracting additional eye movement features that could be 
incorporated with the current methodology in order to address 
more sophisticated attack scenarios, involving printed contact 
lenses and synthetic eye replicas. 
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