
www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 1

ARTICLE TITLE: You’ve got the model-view-controller
Dr. John Hunt,

JayDee Technology Limited
Minerva House

Lower Bristol Road
Bath, BA2 9ER

Tel: 01225 789255
Fax: 0870 0548872

Email: john.hunt@jaydeetechnology.co.uk

Copy

Anyone who has ever tried to construct modular, object oriented user
interfaces using the Java and Swing, knows how hard it can be. The result
can easily end up being difficult to debug, complex to understand and
maintain, and certainly not reusable (except by cutting and pasting!).
However, huge benefits can be obtained by separating out the user interface
(i.e. GUI components) from the application logic/code. This has been
acknowledge for a long time and a number of approaches have been
proposed over the years for separating the presentational aspect of an
application from the logic of that application. In the case of client Java
applications, used in multi-tier environments this is still true. In this column
and the next, we will explore the use of the model-view-controller
architecture/pattern (or just as the MVC for short). The MVC originated in
Smalltalk but the concept has been used in many places. This article
considers what the MVC is, why it is a good approach to GUI client
construction and what features in Java support it.

1. What is the Model-View-Controller Architecture
With the advent of JDK 1.1 a new event model was introduced into Java. This
event model is much cleaner than the previous approach and can result in
simpler, clearer and more maintainable code. The introduction of this event
model, along with existing Java facilities, allows the construction of modular
user interfaces. In particular it allows the separation of the display of
information, from the control or the user input to that display, as well as from
the application. This separation is not a new idea and allows the construction
of GUI applications that mirror the Model-View-Controller architecture. The
intention of the MVC architecture is the separation of the user display, from
the control of user input, from the underlying information model as illustrated

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 2

in Figure 1 [Krasner and Pope 1988]. There are a number of reasons why this
is useful:

• Reusability of application and / or user interface components,
• Ability to develop the application and user interface separately,
• Ability to inherit from different parts of the class hierarchy.

Ability to define control style classes which provide common features
separately from how these features may be displayed.

Figure 1: The Model-View-Controller architecture

This means that different interfaces can be used with the same application,
without the application knowing about it. It also means that any part of the
system can be changed without affecting the operation of the other. For
example, the way that the graphical interface (the look) displays the
information could be changed without modifying the actual application or how
input is handled (the feel). Indeed the application need not know what type of
interface is currently connected to it at all.

2. What Java facilities support the MVC
Java provides two facilities that together can allow the separation of the
application, interface and control elements. These are:

• The observer / observable model. This allows application programs and
user interfaces to be loosely coupled.

• The delegation event model. This provides listeners which act as
controllers handling various events that may occur.

The use of the observer / observable mechanism is very powerful and has
been used to create MVC style clients. However in this article we will focus on
the use of the delegation event model. Why is? Essentially because more
developers are familiar with the delegation event model and it can be used as
successfully as the observer-Observable model to allow models to notify their
views of the need to perform a redisplay style operation.

2.1 The Delegation Event Model
The Java delegation event model introduced the concept of listeners
[Sevareid 1997]. Listeners are effectively objects that “listen” for a particular
event to occur. When it does they react to it. For example, the event
associated with the button might be that it has been “pressed”. The listener
would then be notified that the button had been pressed and would decide

Display/
View

Control of
User Input

Information
Model

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 3

what action to take. This approach involves delegation because the
responsibility for handling an event, generated by one object, may be another
objects’.

The delegation model changed the way in which users created GUIs back in
JDK 1.1. Using this model they defined the graphic objects to be displayed,
added them to the display and associated them with a listener object. The
listener object then handled the events that were generated for that object.

For example, if we wish to create a button which will be displayed on an
interface and allow the user to exit without using the border frame buttons,
then we would need to create a button and a listener for the action on the
button:

exitButtonController = new ExitButtonController();
exitButton = new Button(" Exit ");
exitButton.addActionListener(exitButtonController);

This code creates a new user defined listener object, ExitButtonController,
then creates a new button (with a label exit). It then adds the
exitButtonController as the action listener for the button. That is, it is the object
which will listen for action events (such as the button being pressed). The
ExitButtonController class (presented below) provides a single instance
method actionPerformed() which will initiate the System.exit(0) method.

Figure 2: The class and object diagram using the delegation event model

The resulting class and instance structures are illustrated in Figure 2. As you
can see from this diagram, the separation of interface and control is
conceptually very clean.

The ExitButtonController class definition is presented below. There is of
course no reason why you should call such classes controller, you could
equally have called it an ExitButtonEventListener. However, the Listeners are
the interface definitions. By choosing a different type of name, we make it
clear we are talking about the classes intended to provide the execution
control:

class ExitButtonController
 implements ActionListener {
 public void actionPerformed(ActionEvent event) {

Frame ActionListener
WindowListener

SimpleGUI ExitButtonController

anExitButtonControlleraSimpleGUI 2. Event notification
1. User
interaction

3. Method
invocation

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 4

 System.exit(0);
 }
}

3. The MVC in Java
To provide a framework for the MVC within Java we can adopt a number of
techniques, however the approach adopted here is illustrated by Figure 3. This
diagram shows three interfaces (namely Controller, View and Model) that acts
as markers for the core concepts or entities in the MVC framework. Note that
the Controller and View interfaces define accessor methods for obtaining the
model and either the view or controller respectively.

Figure 3: The interfaces defining the MVC entities

In Figure 3 the interface of most note is the Model interface. This interface
contains just one method: the notifyChanged(ModelEvent event) method. This
method will be used by all implementations of models to notify any interested
objects of changes in the state of the Model. At this point all we know is that
such a method will be provided and that the parameter to this method is
ModelEvent.

This leads on nicely to Figure 4. This is the heart of the notification
mechanism used within this implementation of the MVC. When a model
wishes to notify interested objects of a change in its state. I must create a
ModelEvent object (just as JButton creates an ActionEvent to notify a handler
that a user has clicked on it). In this cases the ModelEvent object has been
made a subclass of ActionEvent however it does not need to subclass this
class – it could subclass any Event object as identified by a designer. The
ModelEvent class adds an additional property to those inherited, this property
allows a ModelEvent to hold an amount value (this is really tying too closely to
the calculator application but keeps things simpler later on).

As we are defining our own event class, we also need to define a listener
interface for objects that wish to be notified of ModelEvent. The ModelListener

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 5

interface does this. Note that the JFrameView class (the root of all windows
that wish to act as the view element of a MVC framework) implements the
ModelListener interface. thus all JFrameViews (and its subclasses) can be
notified of ModelEvents.

Figure 4: The event notification aspects of the framework

Finally the AbstractModel class provides an implementation for notifyChanged
that takes a ModelEvent and sends that event in turn to each of the listeners
registered with the model. Views (and any other listener objects) can register
with any subclasses of AbstractModel via the addModelListener method that
takes an object whose class implements the ModelListener interface as a
parameter. Objects can remove themselves from listener to the models events
via the removeModelListener method.

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 6

Figure 5: The whole generic MVC framework

Figure 5 illustrates the final generic MVC framework as implemented in this
column. Note that each of the root classes (AbstractController, AbstractModel
and JFrameView) reference the associated interfaces rather than the classes.
This helps maintain the generic nature of the framework.

4. A simple calculator application
To illustrate how this framework may be used in a simple application we shall
construct a very simple calculator application as illustrated in Figure 6. This
application only allows integer addition or subtract for value sin the range 0 to
9. Thus it is not possible to enter the value 10 – this is to keep the application
very simple.

Figure 6: The GUI for the calculator application

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 7

The overall structure of the application is that illustrated in Figure 7. Note that
the view object and the controller objects have inherited links that allow them
to communicate. However, although the interface and the controller objects
have links to the application model (CalculatorModel), the application model
knows nothing directly about the view or the controllers. This means that the
application logic in the calculator is independent of the view and its controllers
and may actually have various different GUI interfaces associated with it. One
of the advantages of this approach is that any one of the three elements can
be modified without the need to change the others.

Figure 7: The MVC architecture as it is implemented by the account application

The system interaction is illustrated in Figure 8. This figure illustrates the
various messages sent once a user clicks on the deposit button. There are a
number of points you should note about this example:

1. Neither the display nor the controller hold onto the balance. It is obtained
from the account whenever it is needed.

2. The controller relies on the delegation event model to determine that it
should do something.

3. When the controller asks the model to change it doesn’t tell the display –
the display finds out about the change through the observer / observable
mechanism.

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 8

4. The account is unaware that the message deposit(amount); came from the
controller. Thus any object could send a deposit message and the account
would still inform its dependents about the change.

4.1 Swing component event handling
In the approach being described in this column the event handling code
resides within the View classes (as it is essentially a swing related operation
and all swing related functionality should sit within the View). This means that
an event handler (for example an inner classes) implements the
actionPerformed method but then calls a method on the controller that will
determine what should happen next.

The controller in turn receives the information provided by the
actionPerformed method of the event handler and now determines what
action should happen next. In this particular application it determines whether
the model should be notified of an operation such as addition, subtraction,
clear or equals or that the model should be passed the integer entered by the
user. However it does not more than this.

Figure 8: Interaction in the MVC

In turn the application model (the CalculatorModel) handles what the
behaviour of each of the add, subtract, clear and equals methods should be.
Once it has done this, it creates a ModelEvent and calls notifyChanged
passing the ModelEvent in. This method, inherited form the parent class, then
notifies the view that it must update itself via the modelChanged method. In
our case the view obtains the new value to display form the event and
displays it within the JTextField at the top of the CalculatorView.

4.2 Frames, Panels and Layout Managers
The interface object is, of course, made up of a number of objects such as a
frame, a number of panels, as well as graphic components such as buttons
and text fields. In turn layout managers are used to control the way in which
these objects are arranged within the window frame. An interesting point to
note is that the exit button controller is used without any modification from

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 9

previous examples. In addition the abstract buttonController class (from which
the buttonPanelController class inherits) is a reusable class for any object
acting as a controller within an MVC style architecture.

4.3 The Application Code
The source code for this application builds upon the generic MVC framework
defined earlier – which involves more work the first time this framework is
followed, but the overhead is reduced for future applications.

5. Discussion
In this column I have tried to describe a way of constructing graphical user
interface applications (and of course applets) that is robust, principled and
reusable. It allows the various classes to inherit from different parts of the
class hierarchy, to implement different interfaces and to provide clearly
defined functionality. All of which lead to clearer, more comprehensible code.
It can be seen that such an approach allows the GUI to be structured in an
object-oriented manner. It would, of course, be possible to place all of the
application within a single class. This class would hold the application code,
the window definition and the event handling code. However, we would have
lost the following advantages:

• Reusability of parts of the system,
• The ability to inherit from different parts of the class hierarchy,
• Modularity of system code,
• Resilience to change,
• Encapsulation of the application.

Although these issues might not be a problem for an application as simple
as that presented here, for real world systems they would certainly be
significant. It is hoped that you are now aware of the benefits of adopting the
MVC architecture and will try to adopt this approach in your own systems.

In the next column we will consider a modified version of the MVC
framework, referred to as the Hierarchical MVC that allows more complex,
and realistic, applications to be constructed.

6. References
[Krasner and Pope 1988] G. E. Krasner and S. T. Pope, A Cookbook for

Using the Model-View Controller User Interface Paradigm in Smalltalk-80,
JOOP 1(3), pp. 26-49, 1988.

[Sevareid 1997] Jeremy Sevareid, The JDK 1.1s New Delegation Event
Model, Java Report, pp. 59 – 79.

Listings

Listing 1: The Model interface
package mvc;

/**
 * This interface must be implemented by all class that wish to play the Model

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 10

 * role within the MVC framework.
 * <p>
 * The only method specified by the interface is the <code>notifyChanged()
 * </code> method. */
public interface Model {
 void notifyChanged(ModelEvent event);
}

Listing 2: The Model interface
package mvc;
/**
 * The Controller interface is the interface which must be implemented by
 * all classes which wish to take the role of a Controller.
 * All controllers must be able to reference a model and a view object.
 * <p>
 * The primary role of a Controller within the MVC is to determine what
 * should happen in response to user input.
 */
public interface Controller {
 void setModel(Model model);
 Model getModel();
 View getView();
 void setView(View view);
}

Listing 3: The View interface
package mvc;
/**
 * This interface must be implemented by all classes that wish to take the role
 * of the View within the MVC framework.
 * The role of a View is the display of information and the capture of
 * data entered.
 */
public interface View {
 Controller getController();
 void setController(Controller controller);
 Model getModel();
 void setModel(Model model);
}

Listing 4: The AbstractModel class
package mvc;
import java.util.ArrayList;
import java.util.Iterator;

/**
 * Abstract root class of Model hierarchy - provides basic
 * notification behaviour
 */
public abstract class AbstractModel implements Model {
 private ArrayList listeners = new ArrayList(5);
 /**
 * Method that is called by subclasses of AbstractModel when they want to
 * notify other classes of changes to themselves.
 */
 public void notifyChanged(ModelEvent event){
 ArrayList list = (ArrayList)listeners.clone();

 Iterator it = list.iterator();
 while (it.hasNext()) {

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 11

 ModelListener ml = (ModelListener)it.next();
 ml.modelChanged(event);

 }
 }

 /**
 * Add a ModelListener to the list of objects interested in ModelEvents.
 */
 public void addModelListener(ModelListener l) {
 listeners.add(l);
 }

 /**
 * Remove a ModelListener from the list of objects interested in ModelEvents
 */
 public void removeModelListener(ModelListener l) {
 listeners.remove(l);
 }
}

Listing 5: The AbstractController class
package mvc;
/**
 * The root of the Controller class hierarchy is the AbstractController class.
 * This class defines all the basic facilities required to implement a
 * controller. That is, it allows a view and model to be linked to the
 * controller.
 * <p>
 * It also provides a set of constructors and set and get methods for views and
 * models
 */
public abstract class AbstractController implements Controller {
 private View view;
 private Model model;

 public void setModel(Model model) {
 this.model = model;
 }

 public Model getModel() {
 return model;
 }

 public View getView() {
 return view;
 }

 public void setView(View view) {
 this.view = view;
 }
}

Listing 6: The JFrameView class
package mvc;
import javax.swing.*;

/**
 * The JFrameView class is the root class of the view class hierarchy for top level
 * (swing) frames. It allows a controller and a model to be registered and can register

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 12

 * itself with a model as an observer of that model.
 * <p>
 * It this extends the JFrame class.
 * <p>
 * It requires the implementation of the <code>modelChanged(ModelEvent event);</code>
 * method in order that it can work with the notification mechanism in Java.
 */
abstract public class JFrameView extends JFrame implements View, ModelListener{
 private Model model;
 private Controller controller;
 public JFrameView (Model model, Controller controller) {
 setModel(model);
 setController(controller);
 }
 public void registerWithModel() {
 ((AbstractModel)model).addModelListener(this);
 }
 public Controller getController() {
 return controller;
 }
 public void setController(Controller controller) {
 this.controller = controller;
 }
 public Model getModel() {
 return model;
 }
 public void setModel(Model model) {
 this.model = model;
 registerWithModel();
 }
}

Listing 7: The ModelEvent class
package mvc;
import java.awt.event.ActionEvent;

/**
 * Used to notify interested objects of changes in the
 * state of a model
 */
public class ModelEvent extends ActionEvent {
 private int amount;
 public ModelEvent(Object obj, int id, String message, int amount){
 super(obj, id, message) ;
 this.amount = amount;
 }
 public int getAmount() {
 return amount;
 }
}

Listing 8: The ModelListener class
package mvc;
public interface ModelListener {
 public void modelChanged(ModelEvent event);
}

Listing 9: The Main class
package calculator;

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 13

public class Main {
 public static void main(String [] args) {
 new CalculatorController();
 }
}

Listing 10: The CalculatorController class
package calculator;
import mvc.*;
public class CalculatorController extends AbstractController {
 public CalculatorController() {
 setModel(new CalculatorModel());
 setView(new CalculatorView((CalculatorModel)getModel(),

 this));
 ((JFrameView)getView()).setVisible(true);
 }
 public void operation(String option) {
 if (option.equals(CalculatorView.MINUS)) {

((CalculatorModel)getModel()).subtract();
 } else if (option.equals(CalculatorView.PLUS)) {

((CalculatorModel)getModel()).add();
 } else if (option.equals(CalculatorView.CLEAR)) {

((CalculatorModel)getModel()).clear();
 } else if (option.equals(CalculatorView.EQUALS)) {

((CalculatorModel)getModel()).equals();
 } else {

((CalculatorModel)getModel()).store(Integer.parseInt(option));
 }
 }
}

Listing 11: The CalculatorModel class
package calculator;
import mvc.*;

public class CalculatorModel extends AbstractModel {
 private int total = 0;
 private int current = 0;
 private String state = "add";
 public void clear() {
 total = 0;
 store(0);
 }
 public void store(int value) {
 current = value;
 ModelEvent me = new ModelEvent(this, 1, "", current);
 notifyChanged(me);
 }
 public void add() {
 state = "add";
 total = current;
 }
 public void subtract() {
 state = "subtract";
 total = current;
 }
 public void equals() {
 if (state=="add") {

 total += current;

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 14

} else {
 total -= current;

 }
 current = total;
 // now notoify any interested parties in the new total
 ModelEvent me = new ModelEvent(this, 1, "", total);
 notifyChanged(me);
 }
}

Listing 12: The CalculatorView class
package calculator;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import mvc.*;

public class CalculatorView extends JFrameView {
 public static final String PLUS = "+";
 public static final String MINUS = "-";
 public static final String CLEAR = "Clr";
 public static final String EQUALS = "=";
 private JTextField textField = new JTextField();
 private String operation = PLUS;

 public CalculatorView(CalculatorModel model, CalculatorController controller) {
 super(model, controller);
 textField.setText("0");
 this.getContentPane().add(textField, BorderLayout.NORTH);
 JPanel buttonPanel = new JPanel();
 Handler handler = new Handler();
 JButton jButton1 = new JButton("1");
 jButton1.addActionListener(handler);
 JButton jButton2 = new JButton("2");
 jButton2.addActionListener(handler);
 JButton jButton3 = new JButton("3");
 jButton3.addActionListener(handler);
 JButton jButton4 = new JButton("4");
 jButton4.addActionListener(handler);
 JButton jButton5 = new JButton("5");
 jButton5.addActionListener(handler);
 JButton jButton6 = new JButton("6");
 jButton6.addActionListener(handler);
 JButton jButton7 = new JButton("7");
 jButton7.addActionListener(handler);
 JButton jButton8 = new JButton("8");
 jButton8.addActionListener(handler);
 JButton jButton9 = new JButton("9");
 jButton9.addActionListener(handler);
 JButton jButton0 = new JButton("0");
 jButton0.addActionListener(handler);
 JButton minusButton = new JButton(MINUS);
 minusButton.addActionListener(handler);
 JButton plusButton = new JButton(PLUS);
 plusButton.addActionListener(handler);
 JButton clearButton = new JButton(CLEAR);
 clearButton.addActionListener(handler);
 JButton equalsButton = new JButton(EQUALS);
 equalsButton.addActionListener(handler);

www.PlanetJava.co.uk www.JayDeeTechnology.co.uk

Page 15

 buttonPanel.setLayout(new GridLayout(4, 4, 5, 5));
 this.getContentPane().add(buttonPanel, BorderLayout.CENTER);
 buttonPanel.add(jButton1, null);
 buttonPanel.add(jButton2, null);
 buttonPanel.add(jButton3, null);
 buttonPanel.add(jButton4, null);
 buttonPanel.add(jButton5, null);
 buttonPanel.add(jButton6, null);
 buttonPanel.add(jButton7, null);
 buttonPanel.add(jButton8, null);
 buttonPanel.add(jButton9, null);
 buttonPanel.add(jButton0, null);
 buttonPanel.add(minusButton, null);
 buttonPanel.add(plusButton, null);
 buttonPanel.add(clearButton, null);
 buttonPanel.add(equalsButton, null);
 pack();
 }

 // Now implement the necessary event handling code
 public void modelChanged(ModelEvent event) {
 String msg = event.getAmount() + "";
 textField.setText(msg);
 }

 // Inner classes for Event Handling
 class Handler implements ActionListener {
 // Event handling is handled locally
 public void actionPerformed(ActionEvent e) {
 ((CalculatorController)getController()).operation(e.getActionCommand());
 }
 }
}

